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Abstract. This article deals with the social behavior modeling of a particular
forest pest insect: the bark beetle. This ant-like insect has been responsible for
the devastation of acres of pines trees in North America since 2005. Any tactic
of forest pest management requiring prediction of pest population change over
time and/or space, a realistic modeling of beetle colonies behavior would be a
real benefit. The originality of this work is to propose a reactive Multi-Agent-
System integrating physical diffusion phenomena. The main idea is to take into
account the natural vanishing of the trail markers emitted both by decomposing
trees (ethanol) and the agents that have found a source of food (pheromone). The
proposed experiments show, on the one hand, that the MAS-PDE modeling leads
to a realistic global behavior of the colony when considering a usual foraging sce-
nario and, on the other hand, that, when compared with a simple reactive agent,
the proposed model has a faster convergence to the asymptotic usual expected
“S-shape” behavior of the agents’ colony.

1 Introduction

Modeling population dynamics is the essential part of both researdhreanagement

of forest pest insects. Any tactic of forest pest management requires prediction of pest
population change over time and/or space. However, the scope of prediction depends
on management objectives. An example of complex objective is to mi

nimize the impact of pest population on forest ecosystems during several years.
These kind of complex objectives require prediction of population changes over long
time intervals and over large areas. Of course, it is impossible to predict pest abundance
at specific location ten years ahead, but it may be possible to predict the change in
average pest population density as a result of some change in environment.

Formerly, to tackle this objective, mathematical modeling was the major tool for
predicting population dynamics and the reader could refer to Berryman and Millstein
[1] for a complete overview of some of the most known models that are mainly based
on modifications of discrete-time analog of the logistic model. The main advantage of
such methods is that parameters of these models can be adjusted to fit available data.

Nowadays, mathematicalodelingbased approaches tend to be replaced by Multi-
agentModeling (MAM) that has constituted an important research and deveop
area for the past two decades [2]. AMAM is formed of two elements, a Multi-agent Sys-
tem (MAS), and an environment in which the MAS evolves. When designing a Multi-
agent model (MAM), the modeler has control over the multi-agent system behavior and
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development and the environment. The latter is especialfyortant in evolutionary
models as it determines the direction of the adaptation.

Fundamentally, a MAS is a system composed of multiple ictérg agents within
an environment. The most simple MAS, called “reactive MAS]; pssumes the behav-
ior of the agents can be modeled by a simple state machig€eesting”, “foraging”,
etc). These behavioral states often involve the modificatiothefenvironment (for in-
stance the deposit of a pheromone) or interacting with atbents. Such agents do not
have have any memory capability, nor any decision makinges®. Thus, the switch
from one behavior to another is performed in reaction to sohamges of the environ-
ment or due to some interactions with other agents. Howévergollective behavior
of the MAS, emerging from the interactions of the agents \lig environment, can
often be far more complex than that of the agents alone. Apnhges are a good start-
ing example for such MAS: Although the local behavior of agnant does not seem
to be controlled centrally, nor any explicit coordinaticgtlveen ants is observable, the
superorganism “ant colony” is able to construct complex agshitectures or adapt its
distribution of foragers to food sources in an efficient wély

Cognitive MAS, based on a cognitive architecture, allowsemmmplex behavior
modeling. A cognitive architecture can be defined as therszgtional structure of
functional processes and knowledge representationsihhteethe modeling of cogni-
tive phenomena like memory [5]. Nevertheless, such MAS s¢edhave a very deep
knowledge about the individual behavior of each single agéthe colony, which is
not always easy to model when too few parametric data aréahl@aifrom the expert
(entomologists for instance).

Considering now the “environment” of the Multiagent Mod6],[the related dy-
namic is usually considered as a static phenomenon. It nteaha food source will
only be modified (location, quantity) by the interacting atgeof the MAS but not
by possible underlying external physical phenomena (li€esion for example). This
could be considered as a limitation since the environmesighstrong influence onto
the global behavior of the agents.

The aim of this article is to propose a MAM based on a simpletiea MAS and
the taking into account of evolution physical laws relatethie corresponding environ-
ment. More precisely, we want to show that by integratingvlag the resources and
the trail markers could naturally vanish (steered by a diffes phenomenon parametri-
cally described using the spatio-temporal heat equatvemyan obtain a more realistic
modeling of the global behavior of the MAS dynamics.

Practically speaking, we focus our attention on the belrawviodeling of an so-
cial pest insect: the “Bark beetle”. Bark beetles are edoldly and economically sig-
nificant [7] since outbreak species help to renew the forgdtilling older trees and
other species aid in the decomposition of dead wood. Howsgeeral outbreak-prone
species are known as notorious pests that can cause trenseddmage to pine tree
forests for instance [8]. As a consequence, a better uradetisty of the social behavior
of this beetle would definitely be of some precious help tatlita damage capability.

