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Abstract: An attacker who has gained access to a computer may want to run arbitrary programs of his choice, and upload
or modify configuration files, etc. We can severely restrict the power of the attacker by having a white-list of
approved file checksums and a mechanism that prevents the kernel from loading any file with a bad checksum.
The check may be placed in the kernel, but that requires a kernel that is prepared for it. The check may also be
placed in a hypervisor which intercepts the kernel and prevents the kernel from loading a bad file. Moving the
integrity check out from the VM kernel makes it harder for the intruder to bypass the check. We describe the
implementation of two systems and give performance results. In the first implementation the checksumming
and decision is performed by the hypervisor instead of by the kernel. In the second implementation the kernel
computes the checksum and only the final integrity decision is made by the hypervisor. We conclude that
it is technically possible to put file integrity control into the hypervisor, both for kernels without and with
pre-compiled support for integrity measurement.

1 INTRODUCTION

The techniques for building completely secure system
has made significant strides as we have seen first cor-
rectness proofs for an OS kernel, for C compilers, and
for the gate level implementation of multicore CPUs.
However, even if the kernel is correct, there will likely
always be bugs in application programs, as they are
more diverse, modified much more frequently, and
generally built by fewer developers, or built by com-
posing code from different sources (libraries, etc.).
Thus, even if the OS kernel is correct, there may still
be be opportunities for intruders to take control of a
computer via the application programs that run on it.
This paper is concerned with how to limit the abilities
of an attacker who has broken in to a computer.

The approach taken here is to prevent an attacker
who has broken into a computer via an application
program from executing arbitrary programs.1 The
computer owner creates in advance a list with check-
sums for each file that the kernel is allowed to load,
and then a mechanism prevents the kernel from load-

1In general an attacker has many more options to gain
control, including using the programs that are already avail-
able. However, not being able to run scripts, etc., severely
limits any automated attack.

ing a file if its checksum does not match with the list.
While this mechanism does not prevent the attacker
from (mis)using existing programs, the mechanism
may, if properly deployed, severely limit the amount
of control an attacker can gain over the computer.

A mechanism to prevent loading of unapproved
files has recently made its way into the Linux kernel.
IMA, the Linux Integrity Measurement Architecture,
hooks into the mmap system call inside the kernel and
computes the checksum of the entire file just when it
is about to be memory mapped. If so configured, IMA
forces mmap to fail if the checksum is not correct,
and thus prevents a user process to access files with
incorrect checksums.

IMA is built into the kernel and executes inside the
kernel and therefore only works in kernels that have
been prepared with IMA from the beginning. How-
ever, in a hosted virtualized environment, such as in
a cloud computing infrastructure, it may also be de-
sirable to be able to run arbitrary kernels of the cus-
tomer’s choice, while at the same time be able to pro-
tect against intrusion in the customers’ VMs.

Another security complication is that the integrity
of the checksum list must be protected by the kernel.
If the list is kept in the kernel its authenticity can be
stated with a with a digital signature. However, the
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public key used to verify the list’s signature must be
protected, and it may therefore be desirable to move
the key out from the VM and into the hypervisor.

We have therefore developed two prototypes to
test different ways to provide hypervisor support for
file checksumming and policing (or integrity mea-
surements, in IMA words).

The first prototype is a hypervisor that is able to
prevent a Guest kernel from loading bad/tampered
files. At similar places where IMA would intercept,
the hypervisor intercepts the Guest VM execution
near the end of mmap, computes the checksum and
makes the mmap call fail if the checksum is incor-
rect. But, differently from IMA, the first prototype
does not require any checksumming code inside the
kernel. The entire checksum computation is moved
into the hypervisor.

The second prototype relies on the kernel to com-
pute the checksum with IMA, and just checks the in-
tegrity of the value in the white-list by verifying the
white-list signature with a public key kept in the hy-
pervisor.

The next section describes the implementation of
the two approaches. Section 3 reports the results of
the performance measurements. In section 4 we dis-
cuss the conclusions that can be drawn from the ob-
servation. In section 5 we discuss related work which
this work is based on, or which addresses a similar
problem, and the paper conclusions are given in sec-
tion 6.

