
Development of Adaptive Multi-cloud Applications
A Model-Driven Approach

Javier Miranda1, Joaquín Guillén2, Juan Manuel Murillo1 and Carlos Canal3
1Department of Information Technology and Telematic Systems Engineering, University of Extremadura, Badajoz, Spain

2GloIn, Calle de las Ocas 2, Cáceres, Spain
3Department of Computer Science, University of Malaga, Málaga, Spain

Keywords: Service, Component, Cloud, Adaptation, MDE, Interoperability, Vendor Lock-in.

Abstract: Cloud computing is a new paradigm that allows users to access computing resources in a dynamic, flexible
and scalable manner. It has drawn the interest of multiple users, and in a short period of time it has
experienced a notorious hype. However, its numerous strengths are mitigated by the lack of standardization
which the technology suffers from. Different cloud vendors provide and manage similar resources in a
different manner, thereby coupling the application to its targeted cloud. Companies that consume cloud
services are locked-in to a single cloud vendor due to the high costs of migrating software in the cloud,
preventing them from changing their cloud provider or having multiple providers. In this paper we explore a
solution to the cloud vendor lock-in problem based on the use of model-driven engineering and software
adaptation techniques. The proposed solution is both cloud vendor and user friendly as it allows the former
to freely define their own cloud policies, whilst users continue to be free to choose a cloud provider, even
after the application has been developed.

1 INTRODUCTION

Cloud computing is a new paradigm that allows
users to access computing resources in a dynamic,
flexible and scalable manner. The underlying
technology and its business model have drawn the
interest of multiple users, and in a short period of
time it has experienced a notorious hype (Leavitt,
2009). However, its numerous strengths are
mitigated by the lack of standardization which the
technology suffers from (Armbrust et al., 2010).
Cloud vendors provide and manage similar
resources in a different manner, thereby coupling the
application to its targeted cloud. This is known as
the vendor lock-in problem (Petcu et al., 2012), and
has immediate consequences on companies that
consume cloud services. Considering a catalogue of
cloud users composed on one end by companies that
deploy complex services and architectures which
they want to keep under a strict control, and on the
other end by companies that deploy smaller public
services where availability and performance is a
critical factor due to the high number of users,
different standardization interests may be identified
for each. The former will rarely fully deploy their

applications in a public cloud, and will be mainly
interested in standardization for enabling the
interoperability between their private and public
cloud infrastructures. The latter would look into
standardization seeking to freely scale and also
migrate their services from one cloud provider to
another and/or to distribute them among several
clouds at a time.

In this scenario different initiatives, such as OVF
(Open Virtualization Format), OCCI (Open Cloud
Computing Interface), OGF (OpenGrid Forum), or
OASIS TOSCA (Topology and Orchestration
Specification for Cloud Applications), are emerging
in order to solve the problems derived from the
aforementioned shortcomings, taking a first step
towards defining standards that would homogenize
the existent cloud services at different levels
(Rochwerger et al., 2009). However, these proposals
are currently at a very early stage; no generalized
consensus has been reached and neither of them
have been adopted massively (Celesti et al., 2010).
Application interoperability and migratability
between cloud providers was never a concern when
the technology was conceived. In fact, cloud vendors
have their own implementation and specification of

321Miranda J., Guillén J., Murillo J. and Canal C..
Development of Adaptive Multi-cloud Applications - A Model-Driven Approach.
DOI: 10.5220/0004370603210330
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODA-2013), pages 321-330
ISBN: 978-989-8565-42-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

the services that they provide, locking users into
their solutions and preventing the portability of
cloud applications to other providers. This situation
threatens the success of Cloud Computing as a
universal service, where users can switch between
providers as they need (Loutas et al., 2011). The
current lack of support for these standardization
attempts by the existent vendors suggests that an
agreement is not going to be reached, at least in the
short term. Even if it is so, more immediate
alternatives could take place before an agreement on
the use of standards is reached. Furthermore, the
possible consolidation of more than one of these
proposals would provoke interoperability problems
between vendors adopting different standards.

