
Visualizing OCL Constraint Patterns with VOCL

Ali Hamie
Computing Division, Brighton University, Brighton and Hove, U.K.

Keywords: Constraint Pattern, Template Package, OCL, Visualization.

Abstract: A specification pattern is a generic constraint expression that can be instantiated to solve a class of specification
problems. It captures and generalizes frequently used logical expressions in models. Specification patterns
have been defined and represented in the Object Constraint Language OCL for UML/OCL modelling. The
notation of visual OCL (VOCL) is a visualization of OCL and can be considered as an alternative solution
to the textual OCL. This paper provides the visualization of some OCL constraint patterns in VOCL. For this
purpose, we introduce constraint pattern templates in VOCL to represent constraint patterns in a diagrammatic
form. The benefits of the visualization is that some patterns will be available in a intuitive diagrammatic
notation that follows the UML notation.

1 INTRODUCTION

Constraint patterns (Ackermann and Turowski, 2006;
Costal et al., 2006; Wahler et al., 2006; Wahler et al.,
2010) are essential to developing constraint specifi-
cations for UML class models (OMG, 2006). Using
constraint patterns accelerates the development and
maintenance of constraint specifications. This is be-
cause a pattern abstracts from concrete textual syn-
tax and thus reduces typical syntactic and semantic
errors by providing predefined constraint templates.
Patterns also overcome the difficulty of writing con-
straints because class models can express complicated
relations between classes, including subtyping, re-
flexive relations, or potentially dealing with infinitely
large instances, and specifying such facts requires ad-
dressing this complexity. A pattern captures and gen-
eralizes frequently used logical expressions. It is a
parameterizable constraint expression that can be in-
stantiated to solve a class of specification problems.

In the context of UML modelling, the Object
Constraint Language OCL (Warmer and Kleppe,
2003) has been used to define and represent constraint
patterns. OCL is a formal specification language
that was developed as an extension to the Unified
Modelling Language UML . The main purpose is to
describe additional constraints on UML models that
are difficult to describe using the diagrammatic no-
tation of UML. OCL is based on textual syntax and
provides basic data types and a library of collection
types such as sets, bags and sequences. The type of
constraints that can be described in OCL include in-

variants on classes and types, preconditions and post-
conditions of operations or methods. However, mod-
eling with UML and OCL may lead to some difficulty
in that the user has to learn two different languages
to represent common modelling elements such as ob-
jects and links.

The Visual OCL (VOCL) (Winkelmann, 2005;
Bottoni et al., 2001) is a graphical representation of
OCL capable of visualizing the textual constraints of
UML models. It was developed to overcome the prob-
lem stated above. Based on the OCL meta model,
VOCL follows the UML notation and its graphical
representation as far as possible. This makes a direct
integration of OCL in UML diagrams easier. Like
OCL, VOCL is a formal, typed and object-oriented
language. Since the user does not need to learn an-
other textual language, it is claimed to be an advan-
tage over the textual OCL. The language uses sim-
ple diagrams to represent new data types such as col-
lections, and operations such as forall, select, union,
etc. Logical expressions are represented as Peircian
graphs using different kinds of box to express con-
junctions and disjunctions.

In this paper we provide a visualization of OCL
specification patterns using VOCL. The basic tool for
representing and combining constraint patterns is a
generic form of package, called a pattern or template
package. In the package, a generic constraint frame-
work can be defined which acts as a macro-like tem-
plate that can be applied in many places. A tem-
plate can contain modeling constructs in the form of
both diagrams and text. In addition, any name can

129Hamie A..
Visualizing OCL Constraint Patterns with VOCL.
DOI: 10.5220/0004317801290134
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 129-134
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

be written as a <placeholder>, which will be sub-
stituted when it is applied to a model. The process
of building and composing constraint patterns using
template packages will be explained. The advantage
of the visualization is that some constraint patterns
will be available to users in a intuitive diagrammatic
notation that follows the UML notation. With the help
of appropriate tools, constraint frameworks simplify
the process of developing diagrammatic constraints in
VOCL. The approach will be illustrated using an ex-
ample.