This article is organized as follows: We first introduce tlhekbeetle species with a
focus on the entomological data. Second, we introduce thyegsed MAM that permits
to model the social behavior of the bark beetle with a takirig &ccount of the physical
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law steering the inner evolution of the available resouicesgiven environment. We
then propose an experimental section in which the behavitmeomodel is shown.
Finally, the obtained modeling results are discussed andleded.

2 A Social Pest Insect: The Bark Beetles

2.1 Bark Beetles Description

Bark beetles are so-named because the best known specdieduepin the inner bark
(living and dead phloem tissues) of trees. Some speciels agaihe mountain pine bee-
tle (Dendroctonus ponderosae), attack and kill live trees. Most, however, live in dead,
weakened, or dying hosts. Once beetles find a suitable leestttrey release aggregat-
ing pheromones to attract other beetles enabling a “maaskdtthat can overwhelm
even a healthy tree defenses [7]. Along with releasing pheres, the attacking bee-
tles introduce a staining fungus that infects and blocks#mvood further weakening
the tree. Aggregating pheromones plus a pathogenic fumjestion help make rela-
tively healthy trees a quick meal for bark beetles.

Most bark beetles look the same to the casual observer. Baitlels are usually less
than 5mm long, shiny brown to black, cylindrical, with harohg/covers. Basically, they
look like everyday beetles, only smaller (see Fig. 1(a) flosiration). Beetles spend
almost their entire life beneath tree bark. After mating;egy gallery” is excavated by
the female beetle, sometimes with help from a male friendisEtpid along the sides
of the gallery, hatch within a few weeks. The larvae feed @nthitritious inner bark of
the tree, pupate, and then emerge as an adult. The aduk lbbeétlspends a few days
outside the bark flying to relocate to a new host.

5 millimeters

(a) A typical bark beetle (b) Colony galleries on a dead tree

Fig. 1.

Bark beetles excavate egg galleries like tiny tunnels itivieénner bark (Fig. 1(b)).
Engraver beetles score the sapwood, too. Larvae excaeat@l'imines”. Bark beetle
galleries weaken the host tree and eventually kill it by lgigl Water and nutrient
transport in the live inner bark and in the outer edge of tivead are effectively
disrupted.
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2.2 Ecological Role

Bark beetles and forests evolved together. In balancedtigreeetles have many bene-
ficial roles. The most important are:

— Beetles “thin” naturally overstocked forests. Beetletioed thinning is often irreg-
ular and patchy contributing to forest diversity. Gaps emage changes in vegeta-
tion and forest structure beneficial to wildlife.

— Beetles help recycle old forests. Beetles introduce woadyléungi through the
bark where adults burrow into trees. Decay fungi help todigimiecompose wood
and hasten nutrient recycling back into the soil.

— Beetle killed trees are a food source important to birds ahdrdnsect predators.
Snags provide roosting and nesting habitat.

However, due to peculiar warm climatic conditions, somesdalation could ap-
pear in the natural balance between forests and bark beglelgiion growing. As
a consequence, massive outbreaks of a specific specieskobdettes (the mountain
pine beetles) in western North America in 2005 have killetlioms of acres of for-
est from New Mexico to British Columbia threatening increm@ mudslides, forest
fires and other adverse effects. A similarly aggressiveispéag Europe is thepruce
ips typographus. Anothertiny bark beetle, the coffee berry boréfypothenemus
hampei is a major pest on coffee plantations around the world.

3 Modeling of Bark Beetles Behavior

In this section we explain the notations used in the papengalvith the physical quan-
tities we model.

3.1 Hypotheses and Notations

Bark beetles are social insects and consequently, the Iglebavior of a nest can be
modeled by a simple reactive MAS based on simple interacmnong the different
agents. Three main hypothesis will steer the behavior di egent : (i) They look for
food sources (pine trees for example) ; (i) Once a food sisaetected the agent
emit a particular pheromone that will strengthen the relgt@th (the “trail markers”),
and (iii) food sources emit on their surroundings an attnaetement (trees in decom-
position emit ethanol that naturally attract xylophagiseits).

For the experiments, we consider a 2D area of evolution. Baelof this area are
located using their cartesian coordingtesy). The following related notations are used
to characterize resources and agents:
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Resources

Let s(z,y) denotes a food source (trees):

— the corresponding evolution law of the available resouisestedR;(¢),

— the corresponding evolution law of the ethanol emissiorotedF; (),

— and E(z, y,t) denotes the quantity of ethanol at the coordindteg) and for a
given instant.

Agents

Leta(x,y) denotes an agent at the locati@ny) of the area
— ns(t) denotes the number of agents on a givensite

— ¢4(t), the probability for a given agentto quit the colony, at instarit
— andp,(z,y,t) the probability of an agent to move to locatior y), at instant.