Alternatives to standardization are mostly based
on the use of middleware layers (see for instance,
(Di Martino et al., 2010); (Tsai et al., 2010);
(Maximilien et al., 2009) which isolate the
application from vendor specific services. However,
middleware solutions are often quite complex and
heavyweight. Considering that they have to be
deployed in conjunction with the application, they
will clearly penalize the performance of the software
components attached to them. Further yet, the source
code of middleware-dependent components will be
tightly coupled to the specification of the
middleware, thereby moving the lock-in effect from
vendors to middleware.

Instead, our approach is based on the integration
of Model-Driven Engineering (MDE) and Software
Adaptation (SA) techniques. Developers are
requested to tag the components indicating which
cloud they will be deployed in; MDE techniques are
then applied to generate a XML based cloud
deployment plan. The source code and the XML
deployment plan are processed to generate cloud
compliant artefacts in order to access the underlying
cloud services. Then, on-the-fly migration of cloud
components, allow service developers to easily
change the underlying cloud depending on vendor
offers, or their own market and evolving business
perspectives at any given time. Migration can be
achieved by means of SA techniques, generating the
adapters required for allowing a component to move
to a cloud it was not originally conceived for. The
most outstanding benefit of using adapters in cloud
environments is the ability to automatically generate
loosely coupled applications with a reduced impact
on their deployment, and at the same time favouring
cloud interoperability.

This paper presents ongoing work in our
proposal, which was originally presented in (Guillén
et al., Oct. 2012). There, the concept of using a

software development framework for building cloud
applications was introduced. The framework allows
developers to separate all possible dependencies
between the software being developed and the cloud
from the source code through the generation of
software adapters.

In (Guillén et al., Oct. 2012), adaptation was
briefly presented as the candidate technique to be
used in the framework in order to keep the
application source as cloud-agnostic as possible. In a
subsequent work (Guillén et al., Sept. 2012), we
analyzed in more depth every situation in which
mismatch could be produced, and how SA
techniques would of help in solving these situations.

We expect that this combined MDE/SA approach
provides several advantages in comparison with
existing alternatives, mainly because it consists on a
lightweight solution which effectively deals with
cloud interoperability and migratability issues.

The remainder of this paper is organized as
follows. Section 2 presents the motivation of our
work, describing an scenario of migratable multi-
cloud application development. Section 3, presents
our approach for developing and deploying cloud
agnostic software. Then, Section 4 identifies the
scenarios in which the use of adapters is required,
and describes our adaptation approach, pointing out
the main notation of interest and applicable
techniques to achieve adaptation at any interaction
level. Next, Section 5 contains a description of the
related work. Finally, Section 6 presents our
conclusions and future lines of work.

2 MIGRATABLE MULTI-CLOUD
DEVELOPMENT

In the recent years, cloud computing has become
overwhelmingly popular. It provides a virtually
unlimited amount of computational infrastructure to
its users at an accessible cost, as no technology has
ever done before. Its popularity has also grown due
to the possibilities that it provides for outsourcing
maintenance tasks, allowing organizations to
concentrate on their core competencies.

The great potential of this technology and its
growing acceptance have resulted in the appearance
of multiple cloud vendors which provide similar
services. The variability found at different levels of
these services has resulted in the vendor lock-in
effect. However, the ultimate goal of cloud
computing is being able to build and deployed
Service-Based Applications (SBAs) by combining

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

322

conveniently the adequate resources available in the
cloud, even though they are supplied by different
third-party providers. For that purpose, there is a
need of techniques and tools addressing a wide
range of interaction mismatch issues, caused by the
heterogeneous origin of the services one may be
interested in composing. Only the flexibility of
cloud computing provides the fabric through which
SBAs can be constructed and deployed (Nguyen et
al., 2011).

Indeed, interoperability and migratability
between cloud providers was never a concern when
the technology was conceived. As we have shown,
cloud vendors have their own implementation and
specification of the services they provide, locking
their users into specific solutions and preventing the
portability of the applications. Current cloud
services are provided as a one-size-fits-all solution,
usually with preconfigured and monolithic
IaaS/PaaS/SaaS combinations. This situation
threatens the success of cloud computing as a
universal service where users can switch between
providers as they need (Loutas et al., 2011. The
choice of a given cloud provider may prevent the use
of certain data formats demanded by users due to
incompatibilities with the underlying infrastructure
and platform.

