
Programming Smart Object Federations for Simulating and
Implementing Ambient Intelligence Scenarios

Yannis Georgalis1, Yuzuru Tanaka2, Nicolas Spyratos3 and Constantine Stephanidis1,4
1Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece

2Meme Media Laboratory, Hokkaido University, Sapporo, Japan
3Laboratoire de Recherche en Informatique, Université Paris-Sud 11, Orsay, France

4Department of Computer Science, University of Crete, Heraklion, Crete, Greece

Keywords: Programming Languages, Service Federation, Smart Objects, Ubiquitous Computing, Ambient Intelligence.

Abstract: This paper leverages previous work on the concept of smart object federations and proposes a new dynamic
programming language for implementing and simulating smart objects and their interactions. Following
their description in the proposed programming language, smart objects can be fully simulated and used for
describing ambient intelligence scenarios. In this context, the contributions of the paper are two-fold: (a) the
introduction of a new programming language whose runtime semantics allows for a simple and effective
description of smart objects, and (b) the description of meaningful interaction strategies, that are
implemented in the proposed language, through which executable smart object federations can be used for
simulating and implementing ambient intelligence scenarios.

1 INTRODUCTION

Smart objects, at a basic conceptual level, are
autonomous computing units that can operate in
isolation, connect to other objects, thus creating
complex structures in the form of object federations,
and interact with each other within their
environment (Tanaka, 2010). A smart object can be
viewed in three different ways: as a container unit,
as a structural unit (passive or active), and as an
interaction unit. As a container unit, an object
contains memory and an arbitrary number of
external services. As a structural unit, it can initiate
(active) or accept (passive) connections from other
objects, and, lastly, as an interaction unit, a smart
object is able to issue and to execute commands, to
emit and capture events, and to use the functionality
that is implemented by its contained services.

Smart objects are thus defined in terms of their
characteristics, capabilities and behaviour. Provided
that they follow a basic set of operational primitives
(Tanaka, 2010); (Julia et al., 2012), they can be
realized as either software or hardware entities. In
this paper we will be focusing on software smart
objects with the final goal being the seamless
coexistence of software and hardware smart objects
that federate and interact with each other in order to

implement ambient intelligence (AmI) scenarios.
Our primary motivation was to provide an effective
and intuitive way to program software smart objects
for (a) the implementation of scenarios whose
architecture requires software smart objects and (b)
the simulation of scenarios whose architecture
requires a mixture of software and hardware smart
objects.

Akkadian, the dynamic executable programming
language proposed in this paper, allows for the full
implementation of the structure of smart objects and
all interactions among them. The decision to propose
a completely new language is justified for three
reasons. First of all, due to the asynchronous
semantics of the software smart object model it is
difficult to create syntactically intuitive and effective
frameworks in existing popular general-purpose
languages. Secondly, an implementation in a
general-purpose language has to accommodate
extraneous programming statements that increase the
complexity of the text representation of a program
without contributing anything to the core
functionality of the objects themselves (boilerplate
code). Thirdly, full control to the language’s high-
level constructs was necessary not only to simplify
the description of smart objects and their interactions
but to also accommodate for future extensions and

5Georgalis Y., Tanaka Y., Spyratos N. and Stephanidis C..
Programming Smart Object Federations for Simulating and Implementing Ambient Intelligence Scenarios.
DOI: 10.5220/0004305600050015
In Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2013), pages 5-15
ISBN: 978-989-8565-43-3
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

common programming and usage patterns that will
emerge from the application of the smart object
paradigm to real-world scenarios. In this context, the
proposed programming language for the description
of smart objects falls into the category of Domain
Specific Languages (DSL).

In the following sections we will describe
Akkadian’s semantics and usage. Specifically, in
section 2 we will give an overview of related work,
in section 3 we will present the language, its runtime
semantics and the usage of its basic statements, in
section 4 we will show two examples, one of which
is a simulated AmI scenario, and finally, we will
conclude with a short discussion and our future work
in section 5.