Moreover, agents are mobile only if they are not on a res@site.

4 Experiments

For all the following experiments, we will consider a clogemmogenous SMA. Only
beetles will interact (no other types of agents) and thatdted amount of agents will
stay the same (50 agents) all along the different experisn@rd phenomenon like
“birth” or “death” of agents will be taken into account).

For all experiments, we use the usual logistic law to modeldtolution of the
resources on a site:

Ry(t+ 1) = Rs(t) — ans(t) Q)
with « a given value representing the mean consumption rate of et dgtween
two iterations of the evolving process. This non-linearichas motivated by the fact
that numbers of agents related to a resource is not a fixed adllalong the process.

4.1 Agents Departure Modeling

In this first scenario, only one resource is considered ara®ts are located on it. We
want to test the effect of resources exhaustion on the ntypbilthe agents. We propose
to model the probability of departure of an agent by the ratibavailable resources at
timet:

Ga(t) =1 - 2

No emission of ethanol is taken into account (iE.(t) = 0) nor emission of
pheromone. Fig. 2.(a) shows the number of agents that tamsmhobile” state against
the number of iterations.

A usual “S-phenomenon” [9] characterizes this evolution. |[kor a better illus-
tration, Fig.2.(b) shows the smoothed evolution law coragwds a mean of the phe-
nomenon on 50 realizations. This first experiment shows tability of our model
considering simple conditions of evolution. Let us knowieimthe model.
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(@ (b)

Fig. 2. lllustration of the “S-phenomenon” related to the numbefrobbile” agents function of
the iteration number of the process for a unique resoureengiere all agents (50) are located at
t = 0: (a) for one realization of the experiment, (b) averaging0rrealizations of the experi-
ments.

4.2 Resource Attraction and Aggregating Behavior Modeling

We now want to model the resources attraction phenomenoiha&naggregating be-
havior of the agents. We consider the agents are randonmdgyddall over the area of
evolution and that ethanol and pheromones are emitted ctdgglg by the resource
sites and the agents which have found a resource site. Tresponding emission laws
are Gaussian functions such as:

E(z,y,t) = ZEs(ﬁ)e—v[(w—ws)2+(y—ys)2] , ©)
for ethanol emissionf;s(t) = pRs(t), p being a positive value lesser than one), and
Ph(z,y,t) = Zphs(t)efv[(xfxs)%r(yfys)?] : 4)

for pheromone emissiorP(t) = vns(t), v being a positive value lesser than one).
We propose to model the probability of movement by the gty attracting
markers in the neighborhood of the agents. Let us define tetigy of attracting mark-
ersA(z,y,t) as a coupling between ethanol and pheromones at lodatign and time
t:

A(l‘,y,ﬁ) = nPh(may7f') + (1 - n)E(mayvt) > (5)

with 0 < n < 1 being the coupling term. The probability to move to location
(z*,y*) for agenta is then:

A(x*, y*,t)

S Awyt)

(z,y)€N(a)

pa(™,y*) = (6)
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Fig. 3. lllustration of Experiment 2: 50 agents are randomly dispadl all over the evolution area
(red stars) where a unique source of food is present. Eeoluti the agents’ position is shown
for (a) iteration O of the process, (b) iteration 20, (c)atéwn 60, (d) iteration 100, (e) iteration
140 and finally (f) iteration 180. The dark disk that progiesly appears in the center of the
area highlights the position of the source of food, the gezgllintensity is related to the level of
emitted pheromone: the more black, the more pheromone.

with N (a) being the neighborhood of agemtIn all our experiments, we consider 8-
connexity neighborhoods. Whenever an agent arrives oraess site, it sStops mov-
ing and starts emitting pheromones and consuming resaurces

In Fig.3, we show the evolution of agents location as welh&sgheromone levels
over time for a single run. As we can see, the agents are t&itr&w the resources site.
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(@ (b)
Fig. 4. (a) Mean distance of the agents to the source of food functidhe iteration number of
the process withy = 0.7. (b) Amount of agents on the source of food function of theatien
number of the process (averaging on 50 realizations of therarent)

In Fig. 4, we show (a) the mean distance of the bark beetldsetedurce of food
with n = 0.7 (more importance is given to pheromone emission than etleamission),
and (b) the amount of agents on the source of food overtime

As we can see on Fig. 4.(a), the proposed model for ethangbla@dmone emis-
sion is compatible with a realistic modeling of the behawifthe beetles’ colony: for a
sufficient number of iterations (approximately 140) all #yents have converged to the
source of food. The exponential decreasing of the plot steowe-step process: in a
first fast step, agents which are close from the resourcasgtattracted by the ethanol
emission of decomposing tree. Once they are on the resoitecthsy then begin to
emit pheromone, attracting more and more agents. In a setepgddue to the decreas-
ing of the resource, there’s a deceleration of the procese dess and less ethanol is
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emitted. Moreover, Fig. 4 .(b) shows the expected “S-phesran” related to that kind
of behavior.