2 VIDEO STORE MODEL

In this section, we present a partial class model
for the video rental store system that we will use
as an example throughout the remainder of this pa-
per. Figure 1 illustrates the model of the video
rental store using a UML class diagram. The
main classes are VideoRentalStore, Title, Member
and Rental. The video rental store has a collec-
tion of members which is represented by the as-
sociation with role name members between classes
VideoRentalStore and Member. The association be-
tween VideoRentalStore and Title indicates that a
store has many titles and a title belongs to exactly
one store. The association between Title and Rental
indicates that a title has many rentals and a rental be-
longs to one title. The association between Member
and Rental indicates that a member has many rentals
and a rental is only for one member. In addition the
diagram shows a number of attributes for each class.

VideoRentalStore
*

1 members
store

catalog

store

*

1

rentalstitle *
1

*

1

rentals

member

*

1

Rental

address: String
totalNoCopies: Integer

Title
name: String
noOfCopies : Integer
availCopies: Integer

Member

name: String
age: Integer

Figure 1: A partial class model for video rental store.

3 CONSTRAINTS AND
PATTERNS IN VOCL

An OCL constraint is visualized as a rounded rectan-

gle with two sections, the section of the context and
the section of the body which can contain a condition.
The context section includes the keyword context fol-
lowed by the model element which can either be a
class, type or operation, of the constraint followed by
the kind of the constraint e.g. inv, pre, post or def. In
the body section, the body of the constraint is visu-
alized. The condition section contains the conditions
of the constraint declared using variables defined in
the body. If there is a condition section it is separated
from the rest of the body by a dashed line. In order
to represent constraint patterns we use a generic, or
template, form of package. Inside the template, some
types and their features can be defined using place-
holder names. These names can be substituted for ac-
tual values. the package is designed to be imported
with substitutions. Unfolding the package provides a
version of its contents that is specialized based on the
substitution made.

3.1 Attribute Value Restriction

Consider the constraint that each member in the
video store should be over 18 years old. This can be
specified textually in OCL as follows.

context Member inv :
self:age > 18

The first line declares the context of the constraint
Member followed by the type of the constraint inv,
indicating that the constraint is an invariant. The sec-
ond line is the actual invariant represented as an OCL
boolean expression using the variable self that refers
to an object of class Member.

The visualization of this simple constraint in
VOCL is shown in Figure 2. The main difference here
is that the object self of class member has been visu-
alized using UML as a rectangular box. The context
is specified like in OCL.

context Member inv:

self: Member
age > 18

Figure 2: Properties of an object attribute.

Restricting the value of an attribute is a com-
mon kind of constraint. Abstractly, the above con-
straint restricts the value of an attribute of the context
class (age) to be greater than a given value (18). We
therefore generalize this constraint by introducing the
Attribute Value Restriction pattern, which can be used

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

130

to restrict the values of attributes for all instances of
the attributes’class. We define it as VOCL template
package, as shown in Figure 3. The template has
place holders (parameters) that specify classes and
objects that can be substituted when the pattern is in-
stantiated in a particular context. For this pattern the
parameters are the class C, the attribute att, the com-
parison operator operator and the value value. Place-
holders within the constraint template are written with
angle brackets (<>). An alternative way is to include
the parameters after the name of the pattern.

context <C> inv:

self: <C>

<att> <operator> <value>

AttributeValueRestriction «pattern»

Figure 3: Properties of an object attribute pattern.

Now the constraint that members must be over 18
can easily be generated from a pattern application
(see Figure 4). The place holders inside the pattern
definition are identified with actual type names
when the pattern is applied. This is the effect of
the labeled arrows when the pattern is applied. The
example also shows name substitution in the form
[pattern-namenapplied-name], we have used to
substitute values for the attribute att and parameters
value and operator. This text form and the arrows
are equivalent. It is sometimes convenient to write
instead of drawing pictures:

AttributeValueRestriction[CnMember;attnage;
valuen18;operatorn>]

This indicates that Member, age, 18 and > are
substituted for C, att, value and operator respectively.