2 HYPERVISOR MEASUREMENT
IMPLEMENTATION

2.1 Approach 1: Hypervisor
Checksumming

2.1.1 Design

One problem with moving the checksumming out
from the kernel is the question of how the hypervisor
can get hold of the content in files inside the VM. The
hypervisor can’t simply read the file contents from the
VM’s disk. A kernel can manage several different file
systems, files can be encrypted on disk or retrieved
over the network. Therefore the VMM cannot sim-
ply bypass the VM and read the file contents from
the Guest’s disk before the Guest kernel is allowed to
proceed.

Our approach is to let the hypervisor intercept and
divert the Guest kernel’s execution just before it is

about to return from mmap. Then the hypervisor re-
trieves the file by tricking the kernel into loading the
file contents. The hypervisor injects several function
calls into the kernel by modifying the VMs program
counter (EIP) and registers of the kernel thread that
requests the mmap.

VM

Whitelist

mmap
...

kernel_load
...

while not EOF
    x=inject syscall
    c=checksum(c,x)
r = match(c,whitelist)
set_return_val(r)

Figure 1: In the first approach, the hypervisor computes the
checksum.

First the hypervisor makes the thread call kmalloc
to reserves one page of memory inside the kernel’s
address space. This page is mapped into the hypervi-
sor’s memory so the hypervisor can have quick access
to the page contents.

Next the hypervisor retrieves the file contents by
repeatedly injecting calls tokernel read to load the
file, one page at a time, see figure1. For each page that
is retrieved, the hypervisor updates the file checksum.
Finally it calls kfree to release the memory page, ad-
justs mmap’s return value in register EAX as desired,
and restores the EIP to continue the execution as nor-
mal.

Our approach requires that the hypervisor is aware
of which addresses to intercept, and it also needs in-
formation about some of the kernel data structures, in
particular the offsets to the fields in the structs.

The required kernel symbols and data structures
are listed in table 1. This information can be obtained
from the kernel symbol file and header files. Hackers
have other methods for finding the kernel layout and
data structures in an unknown kernel.2

Invoking kernel calls is not side effect free, and
thus not completely invisible to the kernel. Just as
with IMA, when mmap has finished, the kernel will
have loaded the contents of the entire file. This has
two effects, the first one being that the initial call to
mmap is much slower (since it has to read the entire
file), and the second one is that subsequents calls to

2See section 5 - How to gather offsets & symbol ad-
dresses, in Smashing The Kernel Stack For Fun And
Profit, by Sinan ‘noir’ Eren, Phrack, Volume 0x0b, Is-
sue 0x3c, Phile #0x06 of 0x10, http://www.phrack.com/
issues.html?issue=60&id=6#article
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Table 1: Kernel symbols and data structures needed by the
hypervisor.

Kernel symbol

process measurement
kernel read
kfree
security file mmap
kmem cache alloc trace
kmalloc caches
destroy inode

integrity inode free

Data structure

struct file
struct path
struct dentry
struct inode
struct super block

read are faster, since some of the blocks will be in the
page cache.

In Linux without IMA, memory-mapping a file
does not load any of the files content. It just installs a
handler that detects when the user process tries to read
from the file and then loads only the requested pages
(by trapping memory page faults). Thus, if only some
bytes in the middle of the file are read, only the corre-
sponding block will be loaded from disk.

IMA keeps one checksum for the entire file. This
means that when the file is mapped, the entire file
needs to be read in for the checksum to be computed.
This makes mapping large files slow, and is a substan-
tial way to how Linux currently works.

One can imagine other approaches to checksum-
ming the files, such as having separate checksums
for different parts of the file (such as one per disk
block, or one per megabyte). These checksums could
be checked when the blocks are actually loaded into
memory. Then it would not be mmap that fails if the
file has a bad checksum. Instead the program would
get a memory protection error later, when the virtual
memory system has triggered loading a corrupted part
of the file.

While the late check is faster, it has its drawbacks.
Failing in the middle of an execution may enable situ-
ations where an attacker may cause a program to start
because the first blocks are unmodified, and then fail
later upon accessing a modified part of the file. This
may leave the system in an inconsistent state, which
may potentially be exploited for attacks.

2.1.2 Implementation

In our implementation we are using a hypervisor
which is a modified version of the Bochs x86 emu-
lator. The original Bochs emulator is implemented in
C++. Each CPU instruction is implemented as an ”in-
struction function,” individual method invocations on

a CPU object. We have modified the implementation
in two ways.