Nevertheless, one limitation of this behavioral model & ithsufficient taken into
account of the underlying physical phenomenon related¢éogrhone and ethanol emis-
sions. More precisely, if the Gaussian laws of Egs. (3) apei«d realistic, they do not
integrate any temporal dynamics highlighting for instanagatural diffusion process.
And yet, this diffusion scheme will interact with the atttiaa process by modifying the
expectec, probability. We now propose to integrate such a diffusiveperty within
the model.

5 Joint SMA-PDE Modeling

We now propose to consider that ethanol and pheromones #uealya dissipated
within the atmosphere at each iteration of the evolving esscharacterizing the colony
of beetles. For this, the simple isotropic diffusion pracissconsidered. This physical
phenomenon is simple but as so, remains easy to control arotiteary of more com-
plex anisotropic processes. This natural phenomenon isemettically defined by the
usual PDE of Eq. (7) also known as the “heat-equation”:

OPh(x,y,t) B O?Ph(x,y,t)  0*Ph(z,y,t)
o PR YT "

with A, the Laplacian operator. If in Eq. (7), pheromone emisssocoinsidered, a
similar equation is related to natural diffusion of ethar@bnsequently, for each iter-
ation of the experiment, the initial distributions of pherane and ethanol of Egs. (3)
and (4) are naturally vanishing. Practically speaking gach iteratiort, Egs. (3) and
(4) are convolved with a bidimensionnal Gaussian filter witndard deviation that
controls the speed of the isotropic diffusion. Iteratioteafteration, the maximal am-
plitude of the pheromone emission is decreasing whereagabal spreading is made
over a larger surface of the area of simulation.

For the experiments, we set 2 different resources siteié\béginning, all agents
are located on the first site, which has limited resourcesth@rcontrary, the second
site has a near infinite quantity of resources. We expectdbata to quickly leave the
first site (as in section 4.1), and converge to the secondasita section 4.2).

Fig. 5 shows the behavior of the beetles for different iierabdf the process. As it
can be noticed, after a significant lapse of time correspantti the random research
for food, the agents that are near the second site are atirbgtthe ethanol. Once these
agents find the resource site, the emission-diffusion ofgghene makes possible a fast
convergence of all agents to the corresponding site.

Fig. 6 shows the average distance of the agents from thalipiint(zo, yo), func-
tion of the iteration number of the evolving process. Thébgldehavior of the colony
is characterized by a double “S-phenomenon”. The first “Stesponds to the small
pool of agents attracted by the ethanol at first, while thesec'S” corresponds to
the remaining agents attracted by the pheromones. Compmapedvious experiments,
the phenomenon is slower due to the initial location of thenagy Agents first exhaust
the food on their initial location, before they randomly radm the neighborhood. A
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Fig. 5. Beetles’ behavior corresponding to the joint SMA-PDA mauglproposedo is arbitrar-
ily setto 1.
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Fig. 6. Average distance of the agents from the initial site theyewecalized at = 0, function
of the iteration number of the process. Contrary to otheesrgents, this curve was obtained
with only one realization of the evolving process.

necessary significant lapse of time is needed for few agerftad the second source
thanks to the ethanol diffusion. Nevertheless, as soon agamt is located on the new
resource site, the emission/diffusion of pheromone pregan acceleration of the con-
vergence when compared with experiment of section 4.2. M@ it is important to
notice that the “S-shape” of Fig. 6 was obtained with only osaization of the ex-
periment, whereas for Experiment 1 and 2, it was necessayeiage the results over
50 realizations to obtain similar results. This shows theeli¢ of integrating the un-
derlying physical phenomenon that steers the natural gealof pheromone/ethanol
diffusion, once emitted by agents.
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6 Conclusions and Perspectives

In this article, a joint MAS-PDE for the modeling of the belawof the bark beetle’s
colonies is presented. The main originality of the propoapproach is to integrate
within a simple reactive MAS some possible physical phenuarbat steers the diffu-
sion of emitted substances like pheromone or ethanol. Thgppctive experiments of
this work show that such a joint model could lead to more séalsimulations of the
global behavior of the colony, with no need for multiple ieafions of the process. If
this study is focused on the bark beetle, clearly identifiades2005 as a pest insect,
extensions to ant-like insects are straight forward. The eeperiments will consist in
(i) improving the MAS by a managing of the “birth” and “deatbf the beetles, but
also of the funding of new colonies by females, and(ii), imgidering the possibility
to integrate more complex diffusion processes, like angit ones, in order to take
into account the structure of the bark beetle’s nest wittéeg (galleries), and natural
perturbations like wind.
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