2 RELATED WORK

The proposed programming language shares many
core design goals with the programming language
nesC (Gay et al., 2003), which is used for
programming sensor nodes for Wireless Sensor
Networks (WSNs). Both are component-based,
event-driven programming languages where the
execution happens concurrently as emitted events
reach the relevant code units. Additionally, like
nesC, the execution of a command in Akkadian does
not block the flow of the program. However, they
have four fundamental differences. First of all, the
proposed language is dynamic and weakly-typed
whereas nesC, being an extension of the C
programming language, is static and strongly-typed.
Secondly, in nesC, the bidirectional interfaces that
are either “used” or “provided” by a WSN node are
essentially static libraries that are linked with the
final program at compile time. In the case of
Akkadian, a port that “provides” or “requests” a
service, resolves the service definition dynamically,
at runtime, and the target service can be
implemented in any of the supported service
technologies (see 3.2). Thirdly, in nesC, event
handlers are implemented for individual events, and
trigger conditions that involve multiple events have
to be explicitly identified by the programmer using
shared variables. On the other hand, in Akkadian,
multiple events can be considered in an event
handler and connected with Boolean operators to
create powerful and expressive trigger conditions.
Moreover, concerning the fourth fundamental
difference, changes to the memory of smart object
ports, can be captured as events and participate as
trigger conditions in event handlers.

Aside from the fundamental differences, the

 common design decisions between Akkadian and
nesC are no coincidence, since WSNs share similar
goals with smart objects. However, WSNs are
primarily designed for implementing low-level
application scenarios, realized by the redundant
deployment of low reliability hardware devices. In
this sense, WSNs are organized and acting
autonomously while trying to achieve their goals
requiring little or no user intervention (Akyildiz et
al., 2002). On the other hand, the target of smart
objects is the description and implementation of
high-level user-centric application scenarios in
which the actions of the user actively influence the
operation of the smart objects in the environment
(Tanaka, 2010). Additionally, smart objects as
mentioned before, are designed to model both
hardware devices and software entities and it is that
potential for seamless interoperation that drives their
effectiveness to describe high-level, user-centric
scenarios.

Moreover, languages like ESTEREL (Boussinot
and de Simone, 1991) and LUSTRE (Halbwachs et
al., 1991) target embedded hard real-time systems
following an inherently synchronous message
passing paradigm. PushLogic (Greaves and Gordon,
2006) is a compiled block-structured imperative
language that provides the means to centrally
manage the services offered by distributed or local
devices. These devices are collectively referred to as
pebbles. PushLogic allows the definition of rules
that are evaluated concurrently ensuring that all the
assertions over its variables hold during the
execution of the program. Despite having
similarities with Akkadian, since both consume
diverse services and evaluate concurrently their
rules, PushLogic targets safety-critical systems and
thus provides only static memory allocation, does
not implement arrays and provides lower-level
constructs and operators in order to exercise very
fine-grained control over the devices it manages and
to keep the memory and processing requirements of
the resulting programs low. ArchJava (Aldrich et al.,
2002) is implemented as an extension of Java for
allowing the latter to dynamically invoke external
software components by binding them to
bidirectional interfaces, called input and output
ports. However, ArchJava is only applicable to
components running under the same Java virtual
machine, does not support the binding of distributed
services, and provides no means for message-
matching and concurrent execution.

Furthermore, Akkadian, can be viewed as a
composition language (Nierstrasz and Meijler,
1995), since smart objects, through their ports, can

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

6

offer or consume services that are either running on
the same hardware or are distributed over the
network. A smart object may incorporate an
arbitrary number of services built on different
technologies making an object described in
Akkadian an effective container for composing
functionalities from diverse, heterogeneous
components. The composition language PICCOLA
(Achermann et al., 1999) shares similar goals, while
supporting both imperative and functional
programming styles. It also supports concurrent
component invocations but does neither provide any
means for filtering invocation results nor is able to
utilize distributed components.

Service composability, apart from the efficient
and rapid implementation of high-level
functionality, also allows for easier deployment and
testing of the target application as it is being built.
This is an important and useful property in the field
of AmI, as also identified in the AMIGO project
(Georgantas et al., 2005). In this project,
composition is possible only for services
implemented using the supplied libraries for the Java
programming language. The Business Process
Execution Language (BPEL) (Curbera et al., 2003)
is a declarative, XML-based language that supports
process-oriented service composition. BPEL
describes a composition result (process), in terms of
participating services (partners) and message
exchanges or intermediate value transformations
(activities). BPELJ (Blow et al.), extends BPL and
enables the inclusion of standard Java code inside
BPEL declarations. Aside from the fact that BPEL-
based languages are available only for web services,
their declarative XML-based syntax makes them
verbose and difficult to read. Graphical development
environments for BPEL, however, mitigate the
readability problem at the cost of requiring the
programmer to describe the composition with
graphical elements representing process workflows.