First we have moved out the CPU instructions into
a separate file which is compiled into LLVM bit code,
for two reasons. One is that the LLVM is a compiler
toolkit with an intermediate code representation that
is very good for doing optimization passes. We an-
ticipate to be able to speed up execution by optimiz-
ing together the sequences of instructions in a basic
block. The other reason is that we can add very effi-
cient probes into the instruction functions. A test that
would usually require the use of an MMU or CPU
debug functionality may be inlined as regular instruc-
tions into the native code, or even eliminated com-
pletely. The optimization work is not done yet, so the
LLVM step still incurs some additional overhead.

The second way we have modified Bochs is to
add the integrity mechanism. It adds a test in the
CPU instruction loop to see if the EIP (Instruction
Pointer) has reached the address that we want to in-
tercept. This check is inefficient and costly, and of
the kind that we expect to be able to mostly opti-
mize away with the technique outlined above. If we
have reached the monitored address, we create a con-
text record in the hypervisor’s memory that stores the
kernel thread’s current CPU state, including registers,
stack pointer and an intercept mode state.

By looking at the contents of the register and
traversing the Guest’s memory, we can retrieve infor-
mation from the kernel data structures, such as file
pointers, filename, mode bits, file size, etc. If the file
should be checksummed according to the policy, we
perform a binary search in a list of previously com-
puted hashes to see if the file was already checked. If
not, we start the process of checksumming the file.

To checksum a file, we have to go through three
modes - allocate - read - free. The kernel thread’s
current mode is stored in the intercept mode state field
in the context record above. If the kernel thread is
new, we set it to ’allocate’ mode, modify the CPU
registers to prepare for a call to kmalloc to allocate
one page of kernel memory, and resume computation.

When the CPU returns to the intercepted address,
it could either be because kmalloc has returned, or
due to another thread calling mmap. We distinguish
threads by looking at the value of the stack pointer.

When a thread has returned to the intercepted ad-
dress from kmalloc, i.e. when it is in the ’allocate’
mode, we set the thread’s mode to ’read’. We pre-
pare a SHA1 context in the hypervisor memory, and
set the CPU registers to callkernel read, to read
the first 4k bytes from the file into the Guest mem-
ory page that we previously kmalloc:ed, and resume
execution. When the same thread eventually returns
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and is in read state, we update the SHA1 checksum,
and if there are more bytes to read, we repeat the call
to kernel read for the next 4k bytes, and so on.

When we have reached the end of the file, we set
the thread’s mode to ’free’. We set the CPU registers
to call kfree to free the kernel memory page we allo-
cated earlier, and resume execution. When the thread
again reaches the intercepted address and is in free
state, we restore the CPU registers from the context
record, which is then invalidated, store the computed
checksum in the checksum cache, and output it to a
log, before we resume the thread’s computation.

2.2 Approach 2: Hypervisor Approves
Kernel-computed Checksums

2.2.1 Design

The other approach to hypervisor integrity measure-
ment consists of using the hypervisor’s ability to set
break points in the Guest VM. In this approach, we
have used the Xen hypervisor and the gdbsx function-
ality which enables the use of gdb to place break-
points in the Guest VM. In dom0, the debugger,
gdb connects to gdbsx which is only availble to the
priviledged domain, dom0. The measured domain’s
memory is made available to dom0 by Xen’s ability
to map memory pages into multiple domains.

In this approach we have used gdb’s scripting ca-
pability to run the Guest and execute a python script
when a break point is hit. The break point is placed
precisely when the IMA code in the Guest kernel is
computed. Control is passed back to the gdb in dom0
who checks that the signature is on the approved list,
and then resumes execution of the Guest.

As for the first approach, placing the break point
requires knowledge of some addresses in the Guest
kernel, but fewer, since the Guest execution is never
diverted, only suspended. However, in approach 2
we require that the kernel is already compiled with
IMA, and the hypervisor only checks that the result-
ing checksum is indeed a ’trusted’ checksum, see
figure2.