These problem become even bigger when facing
the development of multi-cloud SBAs, trying to
combine the functionality of services hosted in
different clouds. Then, the inconsistency of cloud
resource descriptions and the use of proprietary
technologies by cloud vendors are the main barriers
that must be confronted for communicating services
deployed on clouds by different providers.

For all these reasons, cloud application
migratability and interoperability are currently hot
issues that are being strongly questioned (Armbrust
et al., 2010), due to the inability to migrate software
which has been coupled to a specific cloud, to a
different environment. Additionally, little or no
effort has been made on behalf of cloud vendors to
favour interoperability with services and
applications hosted by different clouds.

In order to illustrate the current scenario, let us
consider a generic application (see Figure 1),
designed as the composition of several service-based
components, partly hosted in-house and partly in the
cloud, as the Cloud Component in the figure.
Suppose also that Cloud Component behaves as a
service consumer for a SaaS application deployed in
a maybe different cloud environment. This scenario
is a variation of the one we previously presented in
(Guillén et al., Sept. 2012), which is retaken and

summarized here for motivating our proposal.
The dotted lines in Figure 1 represent the

different dependencies between Cloud Component
and the rest of the system:

Figure 1: Current scenario for SBA deployment in the
cloud.

1. Cloud Component communicates with the
remaining components in the SBA application.
In order to allow service provision and
consumption to and from the cloud, this
communication has to be compliant with the
specifications of the cloud provider in which
the component is hosted.

2. Cloud Component presents also dependency to
services (e.g., persistence or authentication)
supplied by the cloud it is hosted in. These
services present specific interfaces and features,
which are defined by the cloud provider.

3. Cloud Component consumes external services,
that may be hosted in one or several different
clouds. In order for this to be done, the
communication must align with the constraint
imposed by the external cloud and service
providers.

Consider now that we decided to migrate Cloud
Component to a different cloud. The reasons for that
change could be multiple; on the one hand, in the
immature market of cloud computing, providers are
likely to change their hosting or changing policies,
or they may simply disappear. On the other hand, a
new cloud vendor may become more interesting for
hosting our component, for instance ensuring a SLA
which fits better the application's QoS requirements.

1

2

3

Development�of�Adaptive�Multi-cloud�Applications�-�A�Model-Driven�Approach

323

Under these circumstances, migrating Cloud
Component will necessarily affect the
aforementioned dependencies, that would need to be
reworked in order to make the component compliant
with the constraints of the new cloud environment.

However, little effort is currently being put into
generating tools, techniques, procedures and
standard data formats with enough potential to solve
these issues, and probably we will decide to keep
Cloud Component hosted in its original cloud, or
either redevelop it from scratch, considering its new
target cloud.

To sum up, the current scenario regarding SBA
development for the cloud has the following
implications:

 Communication between components and
services is strictly conditioned by the
technology supported by each cloud and service
provider.

 The invocation mechanisms and technologies
supported by each cloud provider must be taken
into account for invoking external components
and services provided by third-parties.

 The use of vendor-specific technologies and
services provoke migration and portability
problems that have to be taken into account
during the design stage.

Hence, multi-cloud SBA interoperability and cloud
migratability require a number of conditions to be
fulfilled:

 The modelling and development of the different
artefacts that compose a cloud application and
their requirements should be done in a vendor-
independent and cloud-agnostic manner. This
way, the application constituent components are
not constrained by the technical requirements of
any cloud or service provider. Only later in the
development process it will be evaluated
whether the application requirements for each
component are supported by a specific cloud
provider, or if this is not the case, adapters can
be generated to solve the existing mismatch.

 The assignment of an application component to
a given cloud, or to in-house hosting is a
decision that may be reverted at any time in the
lifecycle of an SBA. Hence, its design and
implementation must require no additional
effort depending on which cloud platform it is
finally hosted.

 A multi-cloud SBA must be able to integrate
external services, developed by third parties and
hosted in different clouds. Interface information
on the requirements and behaviour of these

services will be used to link the SBA with these
services adequately.

According to the conditions above, the development
process for cloud SBAs should be quite similar to
the one carried out for in-house service-based
applications. Software developers should be able to
describe all of the components involved in their
applications through the use of the same set of
techniques and methodologies. Additionally, they
may choose to tag the components with information
about the specific cloud where they will be
deployed. This information will be interpreted
during the development process in order to
determine which components need to be adapted as
well as the type of adaptation that they require.