3 LANGUAGE AND SEMANTICS

This section describes the structure and runtime
semantics of Akkadian. At first, the structure of
smart objects and the environment in which they can
interact is presented, followed by the definition of
services within the language’s model. Subsequently,
we present the basic syntactic constructs that allow
an object to handle service and memory events,
invoke service commands, and change memory
elements. Lastly, we show how objects can sense the

presence of other objects and establish connections
in order to form smart object federations.

When appropriate, the Z notation (Spivey, 1992)
will be used to describe more formally the structure
and semantics of Akkadian’s operations. We decided
to use the Z notation over π-calculus (Milner et al.,
1992), since the former allows for better modelling
of the language’s semantics through the changes
operators perform on the system’s data structures.
Conversely, π-calculus would be ideal for modelling
the execution of a specific scenario that utilizes
many different objects. Hence, we will use Z’s
named schema notation where the Name of a schema
appears on top, it is followed by the schema’s
variables, and the Constraining-Predicates appear
last, below the short vertical line. Essentially, a
schema is modelled as a set of tuples Name =
{x1:T1;…; xn:Tn | Constraining-Predicates}, where
xi:Ti denotes that xi has type Ti, i.e., xi ∈ Ti.

3.1 Software Smart Objects

Software smart object federations are represented as
labelled directed multi-graphs with no self-loops.
These graphs are contained within the single smart
object environment. In a smart object federation
graph, the vertices represent the smart objects, and
each directed edge a connection of a smart object to
another one through a port. The head of an edge is
the object that requests a service from another one
(through a service-requesting port) and its tail is the
object that offers a service (through a service-
providing port). The label of the edge represents the
common name of the ports through which the
connection is established. Two objects may be
connected to each other through multiple ports
(multi-graph) but cannot establish a connection to a
port contained in the same object (no self-loops).
Figure 1 shows a smart object federation graph.

Figure 1: Example federation of 9 objects that are
connected through ports named “r” (for row) and “c” (for
column) (left), and the structure of smart objects and their
connections, with service-requesting (-) and service-
providing (+) ports (right).

In this sense, the environment is represented by

Programming�Smart�Object�Federations�for�Simulating�and�Implementing�Ambient�Intelligence�Scenarios

7

the Z schema below, where ℙT denotes the power
set of T, i.e., A ∈ ℙT ⇔ A ⊆ T, and X ⇸ Y denotes
a partial function from a set, X, to another set, Y.

 Environment
objs : ℙSO
conns : ℙ(SO × SO × NAME)
sport: SO ⇸ ℙSP; rport: SO ⇸ ℙRP

∀x,y∈objs; l∈NAME ⦁ (x, y, l) ∈ conns ⇒ x ≠ y
dom sport = dom rport = objs

Each smart object is essentially a pair of two sets:
(SP, RP). The first set, SP, represents the service
providing ports through which an external service
can be used by the object or its peers, and the second
set, RP, represents the service requesting ports
through which an object can connect to another one
and thus use the service that is provided by the
corresponding service providing port.

An element p of SP is, in turn, associated with
two partial functions, mem and serv, to an element of
M and S respectively, with the set M representing the
memory of the port and the relation S ∈ I* ↔ O*,
(where I* = I ∪ {nil} and O* = O ∪ {nil}), modeling
Akkadian’s runtime service representation (see also
3.2). The aforementioned types are described by the
Z schemata below, where the symbol “↔”
represents the set of relations between two sets, i.e.,
S ↔ T = ℙ(S×T). The types (sets) that are irrelevant
for our modeling are referenced in the declaration
header using Z’s square-bracket notation.