To improve the security attributes of the system,
the VMI application possesses only the public key,
and does not have the private key. The private key is
only used to sign each file on filesystem on a trusted
machine when preparing the Guest VM image. This
has impact on the system design. While only the pub-
lic key is needed for signature verification, the private
key is used for signing. Essentially whenever a file is
modified its signature has to be updated as well. The
set of files the security function will check depends
on the security policy and can be configured. There-

VM

Whitelist+sign

mmap
c=ima_checksum

kernel_load
...

r = c in whitelist 
 && checksign...
  ...(whitelist, pubkey)
set_return_val(r)

pubkey

...

Figure 2: In the second approach, the kernel computes the
checksum, and the hypervisor verifies that the whitelist is
genuine.

fore it could be the case that verification only happens
for important files, for instance files owned by root,
which are expected to be immutable.

2.2.2 Implementation

Kernel debugging is the method used for virtual ma-
chine introspection, VMI, in approach 2, and it is al-
ready incorporated in the Xen VMM. A python script
connects to gdbsx, the gdb server implemented in
Xen, and performs the security function. gdbsx pro-
vides the functionality for the security function to in-
sert breakpoints at arbitrary addresses in Guest VM’s
memory. Whenever CPU hits a breakpoint in the
Guest VM, it generates a breakpoint exception in-
terrupt. Xen hypervisor controls this interrupt. Xen
pauses the Guest VM, and gives control to dom0
which in turn generates a SIGTRAP signal. This
signal is handled by gdb, which triggers our python
script. Using VMI, the python script in dom0 is no-
tified whenever a file is accessed in the target DomU
which verifies the file’s signature by the proper public
key.

To bridge the semantic gap, some initial informa-
tion is provided to gdb. To allow gdb to access vari-
ables and structures in the Guest VM kernel space,
gdb needs to access the compiled directory of the ker-
nel. This allows gdb to know about exact structure of
the kernel. Also, the unzipped version of the kernel
file has to be available to the gdb. This file contains
symbol information of the kernel, and matches infor-
mation in the system.map file.

To enforce internally denying file access, either a
new module has to be installed or an available mech-
anism in the Linux kernel has to be used. Here we
take advantage of the IMA-Appraisal mechanism in
the kernel. IMA-Appraisal stores the 160-bit SHA1
digest of files in the extended attribute of a file, ”se-
curity.ima”. In contrast to storing good digest val-
ues centrally in a database, saving good SHA1 di-
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gests in the file inode removes the search delay. IMA-
Appraisal stores valid crypto values in files extended
attributes to be enforced internally in a VM. In ad-
dition, IMA implements an internal cache which im-
proves the performance.

To handle the problem about updating files’ sig-
nature, one more security function is designed. The
second security function uses only a secret key to ver-
ify the HMAC-SHA1 digest of files. HMAC-SHA1
is chosen since this crypto function generates a 160-
bit digest, and IMA uses 160-bit SHA1 digest as well.
Since these two crypto functions generate 160-bit di-
gests, no kernel modification is required, while in the
RSA signature verification, the Linux kernel should
be modified to be able to work with 4096-bit RSA sig-
natures. Below the RSA verification design is named
VMI-RSA and the HMAC-SHA1 validation design is
named VMI-HMAC respectively.

VMI-HMAC is a low-rate context switching se-
curity function which validates the HMAC-SHA1 di-
gests of files, in a Guest VM as they are loaded in
memory. The security function runs in dom0, and
uses a secret key. VMI-RSA is a low-rate context
switching security function which verifies the RSA
signature of files when they are loaded in the mem-
ory of a Guest VM. Verification occurs using the
proper public key in dom0. To enhance the security
attributes, dom0 and the security function do not pos-
sess the private key used for initial signing.

The IMA-Appraisal extended attribute, ”secu-
rity.ima”, is 160 bits, while the RSA signature is 4096
bits. For this reason it was decided to design and im-
plement the VMI-HMAC security function that uses
the original 160-bit, and does not change the length of
security.ima. In this model, VMI in Dom0 possesses
a secret key and using that key, it verifies the integrity
of files and updates their extended attributes.

IMA uses theima calc hash function for cal-
culating the SHA1 digests. This function is
only called by ima collect measurement. To
verify the integrity of files VMI-HMAC inter-
cepts ima calc hash function flow. It is possi-
ble to replace the calculated SHA1 digest by in-
serting a breakpoint in either whereima calc hash
returns or where it is called. We chose to
put it in ima collect measurement, which calls
ima calc hash.