The following sections describe ongoing work on
our proposal for building multi-cloud SBAs in which
components could easily migrate from one cloud to
another one, even at runtime.

3 DEVELOPING CLOUD-
AGNOSTIC APPLICATIONS

Cloud SBA interoperability arouses a series of
concerns that can be successfully solved combining
MDE and SA techniques. The variability between
the API and service specifications of each cloud
provider can be analyzed and defined, resulting on a
feature model describing cloud platform variability.
Then, cloud applications, as well as the requirements
of the different components that make up the
developed application, can be modelled in a cloud-
agnostic way, and MDE techniques are used to
generate components tailored to the particular
features of a given cloud. Finally, component-to-
cloud adapters would be generated for solving
interoperability problems, and for allowing
component migration between different clouds, even
at runtime.

This section presents our approach based on
MDE and SA techniques for developing SBAs that
can be migrated freely from one cloud to another,
hence overcoming the vendor lock-in effect. The
development process is divided into three phases: (i)
application modelling, (ii) coding and deployment
configuration, and (iii) cloud artefact and adapter
generation. Each phase will be detailed in the
following subsections.

3.1 Application Modelling

During this phase developers will model a cloud

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

324

 application for which the source code and a cloud
deployment plan will be generated through model-
to-text transformations. For that, a cloud application
metamodel has been defined. The metamodel is
based on a UML profile, which ensures that users
would not need to change their engineering process,
and that standard UML tools can be used along with
our proposal. Based on this profile, cloud
applications will be modelled as groups of
components, further referenced as cloud artefacts,
taking into account the following considerations:

 Each cloud artefact must be considered as an
atomic software entity that must be deployed in
a single cloud platform.

 Components that belong to the same cloud
artefact will communicate with one another
locally; i.e. no mediation will be required to
allow communication between these
components.

 Components that belong to different cloud
artefacts will communicate with one another
remotely; i.e. mediation will be required to
allow communication between these
components.

 Components may consume external services
provided by other applications.

Our cloud application metamodel is shown in Figure
2, and it defines cloud applications as built by the

composition of cloud elements or artefacts hosted in
one or more clouds. Cloud artefacts are tagged with
the stereotype CloudElement, and several elements
can be assigned to a specific cloud (stereotype
CloudAssignment). Assignments are associated with
the QoSParameter stereotype, which allows QoS
properties to be defined for the assignment. Finally,
the CloudInterface stereotype describes the
interfaces used by cloud artefacts to interact with
each other and with the services provided by the
cloud they are hosted in, and indicates if these
interfaces are provided by the artefact, or required to
the cloud provider. In the latter, the artefact cannot
be deployed in the cloud it is assigned to unless it
offers the services required by the artefact or an
adapter is generated to solve the existing mismatch.
That will be explained in the following subsections.

A model-to-text transformation will be then
applied on the models created during this stage in
order to generate class skeletons for establishing the
basic structure of the application. These skeletons
are cloud agnostic; i.e. all cloud related information
will be generated separately in a XML formatted
cloud deployment plan. Round-trip engineering
techniques will be used to synchronize the
application model with the actual code added to the
skeletons during the following development process,
avoiding inconsistence between these two levels.

Figure 2: UML profile for cloud application modelling.

Development�of�Adaptive�Multi-cloud�Applications�-�A�Model-Driven�Approach

325

3.2 Coding and Deployment
Configuration

During this phase developers will code the
application’s functionality starting from the skeleton
classes generated in the previous phase.
Additionally, tools will be integrated in the
development environment in order to allow them to
configure the cloud deployment plan.

This configuration will imply the assignment of
each artefact to a specific cloud platform based on a
catalogue of supported platforms. Hence, cloud
specific information regarding the following points
will automatically be included in the deployment
plan per cloud artefact:

 Services provided and consumed by the cloud
artefact for interoperability with other
components that will be deployed in different
clouds

 Vendor specific core services consumed by the
cloud artefact.