[NAME, SP, RP, M, I, O]
I* ≙ I ∪ {nil}; O* ≙ O ∪ {nil}

 SO
sp : ℙSP; rp : ℙRP
sname : SP ⇸ NAME; rname : RP ⇸ NAME
mem : SP ⇸ ℙM
serv : SP ⇸ (I* ↔ O*)

∀x, y ∈ sp ⦁ sname(x) = sname(y) ⇒ x=y
∀x, y ∈ rp ⦁ rname(x) = rname(y) ⇒ x=y
dom sname = sp
dom rname = dom mem = dom serv = rp

3.2 Services and Memory

From the programmer’s viewpoint, a service-
providing port has memory, and can export and
make available to its containing object a set of
commands and events. An object containing a
service-requesting port can access and utilize all the
available memory, commands and events as soon as
it establishes a connection with a service-providing
port. In this context, the functionality provided by a
port, i.e., its commands and events, is referred to as a

“service”. A command invocation does not block the
evaluation of the program and potential results are
fed back to the invoking object as events.

Therefore, as mentioned in the previous section,
services in Akkadian are modelled as a binary
relation S ∈ I* ↔ O*. The domain of the relation
represents the set of commands that can be issued
through the service and the codomain represents the
events that can be received through the service. The
relation specifies that certain events (elements of the
codomain) are generated as a result of the invocation
of a command (elements of the domain). All the
pairs of the form (nil, o), with o ∈ O, denote events
that are generated by the service automatically
without any previous command invocation (e.g., an
asynchronous “door-opened” event). Similarly, all
pairs of the form (i, nil), with i ∈ I, denote those
commands that do not cause the service to produce
any events (e.g., a “turn-off” command). Based on
this, the semantics of the invocation of a command
(cmd) that does not produce any event and the
semantics of receiving an event (evt) that is not
associated with a command are defined below. In the
Z notation, the symbol “Δ” includes the referenced
schema in the current one, allowing the use of the
variables defined previously. The symbol “?”
indicates the schema variables that work as the
inputs of the operation. The symbol “⩤” denotes the
domain subtraction operation, which obtains all the
pairs of the second set whose first member is not
contained in the first set, i.e., R ∈ S↔T and A⊆S, A
⩤ R = {a:S;b:T|(a, b)∈R ∧ a∉A}. Finally, variables
decorated with an apostrophe (′) refer to their value
in the post-state, after the evaluation of the schema.

 InvokeCommand
ΔSO
cmd?: I; p? : SP

p? ∈ sp
serv (p?)′ =({cmd?} ⩤ serv (p?)) ∪ {(cmd?, nil)}

 ReceiveEvent
ΔSO
evt? : O; p? : SP

p? ∈ sp
serv (p?)′ = (serv (p?) ⩥ {evt?}) ∪ {(nil, evt?)}

As long as services adhere to this model, they can be
fully used by smart objects through their service-
providing ports. In the actual implementation of the
language, different service technologies can be
adapted to adhere to the model through the runtime
environment’s service-engine extension mechanism.
Currently, we have implemented one service engine
that is able to view any .NET (CLR) object as a

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

8

service and another engine through which we can
utilize all the services built on top of our in-house
middleware, which is based on CORBA (DEC et al.,
1992). It is our short-term goal to also implement a
web service (Christensen et al., 2001) engine.

In Akkadian programs, services can be attached
to service-providing ports using Uniform Resource
Identifiers (URIs). The schema indicates the service
technology whereas the rest of the URI is evaluated
by the indicated service-engine to identify and
resolve the actual service. The syntax for attaching
services to service-providing ports appears below.
 +a("clr://mscorlib/System/IO/Console");
 +b("ami://LightService/bedroom");

Apart from the set of commands and events, a
service-providing port, as mentioned in the previous
section, also contains memory independently from
the attached service. The port’s memory is defined
only within the context of Akkadian’s runtime and is
not associated with the actual service
implementation. This is the only way for an
Akkadian program to keep its state, since the ad-hoc
definition of variables is not allowed. The update
operation of a port memory is defined below, where
the ∖ symbol represents the set difference operation.