Member
age: Integer

C [att\age]

AttributeValueRestriction
[operator\>, value\18]

Figure 4: Example of applying a constraint pattern.

In the resulting constraint, the context will be a
predefined class or type with features appearing in

the body, the condition also includes features de-
fined by the pattern, as name-substituted by the ap-
plication. Working out the complete constraint is
called un f olding. A good tool can show an unfolded
version on demand.

In the context of OCL a constraint pattern named
AttributeValueRestriction is defined in (Wahler et al.,
2010) to capture this kind of constraints. The pattern
is defined as an OCL template as follows.

pattern AttributeValueRestriction
(property: Property;
operator, value: OclExpression) =

self.property operator value

The pattern has three parameters. property repre-
sents the attribute of the object, operator represents
the comparison operator, and value represents the ac-
tual value.

Using the pattern, we can express the constraint
in Figure 2 as follows.

context Member inv :
AttributeValueRestriction(age; >; 18)

The VOCL pattern can be regarded as a visualization
of the OCL constraint pattern. The only difference is
that the OCL pattern does not include the context of
the constraint whereas the VOCL pattern does. How-
ever, it is possible to formulate the OCL pattern by
including an additional parameter for the context of
the constraint.

3.2 Restricting the Multiplicity of
Associations

The multiplicities of properties (associations) can
only be roughly constrained in a diagrammatical
way in class models. However, there are situation
where the multiplicity of an association depends on
the value of an attribute. For example, an object of
class Title can have an arbitrary number of rentals
which cannot exceed the total number of copies for
that title. So there is a dependency between the
association with role name rentals and the attribute
noOfCopies. The following OCL constraint captures
this dependency.

context Title inv RentalsRestriction :
self:rentals�>size()<= noOfCopies

The above constraint can be visualized in VOCL
as shown in Figure 5. This constraint specifies that
a title has less than noOfCopies rentals. In this con-

Visualizing�OCL�Constraint�Patterns�with�VOCL

131

straint the OCL operation size is visualized and ap-
plied to a collection (in this example a set) of rentals.
The variable n contains the number of elements in this
collection.

context Title inv:

n <= x

rentals #n
: Rental

self: Title
noOfCopies = x

Figure 5: Restricting association multiplicity.

This constraint can be represented as an instance
of the Multiplicity Restriction pattern. This pattern
restricts the multiplicity of associations. The multi-
plicity of associations can be restricted in UML class
models, however this pattern allows model developers
to define multiplicity restrictions that depend on prop-
erties of the model instance, e.g. an attribute value.
The pattern is defined by the template in Figure 6.

MultiplicityRestriction «pattern»

context <A> inv:

n <= x

<r.s.t>

#n

:

:

asSet()

self: <A>
att = x

Figure 6: Restricting association multiplicity pattern.

This pattern has four parameters: A, B, representing
classes, att, attribute of the context class and <r.s.t>,
which represents a sequence of properties, thus allow-
ing the use of expressions such as self.catalog.rentals.
Since in OCL the navigation of more than one associ-
ation may result in a bag, the OCL operator asSet() is
used to convert the resulting collection into a set.

In some cases, there may not be a direct link be-
tween the object self and an object of class B, however
the the link can be regarded as a derived link. This is
the case when the navigation uses more than one as-
sociation.

In general, when you build a pattern one must
make certain assumptions about the things that are
substituted for the placeholders in order for the appli-
cation of the pattern to work as intended. For exam-
ple, to apply the pattern in Figure 6, as a prerequisite,
the classes substituted for <A> and should be
linked by an association with appropriate role name
and multiplicity; if they do not, they are not suited for
the MultiplicityRestriction template.