By inserting a breakpoint after where the
ima calc hash function is called, it is possi-
ble to replace the file hash digest, stored in
iint->ima xattr.digest with the HMAC-SHA1
digest. The HMAC-SHA1 digest is computed by the
VMI application with the secret key. When CPU ex-
ecutes a breakpoint it gives control to the breakpoints

handler which is gdb/gdbsx, and then finally a python
script is executed, which first reads the SHA1 digest
computed by IMA viaiint->ima xattr.digest.
Next it computes HMAC value based on the secret
key and the SHA1 digest, and finally it replaces the
SHA1 digest with the newly computed HMAC-SHA1
digest.

For VMI-RSA we needed to mod-
ify IMA DIGEST SIZE in ima.h and
evm ima xattr data.digest in integrity.h to
hold 4096 bits. These changes do not affect IMA
normal behavior since all variable and structure fields
are initialized with 0. Since VMI-RSA does not have
access to the private key it cannot update file check-
sums. But since it has the public key, it can verify the
RSA signature stored in extended security attributes,
by intercepting ima appraise measurement just
after it has compared the checksum with the value
stored in the security.ima attribute. IMA simply
performs a byte-by-byte comparison with the security
attribute. VMI-RSA on the other hand will copy over
checksum and the 512 bytes of the security attribute
into dom0 and verify that it contains a valid signature
for the checksum. VMI-RSA then overwrites the
return value of the IMA’s byte-by-byte comparison to
instead report success if and only if the signature was
valid.

3 RESULTS

3.1 Approach 1: Hypervisor
Checksumming

Here we report on the experiments that were made to
study the overhead caused by the hypervisor integrity
measurements.

Since the experimental setup is quite complex
with layers of software executing on top of others, we
performed experiments to first determine how much
each layer added to the total execution time. This al-
lows us to finally determine the cost of the integrity
measurements themselves.

In the experiment we test the effect of our modifi-
cations to the task of memory mapping a single block
of medium sized and large file. The effect that is ex-
pected is that without integrity measurements, the ex-
ecution time is very quick, even if the files are large,
but with integrity measurements, either by IMA, the
hypervisor, or both, the execution time should be con-
siderably longer for the first access of the file. Later
accesses to the file should be faster since the check-
sums are only computed the first time the file is ac-
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cessed.
The test machine is a Dell R200, quad-core Intel

Xeon X3360, 2.83GHz with 4 GiB memory, running
Ubuntu 10.04 with Linux kernel 2.6.32. The Guest
VM gets 1 GiB of RAM.

In the first experiment we first read one block from
five files of size 100 MiB and report the execution
time. Then we repeat that experiment 99 times and
report the total execution time.

In the second experiment we first read one block
from 20 files of size 1 MiB and report the execution
time. Then we repeat that experiment 99 times and
report the total execution time.

Each of the experiment was repeated three times
for each system configuration. The OS in the VM
was rebooted between each run to clean the VM page
caches.

Four systems were investigated: chroot with the
loopback mounted file system, Linux kvm, a regular
Bochs without any modifications, a Bochs with the
LLVM JIT-compiled byte code, and a Bochs with the
LLVM JIT-compiled byte code that performs integrity
measurements of the Guest VM.

Each of the four systems were run with Linux
IMA either off or on, except for chroot which was
only run with IMA off, because IMA support was
lacking in the Host kernel.

The time measurements are not very accurate for
low values. This is because the VM Guest clocks
drifted very much, and we synchronized the local
clock with NTP before measuring the start and stop
time. This incurred an additive cost of about two
seconds, with some second of variance due to net-
work traffic. This is unimportant for understanding
the qualitative results of our experiments, and more
precision in these measurements will not add to the
understanding of the integrity measurement system
we report here.

The results are shown in table 2.

3.2 Approach 2: Hypervisor Approves
Kernel-computed Checksums

Here we report on the experiments that were made to
study the overhead caused by the hypervisor approv-
ing but not computing the file checksums. The values
are in table 3.

To determine the sources of execution overhead
for approach 2 we run a set of experiments, similarly
to approach 1. We vary the number of files and file
sizes, and in each case we read just the first 10 KiB
of each file in the set using dd. The experiment is
run with or without IMA without any virtualization
(”bare metal”), in Xen dom0 with direct device ac-

Table 2: The table shows the outcomes of three repeated ex-
periments. Execution time in seconds, including NTP over-
head.