 UpdateMem
ΔSO
n:M ⇸ NAME
v? : M; p? : SP

p? ∈ sp ∧ dom n = mem(p?)
mem(p?)′ = (mem(p?) ∖
 {m:M | n(m) = n(v?)}) ∪ {v?}

Given a service-providing port with the name
“a”, which is expressed in Akkadian as “+a”, the
following statements can be used to invoke a
command (first statement) and to write to the
service’s memory (second and third statements):
 +a.WriteLine("Hello World");
 +a["last_msg"] = "Hello World";
 +a.previous = 1821; //+a["previous"]=1821;

3.3 Handling Memory and Service
Events

Memory and service events are emitted from a
service-providing port in the following cases: (a)
when the port’s memory is modified by the
container object, (b) when the attached service emits
an event – either due to the execution of a command
on the same service or because the attached service
independently emitted the event to indicate a sudden
change in its state, (c) when another object

connected through a matching port modifies its
memory, or (d) when another object connected
through a service-requesting port invokes a
command on the service associated with the port. On
the other hand, memory and service events are
emitted from a connected service-requesting port in
each of the aforementioned cases except (d).

Regardless of the reason an event is emitted, in
Akkadian, its presence is checked with the when
statement. The statement’s syntax is: when capture-
expr statement, where capture-expr is a Boolean
expression of either a service-event-capture-expr or
a memory-event-capture-expr, and statement is any
valid Akkadian statement. In EBNF-like syntax, this
can be expressed as follows:
 when-stmt := 'when' capture-expr statement;
 capture-expr := capture-expr
 ('and' | 'or') capture-expr
 | 'not' capture-expr
 | service-event-capture-expr
 | memory-event-capture-expr;

Essentially, a service-event capture expression
and a memory-event capture expression are satisfied
when the respective predicates below are true. In Z,
the symbol “Ξ” adds the referenced schema in the
current one, like “Δ”, but also indicates that its post-
state is not affected. We also assume three functions,
memmatch, eventmatch, and payloadmatch that
check whether a memory element, an event and its
payload are, respectively, satisfied by the relevant
capture expression. The operator “ran” obtains the
range of the relation.

ΞSO
memmatch: M → {true, false}
eventmatch: O → {true, false}
payloadmatch : O → {true, false}
v? : M; e? : O; p? : SP

p? ∈ sp ∧ v? ∈ mem(p?) ∧ memmatch(v?)
p? ∈ sp ∧ e? ∈ ran serv(p?) ∧ eventmatch(e?)
 ∧ payloadmatch(e?)

When the capture expression is satisfied by all
the conjunct event-capture expressions, then the
statement is said to be “matched” and its associated
actions are evaluated by Akkadian’s runtime.
Consider, e.g., the capture statement below.
 when +t.TemperatureChanged(*sensorId,
 temp < +t["low_temp_thr"])
 and not +t.disabled {actions...}

This statement captures an event called
“TemperatureChanged” (checked by eventmatch)
that is emitted by the service attached to the service-
providing port with name t, which is contained in the
object described by the Akkadian program. Also,

Programming�Smart�Object�Federations�for�Simulating�and�Implementing�Ambient�Intelligence�Scenarios

9

this statement captures two memory locations
(checked by memmatch) that are part of the
aforementioned service-providing port (t). Those
memory locations are named “low_temp_thr” and
“disabled” respectively. Interpreting the inequality
and the Boolean operators, this specific statement is
triggered when the “TemperatureChanged” event is
emitted, its second parameter is less than the number
written in memory position “low_temp_thr”, and the
value of the memory position “disabled” is evaluated
to false. The event in the above statement has two
named parameters in its payload. The second one is
called “temp” (for temperature) and is compared
(checked by payloadmatch) with the value of the
memory location “low_temp_thr”. The first
parameter of the payload is the id of the specific
sensor that reported the temperature, and since it is
not needed in this specific instance, we could have
omitted it completely from the event-capture
expression. Alternatively, we can use the parameter
alias syntax as above, an identifier prefixed with ‘*’
(in which case payloadmatch evaluates to true), in
order to be able to refer to that parameter with the
given identifier in the capture statement’s actions.

The actions of a “when” event-capture statement
are evaluated every time the capture expression is
matched. Testing of whether the capture expression
is matched by the emitted events happens every time
an event that participates in a specific event-capture
expression is emitted to the containing object.