MultiplicityRestriction «pattern»

context <A> inv:

n <= x

<r.s.t>

#n

:

:

asSet()

self: <A>
att = x

<A>
<r.s.t>provided

Figure 7: Explicit substitution provisions in
MultiplicityRestriction pattern.

In a separate section of the package we provide
information for the modeler of a template to state the
conditions under which the pattern can be meaning-
fully applied. Figure 7 shows an improvement of
MultiplicityRestriction template. It says that if you have
two types reachable via a sequence of associations,
then it is OK to say that the navigation results in a
collection with restricted size.

In the precondition section, one can put any model
to which the substituted types must already conform.
Thus, one can require that substituted types have
some relationship or satisfy some predicate. When
the pattern is applied one must check, perhaps with
the help of a tool, that all other parts of his or her
model imply the properties laid down as precondi-
tions.

Σ x <= y

context VideoRentalStore inv:
catalog

self:VideoRentalStore

totalNoCopies = y Σ

x

availCopies = x

: Title

Figure 8: Sum restriction constraint.

3.3 Attribute Sum Restriction

In the video rental store model the sum of the
available copies of all titles must not exceed the
total number of copies in the store. This dependency
between the attributes totalNoCopies and availCopies
is captured by the following OCL invariant.

context VideoRentalStore inv :
self:catalog.availCopies�>sum()

<= self.totalNoCopies

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

132

This can be visualized in VOCL by the diagram in
Figure 8. In this case the operation sum has a frame
in which the element whose values are summed up,
is visualized. This element is depicted at the frame
above the å symbol. To refer to the result of the sum
in the condition section, the å symbol is used.

To capture this constraint, we define the Attribute
Sum Restriction pattern, which has five parameters.
Besides the parameters A, B, which represent classes,
and r.s.t, which denotes a path expression to a re-
lated class, this pattern has two parameters. Parameter
summation refers to the property in the context class
that denotes the value that must not be exceeded, and
summand refers to the property in the related class
that is accumulated. The pattern is shown in Figure 9.

AttributeSumRestriction «pattern»

Σ x <= y

context A inv:

<r.s.t>self: <A>

summation = y Σ
x

summand = x
:

Figure 9: Attribute sum restriction pattern.

3.4 Uniqueness Constraints

The unique identity constraints are very frequent in
modelling. For example, it is required that each title
in the video rental store has a unique name in order
to distinguish one title from another. Such constraint
can be expressed in OCL by using the class operation
allInstances that returns the set of existing instances
of the class. It is given as follows.

context Title inv UniqueName :
Title.allInstances�>forAll(t1,t2: Title j

t1 <> t2 implies t1.name <> t2.name)

This constraint is visualized in VOCL by the dia-
gram given in Figure 10. The feature allInstances re-
sults in a set of all instances of the type which exists
at the specific time when the expression is evaluated.
It is visualized by a set of type of the class name.

In the constraint above the navigation starts at this
set, since there is no instance self from which it could
be started. After this a forall operation is applied to
that set and inside the forall an implies operation. forall
operation is defined on collections and has one or two
iterators. It has a frame which contains the expression
which has to be true for each collection element. By
isIn all instances of the set of all titles can be accessed.

context Title inv:

isInisIn

t1
t2

implies

x ≠ y

: Title

t1: Title t2: Title
≠

t2 :Title
name = y

t1 :Title
name = x

A

Figure 10: Unique identity constraint.

These instances correspond to the iterator/iterators.
The constraint specifies that all instances of type Title
have unique names. The link labeled isIn visualizes
that single objects are contained in the collection.

By abstracting from the above constraint a visual
pattern is obtained and shown in Figure 11. The pat-
tern has a parameter for the context class and another
for the property or attribute that has to be unique.

UniqueIdentity «pattern»

context <C> inv:

isInisIn

o1
o2

implies

x ≠ y

: <C>

o1: <C> o2: <C>
≠

o2 :<C>
<att> = y

o1 :<C>
<att> = x

A

Figure 11: Unique identity constraint pattern.