The technological restrictions of each cloud platform
regarding these issues will also be automatically
generated and included in the deployment plan in
order to generate cloud compliant software
components during this phase. This is possible
because the approach encloses a feature model (an
engineering paradigm frequently used in the scope
of Software Product Lines) that documents the
variability of each cloud platform. This feature
model provides a knowledge base containing all the
specific features of each cloud platform; it
documents the supported service protocols, the
required configuration parameters, the cloud specific
services that are provided, etc.

Notice that we have chosen to include this
intermediate step instead of directly generating the
cloud compliant source code in order to make it
easier for developers to code the application’s
functionality. Directly generating the source ode
used for component-to-component or component-to-
cloud interoperability would hinder the development
process by forcing developers to integrate their
source code into complex generated code.
Furthermore, it would also be detrimental for round-
trip engineering and application’s maintainability.

3.3 Cloud Artefact and Adapter
Generation

The source code and the deployment plan generated
in the previous phase will be processed during this
stage to produce cloud compliant artefacts.

Considering that each cloud platform may impose a
different structure to its software projects, the cloud
artefacts generated in this phase will be enclosed in
predefined source code projects that also contain a
series of software adapters.

As a part of this phase, we propose the use of
Software Adaptation techniques in order to allow a
flexible solution for overcoming variability and
interoperability issues in clouds. SA techniques are
aimed at developing mediator elements, called
adapters, which are automatically built from their
correspondent specifications and granting
interoperability between mismatching software
elements.

Adaptation will be performed at any of the
different levels of interoperability (Becker et al.,
2004), depending on the needs of each cloud
artefact. The following section discusses in more
detail the different sources of mismatch we have
found in migratable multicloud SBAs. The detection
of mismatch, and the automatic generation of the
required adapters will help to achieve
interoperability between cloud artefacts deployed
through heterogeneous cloud providers.

4 ADAPTATION IN THE CLOUD

Software Adaptation is a field within Software
Engineering which aims at providing the
abstractions and non-intrusive techniques for
composing mismatching black-box components by
automatically generating adapters able to reconcile
interoperability problems among them. We may
distinguish different levels of interoperability at
which mismatch may occur (Canal et al., 2006), and
different adaptation techniques are applied to each of
these levels:

 Signature level. Deals with the static aspects of
interface interoperability, including operation
names, type of arguments and return values,
and exception types.

 Behavioural level. Describes the interactive
behaviour that an artefact follows and expects
from its environment, (i.e., the order in which
the operations available on an interface should
be invoked). Behavioural descriptions are
required for stateful artefacts since operation
availability depends on the internal state of the
component.

 Service level. Deals with the description of QoS
properties like temporal requirements, security,
cost, etc.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

326

 Conceptual level. This level concerns semantic
specifications (i.e., what the artefacts actually
do). Even in the absence of mismatch at any of
the preceding levels, we must ensure that the
artefacts are going to behave as expected during
their interactions.

Figure 3: Cloud deployment scenario with adapters.

As we presented in (Guillén et al., Sept 2012),
three different situations where adaptation would
take place have been considered in our approach,
corresponding to the numbered tags in Figure 3:

Case 1. Adaptation between components. The way
in which a component deployed in a cloud
environment communicates with another cloud
component or a component deployed in a non-
cloud environment differs substantially from a
fully in-house approach.

Case 2. Adaptation between components and
cloud services. Cloud environments usually
provide specific services which can be
consumed by components deployed on their
platforms. The most common examples of these
services are those related with persistence,
security/authentication, file management, etc.

Case 3. Adaptation using third-party components
or services (SaaS). Cloud deployed components
consume external services differently
depending on the cloud provider in which they
have been deployed. The services being
invoked and their location also determine how
they must be consumed.

In the following subsections, we further develop the
sources of mismatch presented in (Guillén et al.,
Sept 2012) , classifying them into four adaptation
situations, each one related to one of the levels of
interoperability, and propose the use of specific
interface description and adaptation techniques for
addressing them.