Hypervisor Integrity 5 files 100 MiB 20 files 1 MiB
check First Next 99 First Next 99

access accessesaccess accesses

1. chroot
3 3 3 4
3 4 3 5
2 3 2 5

2. kvm
2 4 3 9
3 5 3 8
3 5 3 8

3. kvm IMA
14 4 3 9
14 4 3 9
15 5 3 9

4. c++ bochs
1 25 1 74
1 24 2 72
1 24 1 73

5. c++ bochs IMA
675 23 15 68
678 23 15 67
677 23 15 67

6. llvm-bochs
1 29 2 90
1 30 2 89
1 29 2 88

7. llvm-bochs IMA
847 28 19 85
840 30 19 82
838 27 19 83

8. llvm-bochs hypervisor
48 31 3 90
47 30 3 95
45 30 3 95

9. llvm-bochs
IMA +
hypervi-
sor

904 30 21 91
907 30 20 96
923 31 21 95

cess, in domU with indirect device access. Finally we
run the VMI-HMAC and VMI-RSA, and a dummy
VMI that does nothing but trapping to dom0 and re-
turn. The latter is used to estimate the cost of the trap-
ping. As for the approach 1 experiments we use ntp
to synchronize the clocks before and after each round
of the experiment to mitigate clock drift.

The tests are run on an Intel Core i7-2829QM
2.30GHz processor, with Intel VT, 16GB RAM, and
7200 RPM iSCSI disk. The DomU has 12GB RAM.
Fedora 16, 64-bit, is used as OS for all system con-
figurations. The Linux kernel is 3.2.0-rc1 with the
IMA-Appraisal patches.

4 DISCUSSION

4.1 Approach 1: Hypervisor
Checksumming

Comparing the execution times of the tests in a ch-
rooted environment and a kvm without IMA, we see
as expected that they are about as big for the first ac-
cess. The only significant cost here is the cost of the
ntpd synchronization which is performed before and
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Table 3: Performance results for approach 2; the execution time measured in seconds. The average is taken over the last five
of six runs.

after each synchronization, and it takes approximately
(3+3+2)/3 = 2.7 seconds. After removing the time
for ntp synchronization removed from the next access
times and divide by 500, we can see that each of the
next 99 access to the 5 large files takes about 1 ms
each for chroot, and also 1 ms for the 20 small files.
Kvm takes 4 ms per file for the large files and 3 ms
per file for the small files.

The third line in table 2 shows that running a ker-
nel with IMA enabled in kvm significantly increases
execution time in particular for the first access to the
file. Subsequent accesses are not significantly af-
fected. In the first access, we read 5*100 MiB, so
the cost is 23 ms per MiB for the large files. For the
small files the same cost would add 0.5 seconds to the
values, which is within the measurement error.

The fourth line shows the results of running in an
unmodified bochs emulator. In the experiments the
clock inside the emulator drifted a lot, which is what
forced us to use ntp to set the clocks. This means that
the errors are larger for the bochs measurements. For
instance, the measurement scripts reported about one
second for the first accesses to both large and small
files. Since the clocks are synchronized with ntp be-
fore and after the experiment the error due to drift is
additive rather than multiplicative. Each file access
takes around 45 ms and 35 ms for the large and small
files respectively in the experiment. The difference
may be partially explained as a measurement error,
due to a 3 second clock drift per measurement.

Comparing line 4 (c++ bochs) and line 2 (kvm),
we see that c++ bochs is about five to seven times

slower than kvm for our workload. Comparing line 4
(c++ bochs) and 6 (llvm-bochs), and comparing line
5 (c++ bochs IMA) with line 7 (llvm-bochs IMA) we
see that the llvm-bochs is about 20-25 percent slower
than c++ bochs in all cases.

The overhead of running IMA can be seen in line
5. The initial access is very slow since IMA has to
load and compute the checksum of the entire file. The
cost is 1.34 seconds per MB for the large files and
only 0.12 seconds for the small files. The difference
may be due to the the Host OS being able to cache
the small files, implying that with bochs, a cache miss
in the Host incurs a ten-fold increase in loading and
checksumming. The next 99 accesses are faster than
their non-IMA counterparts. This can be explained
by recalling that IMA has placed the file content in
the Guest OS’s page cache, and thus do not have to
retrieve it from the Host OS.