3.5 Composing Patterns

Associations in class models represent relations be-
tween the associated classes, therefore they can have
properties such as injectivity, surjectivity and bijec-
tivity. These properties can be specified on class dia-
grams by appropriate multiplicity constraints. How-
ever, there are situation where these properties de-
pend on some model attributes making it necessary
to write textual constraints. Patterns for injective,

Visualizing�OCL�Constraint�Patterns�with�VOCL

133

surjective and bijective associations have been intro-
duced in (Wahler et al., 2010) as OCL templates. Fig-
ure 12 shows a visualization of a modified formula-
tion of the In jective Association pattern.

InjectiveAssociation «pattern»

context <A> inv:

self: <A> <r> #1:

a
select

x = true

isIn a :<A>
<att> = x: <A>

isInisIn

o1
o2

implies

x ≠ y

: <A>

o1: <A> o2: <A>
≠

o2 :<A>
<att> = y

o1 :<A>
<att> = x

A
Figure 12: Injective pattern.

The pattern uses two subexpressions which are
visualized below each other, which in VOCL are
automatically combined by and.

Assuming that a pattern called
Sur jective Association has been defined, then
the Bi jective Association pattern can be defined in
terms of the in jectivity and sur jectivity patterns
as shown in Figure 13. This corresponds to the
definition that a bijective association is both injective
and surjective.

BijectiveAssociation «pattern»

InjectiveAssociation[..]

SurjectiveAssociation[..]

Figure 13: Bijective pattern.

4 CONCLUSIONS

In this paper we provided a visualization of OCL con-
straint patterns using the VOCL notation. The pat-
terns are represented as generic packages containing
placeholder definitions. A placeholder is a name that
can be substituted when the pattern is used. Each use
or application of the pattern provides its own substitu-
tions of the placeholders. Placeholder names are dis-
tinguished with angle brackets (<>). The names of
attributes and associations of placeholder classes are
themselves placeholders.

The benefit of the visualization is that for some
patterns it provides an intuitive way for representing
them within the UML. However there will be situ-
ations where the textual representation of a pattern
is simpler than its diagrammatic representation. The
pattern-based approach helps to avoid syntactic and
structural errors because the developer can generate
VOCL diagrams instead of drawing them by hand.
Further research based on case studies is needed to
evaluate this approach and compare the visual and
textual representations with respect to expressiveness
and readability.

REFERENCES

Ackermann, J. and Turowski, K. (2006). A library of OCL
specification patterns for behavioral specification of
software components. Lecture Notes in Computer Sci-
ence, 4001/2006:255–269.

Bottoni, P., Koch, M., Parisi-Presicce, F., and Taentzer,
G. (2001). A visualization of OCL using collabora-
tions. In <<UML>>’01, 4th International Confer-
ence on the Unified Modelling Language, pages 257–
271. Springer-Verlag.

Costal, D., Gómez, C., Queralt, A., Raventós, R., and Te-
niente, E. (2006). Facilitating the definition of general
constraints in UML. In MoDELS, volume 4199 of
Lecture Notes in Computer Science, pages 260–274.
Springer.

OMG (2006). Unified Modeling Language Specification
2.0: Infrastructure. OMG doc. smsc/06-02-06.

Wahler, M., Basin, D., Brucker, A. D., and Koehler, J.
(2010). Efficient Analysis of Pattern-Based Con-
straint Specifications. Software and Systems Model-
ing, 9(2):225–255.

Wahler, M., Koehler, J., and Brucker, A. D. (2006). Model-
driven constraint engineering. Electronic Communi-
cations of the EASST, 5.

Warmer, J. and Kleppe, A. (2003). The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley, Reading, MA.

Winkelmann, J. (2005). Specifcation of visualOCL: A vi-
sualisation of the object constraint language. Master’s
thesis, TU Berlin. (in German).

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

134