4.1 Signature Adaptation

Signature adaptation deals with mismatching service
and operation names, argument types and ordering,
and naming conventions imposed by the underlying
technologies. This is the most frequent mismatch
issue that appears when trying to combine software
artefacts independently developed by third parties,
and consequently it may appear in any of the three
adaptation cases shown in the cloud scenario in
Figure 3. Either when migrating a component from
in-house to cloud hosting, or from a cloud platform
to a different one, both the location and name of its
services and operations will change, when they are
invoked by the remaining components in the
application, and also the way it invokes services and
operations from the rest of the system will be
affected. Furthermore, even though the most
common services that the migrated component may
require are provided by every cloud provider, their
names and arguments largely differ from one cloud
platform to another. Finally, the decision of hosting
a component in a particular cloud platform, may also
impose limitations on the distributed component
technologies available (e.g. SOAP, Rest, Java RMI,
etc.) which impose variations in the way these
services are invoked.

Among the different kinds of mismatch,
signature mismatch is the easiest to solve, and it has
been customarily addressed by non-invasive
techniques, like wrappers, or proxies. More specific
proposals (see as an example (Canal et al., 2008)),
advocate for the use of adaptation contracts or
mappings, abstract specifications of how mismatch
can be solved, based on the description of
component interfaces and service APIs. These
mappings establish correspondences between
dissimilar names of operations in the interfaces of
the artefacts to be adapted, allowing also reordering
and synthesis of operation arguments when required.
From them, the corresponding adapters can be
generated (Canal et al., 2008), allowing successful
interaction of the counterparts despite the different
naming conventions. For instance, the adapter can
easily transform what for the invoking component
seems to be a local call to its target component or

1

1

2

3

Development�of�Adaptive�Multi-cloud�Applications�-�A�Model-Driven�Approach

327

cloud service, while solving any kind of signature
mismatch by translating the name of the operation,
redirecting to a remote location if required, and
switching between different naming conventions and
invocation technologies.

4.2 Behavioural Adaptation

Behavioural mismatch refers to different granularity
of services and operations, and to incompatible
interaction protocols, in which the partial ordering of
operations does not fit among the counterparts
engaged on a service transaction. This kind of
mismatch can only be present in stateful software
artefacts, as many complex cloud services are.
Again, behavioural mismatch may be detected in
any of the three adaptation cases in Figure 3. For
instance, a frequent scenario of behavioural
mismatch appears when a stateful service is
deployed in a cloud environment that only supports
SOAP invocations. Here, WS-Resource and WS-
Addressing mechanisms can be used to perform
changes in the communication schema in order to
continue supporting a stateful behaviour.

Even more typically, the operation granularity
and ordering of equivalent cloud services may differ
between vendors. For instance, the same generic
‘get’ operation of a persistence service could imply
several different operation invocations and/or
orderings from one provider to another one. The
same occurs when comparing equivalent external
services.

Several recent research efforts (see as an
example (Canal et al., 2008); (Seguel et al., 2010)
concentrate on behavioural interoperability,
extending interfaces with a description of the
protocol followed during interactions, using either
automata-based notations or industrial standards like
WS-BPEL, and ensuring their correctness and
termination. The works in this category explain how
to generate adapters able to capture, store, remember
and reorder messages and operation calls and their
arguments, that are transmitted to their destinations
only at the point they are prepared to receive them.
For that, and starting from an empty or null
behaviour, the adapter is extended with input/output
actions reflecting those of the counterparts to be
adapted, and that serve to remove a deadlock in their
interaction, while at the same time ensuring other
properties of interest which can be specified by the
designer. The process continues until all deadlocks
have been removed, returning a full adaptor able to
ensure successful and correct interaction among the
participants.

4.3 QoS Adaptation

Service mismatch refers to interoperability issues
related to non-functional properties, such as client
QoS requirements and SLAs offered by cloud
platforms Thus, this kind of mismatch is likely to
appear in both component-to-cloud and component-
to-SaaS interactions. Indeed, each cloud provider
defines a specific API for cloud intrinsic
characteristics. Again, migrating a component to a
different cloud will affect the way in which QoS and
other non-functional properties are queried and
established. Similarly, providers enforce very
different SLAs for their services. Hence, switching
between service providers may cause mismatch
between the SLA imposed by the cloud and the QoS
required by the application.