We are now in the position of assessing the over-
head of putting the integrity check into the hypervi-
sor. Line 8 shows that the hypervisor integrity file is
much faster (47 and 3 seconds for large and small files
respectively) when compared to having checksum in
side the kernel (676 and 15 seconds) when using the
bochs hypervisor.

Comparing line 8 with line 6 for the next 99 ac-
cesses where no integrity check is made, we see that
the hypervisor integrity check code adds 6 percent to
the execution time. Comparing line 9 with line 7, we
see that the hypervisor integrity check adds 8 percent
to the execution time,

From the above we find that the costs for the llvm-
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bochs hypervisor integrity check can be attributed in
most part to the use of bochs as hypervisor, since it
incurs a five to seven times execution overhead over
kvm. To that is added a 20 percent cost due to our
use of a modified bochs, llvm-bochs. On top of that is
the 8 percent overhead from the hypervisor integrity
check added to arrive from the values in the ”next 99
accesses” columns on line 2 to the values on line 8.

The values in ”First access column” in line 8 (47
seconds) is the result of reading and checksumming
the large files. This operation added about 12 seconds
to kvm IMA on line 3, making us expect a value of 90
seconds. We currently do not have a good explanation
for why we see a lower value.

We also see a large dip in performance when run-
ning IMA inside any of the bochs hypervisors. This
dip was initially thought to be due to bad interaction
between IMA, bochs and the Host OS, but since the
hypervisor on line 8 is also loading the pages via the
Guest kernel, it must be a bad interaction between
IMA and bochs only.

4.2 Approach 2: Hypervisor Approves
Kernel-computed Checksums

The measured execution time for the second approach
provide some insight into where the costs are. In this
approach we run most of the Guest code natively in
domU using the Intel VT, and only invoke the in-
tegrity functions in dom0 when the break point in
ima calc hash is reached.

The two big sources of overhead are the kernel’s
and IMA’s bookkeeping when opening files, and the
actual work in computing the checksum. To esti-
mate these individual costs we chose workloads that
stressed these two sources individually, by having few
or many files, and a small or large file set to check-
sum. The execution times can be seen in table 3.

To tease out the individual components, we do a
least-squares fit of the four values for the length of
first execution on each line to

time= k1/1000∗# f iles+ k2∗gigabytes

wherek1 is the time (in milliseconds) to handle each
file, andk2 is the time to handle 1 GB of data. This
fit is very coarse, but the results in table 4 show that
IMA adds about 10 seconds per GiB that gets check-
summed.

The bookkeeping cost per file rises from 1-2 ms
to 50 ms with IMA, which is particularly costly when
there are many files that need to be checksummed.
HMAC adds another 50 ms per first file access, and
RSA adds yet another 20 ms to that, reaching almost
120 ms per first file access. Subsequent file accesses

Table 4: Least squares fit of the first access to a file to the
functiontime= k1/1000∗A+k2∗B where A is the number
of files accessed, 100 or 20000, and B is the total size of the
set in GB, 1 or 10.

Hypervisor k1, ms/file k2, s/GiB

bare metal
1.2994 0.41262

IMA 50.965 9.6601

dom0
1.6046 0.34258

IMA 54.203 9.7068

domU
1.8657 0.5719

IMA 4.2216 10.6
breakpoint IMA 43.668 8.7023
HMAC IMA 97.505 8.7085
RSA IMA 118.7 9.5136

do not reach the break point as the file is marked as
already checksummed by the IMA code in the Linux
kernel.

We note that the estimated time per GiB appears to
have decreased for the last three lines in table 4. This
may indicate that the least squares fit to the data was
not very accurate, and some of the cost due to check-
summing was incorrectly attributed to the triggering
of the breakpoint. However, a re-fit of the data with
k2 set to 10.6 seconds does not significantly change
the result, only reducing the least squares estimated
cost per file with 0.5 ms.

Unintuitively, the cost per file is very low for the
DomU with IMA. In table 3 the execution time for
DomU IMA in test 2 is only 86 seconds, compared
to 1034 seconds for bare metal IMA. This cannot be
explained by caching effects, since the DomU was
running on a separate disk device. Further discussion
about this anomaly can be found in (Nasab, 2012).