Service adaptation is probably the least explored
adaptation level. QoS description models and their
related notations, such as the QoS Modeling
Language (QLM), are usually highly customizable,
and the possible specifications include mean values,
standard deviations and a set of quantiles
characterizing the distribution of any self-defined
quality metric. This ensures that QoS mismatch can
be easily detected, but once the mismatch is found
not so many actions can be performed to solve it,
especially if the mismatch comes from the SLA
policies enforced by a cloud provider. In that case,
only changing to a different cloud or service
provider, or replicating a component among
different clouds may help in solving the problem.

4.4 Conceptual Adaptation

Conceptual mismatch is produced by differences in
the functionality of the services offered and
requested. This kind of mismatch is mainly related
to the use of external services, and hence, it may
appear in the third adaptation case in Figure 3.

Indeed, in order to avoid external dependencies,
the consumption of external services must be
specified without determining the identity and
location of the targeted service. For example, a
component may indicate that it requires a translation
service, without specifying the exact service it is
going to consume. During the adaptation process,
the most convenient matching service will be
selected according to the requirements.

In the service-oriented computing field, there are
several notations for providing semantic information
about services using ontology-based notations such
as OWL-S or WSMO, which are particularly
interesting for service discovery. Once a semantic

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

328

match is selected, adaptation will be performed at
the remaining levels, in order to ensure correct
interaction.

5 RELATED WORK

Considering that no standardization initiative has
been consolidated, and that the outcome of the
existent initiatives is yet unknown, different
proposals have been made to mitigate this absence.
This section describes the cloud application
migratability and interoperability proposals that are
most closely related to ours.

In the scope of MDE for the cloud, (Hamdaqa et
al., 2011) proposes a meta-model for modelling
cloud applications focused in the definition of cloud
tasks as composable units, each one consisting of a
set of actions that make use of services to provide a
specific functionality. The approach detaches the
application modelling process from specific cloud
platforms; nevertheless, model transformations will
generate code that will be coupled to a specific cloud
platform. Our approach models cloud applications
from a different perspective since it allows us to
generate source code that is not coupled to the cloud.
Instead, all cloud related data is included in a
separate deployment plan, thereby favouring the
code’s cloud agnosticism and maintainability.

Another proposal based on MDE techniques is
presented by (Frey and Hasselbring, 2010) as a
means of mapping models of existent cloud
environments to legacy software models and
transforming the result to cloud-specific code
through a series of iterations and result evaluations.
This approach is fully oriented towards legacy
software; additionally, any subsequent changes will
have to be integrated into the generated software,
which may result more difficult to work with and
understand by the developers. In our work a
different approach for modelling the variability of
cloud platforms, based on feature models, is used
based. Both newly developed and legacy software
can be migrated easily to the cloud without coupling
the application’s source code to a cloud platform.

Other proposals for combating the vendor lock-
in effect are based on the use of middleware and
intermediate software layers intended to create an
abstraction between cloud platforms and the
generated software. One of the closest to our work is
mOSAIC, a reference initiative carried out as a
Europe funded project. Its perspective of how cloud
development should be accomplished matches our
criteria. Cloud migratability, interoperability and the

deployment of applications across more than one
cloud is tackled in mOSAIC through a robust
solution based on an API and a middleware platform
for cloud brokering (Di Martino et al., 2011). Our
approach deals with these issues through a different
perspective based on the use of SA techniques,
which present beneficial results in alternative
scenarios where lightweight software components
may be required.

A Service Oriented Cloud Computing
Architecture (SOCCA) is presented in (Tsai et al.,
2010). An architecture is provided where cloud
computing resources are componentized,
standardized and combined in order to build a
“cross-platform virtual computer” which operates
upon an ontology mapping layer that is used to
abstract the differences between cloud providers.
SOCCA applications can be developed using the
standard interfaces provided by the architecture or
the platform unique APIs of a cloud provider. In
both cases the developed applications will be
coupled to a specific platform, thereby hindering
their migration to alternate scenarios. In our
approach the applications are not coupled to any
platform; the use of SA allows us to easily migrate
components between clouds without having to
modify their source code.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented an alternative
approach to the existent standardization initiatives
and middleware-based solutions for achieving cloud
application migratability and interoperability. This
solution has been conceived with cloud providers
and customers in mind, trying to offer them
maximum flexibility.