5 RELATED WORK

For virtualization, we have used Bochs (Mihocka and
Shwartsman, 2008), which is an emulator written in
C++ that can run unmodified kernels on any CPU,
and Xen (Barham et al., 2003), which can use ei-
ther modified kernels (paravirtualization), or take ad-
vantage of special virtualization support in CPUs that
have it (HVM). By itself Xen only monitors coarse
VM behavior such as what goes in and out via the
virtual devices, memory and CPU utilization rate, not
fine details such as file content.

Virtualization has been used to lock down Guests
in many ways. Logging and replay techniques were
proposed in (Dunlap et al., 2002). VM introspection
for intrusion detection was proposed in (Garfinkel and
Rosenblum, 2003; Riley et al., 2008). XenAccess
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(Payne et al., 2007) enable introspection of a Xen VM
without being able to interrupt it, which is why we
needed to use gdb-sx instead for our experiments.

iRODS (Wan et al., 2009) is a policy based sys-
tem for controling cloud clients’ access to data in the
Amazon S3 file system. iRODS enforces policies at
specific enforement points in user programs, not for
general files opened by the kernel.

While we are interested in moving IMA-like file
integrity checks into the hypervisor, the work by
Christodorescu et al. (Christodorescu et al., 2009) use
introspection for verifying the integrity of the kernel
to protect against root kits. SecVisor (Seshadri et al.,
2007) use hardware support to achieve the same thing.

Other approaches focus on preventing the kernel
to only load authorized code (Riley et al., 2008; Litty
and Lie, 2006). That fails to address the issue with
modified config files.

In approach 1 we use machine code to machine
code JIT translation to speed up execution. It was
used early in the Dynamo system (Bala et al., 2000).
PIN (Reddi et al., 2004) and DynamoRIO (Bruening,
2004) are tools that let a user write probes that are dy-
namically injected into an application level program,
not a full OS.

LLVM (Lattner and Adve, 2004) is a compiler
framework that has an intermediate code representa-
tion that enables programmatical modification, opti-
mization and JIT compilation at runtime. It is used
in the Binary Code Inliner to produce optimized code
for each translated basic block on the fly.

This work is relevant to the area of cloud comput-
ing. Good surveys of multi-tenant cloud risks include
(Rodero-Merino et al., 2012; Vaquero et al., 2011;
Constandache et al., 2008; Descher et al., 2009; Bald-
win et al., 2009). The proposed solution addresses
the situation where one needs efficient and automatic
methods for detecting and stopping hacked servers
from being controlled by intruders.

6 CONCLUSIONS

We conclude that it is technically possible to put file
integrity control into the hypervisor, both for kernels
without and with pre-compiled support for integrity
measurement. Both techniques require intercepting
the kernel at the right place and accessing the Guest
VM RAM.

While the presented work has not focused on op-
timizing the execution time, we have still investigated
the sources of execution overhead for two different
ways to make a hypervisor enforce file integrity on
Guest virtual machines. In the first approach the hy-

pervisor injected calls into the Guest kernel to load
the file when the file was first opened, and the hy-
pervisor computed the file checksum. In the second
approach, the hypervisor relied on the kernel to com-
pute the checksum, and only matched the checksum
with the white-list.

The implementation of the first approach used a
modified emulator, which made it easy to intercept the
Guest at addesses extracted from the kernel symbol
file System.map. The main result is that the overhead
of the injection approach is about eight percent for a
small file set, after the other sources of overhead have
been accounted for.

The use of the emulator was the major source of
overhead, responsible for a five time slowdown com-
pared to HVM virtualization via KVM. This overhead
may be significantly reduced by changing virtualiza-
tion technique. An additional 20 percent overhead
came from the use of a JIT tool chain to produce the
code. This overhead may be removed by using a non-
JITed emulator, but the reason to include the JIT in the
first place is that it makes possible emulator optimiza-
tion such as run-time optimizing hot traces, though it
was not implemented in the current prototype.

The second approach used Xen’s gdb debug fa-
cilities to attach python scripts to monitor a Guest
VM. We observed that triggering the break point costs
around 40 ms per triggering, but the number of trig-
gerings is reduced by Guest kernel only computes the
checksum when the file is not in the file checksum
cache. The overhead of the approach is between 20
percent for a small file set and 100 percent for a large
file set.
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