The underlying technology and tools for putting
our approach into practice is currently under
development, as a proof-of-concept development
framework. Our future work includes the extension
of its current capabilities, supporting more cloud
platforms and programming languages, as well as
exploring the use of dynamic adapters in order to
support run-time changes in cloud artefact
compositions.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish

Development�of�Adaptive�Multi-cloud�Applications�-�A�Model-Driven�Approach

329

 Government under Projects TIN2012-34945, and
TIN2012-35669.

REFERENCES

N. Leavitt, “Is cloud computing really ready for prime
time?” Computer, vol. 42, no. 1, pp. 15–20, Jan. 2009.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia, “A view of cloud computing,”
Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

D. Petcu, G. Macariu, S. Panica, and C. Craciun, “Portable
cloud applications - from theory to practice,” Future
Generation Computer Systems, Jan. 2012.

B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K.
Nagin, I. M. Llorente, R. Montero, Y. Wolfsthal, E.
Elmroth, J. Cáceres, M. Ben-Yehuda, W. Emmerich,
and F. Galán, “The reservoir model and architecture
for open federated cloud computing,” IBM J. Res.
Dev., vol. 53, no. 4, pp. 535–545, Jul. 2009.

A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to
enhance cloud architectures to enable cross-
federation,” Cloud Computing (CLOUD), 2010 IEEE
3rd International Conference on, July 2010, pp. 337 –
345.

N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis, “Cloud
computing interoperability: The state of play,” Cloud
Computing Technology and Science, IEEE
International Conference on, pp. 752–757, 2011.

B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T.
M´ahr, and M. Loichate, “Building a mosaic of
clouds,” Euro-Par 2010 Parallel Processing
Workshops, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2011, vol. 6586, pp.
571–578.

W. Tsai, X. Sun, J. Balasooriya. “Service-Oriented Cloud
Computing Architecture,” ITNG10 7th International
Conference on Information Tech-nology: New
Generations, pp. 684-689, 2010.

E. M. Maximilien, A. Ranabahu, R. Engehausen, and L. C.
Anderson. “Toward cloud-agnostic middle-wares,”
OOPSLA09: 14th conference companion on Object
Oriented Programming Systems Languages and
Applications, pp. 619–626, 2009.

J. Guillén, J. Miranda, and J. M. Murillo. “Decoupling
Cloud Applications From The Source - A Framework
for Developing Cloud Agnostic Software,”
Proceedings of CLOSER 2012, Oct. 2012.

J. Guillén, J. Miranda, J. M. Murillo, and C. Canal.
“Identifying Adaptation Needs to Avoid the Vendor
Lock-in Effect in the Deployment of Cloud SBAs,”
Proceedings of WAS4FI 2012, Sept. 2012.

D. K. Nguyen, F. Lelli, Y. Taher et al.. “Blueprint
template support for engineering cloud-based
services,” Proceedings of ServiceWave’11, pp. 26–37,
2011.

S. Becker, A. Brogi, I. Gorton, S. Overhage, A.
Romanovsky, and M. Tivoli. “Towards an engineering

approach to component adaptation,” R.H. Reussner,
J.A. Stafford, and C.A. Szyperski, editors,
Architecting Systems with Trustworthy Components,
vol. 3938 of Lecture Notes in Computer Science, pp.
193–215. Springer, 2004.

C. Canal, J. M. Murillo, and P. Poizat. Software
adaptation. Special Issue on Coordination and
Adaptation Techniques for Software Entities. L’Objet,
12(1):9–31, Hermes-Lavoisier, 2006.

C. Canal, P. Poizat, and G. Salaün. Model-based
adaptation of behavioural mismatching components.
IEEE Transactions on Software Engineering,
4(34):546–563, 2008.

R. Seguel, R. Eshuis, and P. Grefen, “Generating minimal
protocol adaptors for loosely coupled services,” Web
Services, IEEE International Conference on, pp. 417–
424, 2010.

M. Hamdaqa, T. Livogiannis, and L. Tahvildari, “A
reference model for developing cloud applications.”
CLOSER, pp. 98–103. SciTePress, 2011.

S. Frey and W. Hasselbring, “Model-Based Migration of
Legacy Software Systems into the Cloud: The
CloudMIG Approach,” Proceedings of the 12th
Workshop Software-Reengineering (WSR 2010), May
2010, pp. 59–60.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

330