Capture statements can be nested in other capture
statements. Consider, for example, the following
statements:
 when +t.TemperatureChanged(temp < 1)
 { when –g.Humidity(v > 0.2){} }
If the outer statement’s actions do not contain any
other invocations, the above statements are
semantically equivalent to the following:
 when +t.TemperatureChanged(temp < 1)
 and –g.Humidity(v > 0.2){}

When a capture statement is matched, then all
the encapsulated capture statements become eligible
for being matched, i.e., they become active.
Conversely, when a matched capture statement
becomes unmatched, all the encapsulated capture
statements cannot be matched even if their capture
expression can be satisfied by the emitted events,
i.e., they become inactive.

3.4 Scope, Linking and Path

A smart object A can connect to another smart object
B through a port named p, when: (a) object A
becomes “aware” of object B, (b) object A has a

service-requesting port with name p (-p), which is
unconnected, (c) object B has a service-providing
port with the same name p (+p), (d) the command
“Link(-p, B)” is invoked in the context of object A.

An object can become aware of another object
through the InScope event. The event’s payload
includes a reference to the object that enters the
scope of the first object. Currently, Akkadian defines
scope only in terms of proximity among smart
objects. Namely, when the Euclidean distance
between two smart objects in a two-dimensional
space becomes less than the predefined value that
represents the first object’s range, then, an InScope
event is sent to that object with a reference to the
second object. If the first and second objects have
equal range, the InScope event is emitted to both
objects. Among objects that are in the same
federation (graph), InScope is not emitted, as those
objects can be accessed through a path expression
(see 3.4). Conversely, the OutScope event is emitted
when an object exits the scope of another object. It is
our short-term goal to define the scope in a broader,
more systematic manner, in order to incorporate
security primitives in the smart object model.

A connection between two smart objects can
only be established through their ports. A service-
requesting port that is not already connected can be
connected to a service-providing port of another
object as long as the latter has the same name as the
former, i.e. the ports are “matching ports”. If these
conditions are met, the Link command, successfully
establishes the connection.

 Link
ΔEnvironment
ΞSO
o1?, o2? : SO; p1? : RP, p2? SP

p1? ∈ rport(o1?) ∧ p2? ∈ sport(o2?)
rname(p1?) = sname(p2?)
¬(∃ x ∈ objs; l∈NAME ⦁ (o1?, x, l) ∈ conns)
conns′ = conns ∪ {(o1?, o2?, rname(p1?))}

The Link command’s syntax in an Akkadian
program, given a reference to an object (objref) and
a service-requesting port (-p) is the following:
 self.Link(-p, objRef);

The identifier “self” above, refers to a standard
port that is part of all objects. Its attached service
and memory enables an Akkadian program to invoke
object-wide commands (e.g., Link/Unlink), to access
object-wide state (e.g., object’s name, position), and
to sense object-wide events (e.g., InScope). The self
port cannot be used for establishing a connection.

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

10

Each smart object can refer to another object in
the same federation through Akkadian’s path
expression. In a federation a port sequence defined
in the context of a specific object can describe a path
from that object to another one by means of the
established connections through the ports that appear
in the path sequence. Therefore for the federation
depicted in Figure 1, object A can refer to objects C
and H respectively through the expressions below,
which are evaluated in the context of object A.
 -r(self); // object C
 -c-c-r(self); // object H

Path expressions can participate in capture
statements through which an object can capture the
events of other objects. E.g., in Figure 1, object A
can capture the connection of object H to I through
port r with the following statement.
 when –c-c-r-r(self).Linked(*obj) {}

If any of the ports referenced by a path
expression is not connected, then the path is invalid,
i.e., it is dangling. Capture expressions that contain
dangling paths cannot be matched. However, as soon
as the path becomes valid, the affected expressions
are evaluated and are subsequently tested against the
emitted events on the target object.

The above examples, lastly, showcase another
trait of Akkadian, which is weak typing. Whenever
possible, the type of a value changes implicitly to
match the one expected by the operation in which
the value participates. Therefore, in the above
examples, a port reference is implicitly converted to
an object reference (to the object that contains it).

4 EXAMPLE

Akkadian’s programming and runtime environment
is implemented as a graphical tool in which
developers can program and deploy smart objects.
This tool, named ObjectivSim, can be seen in Figure
2 and Figure 3 and contains all the necessary
components for (a) editing Akkadian programs and
smart objects, (b) executing, simulating and
visualizing their federations and interactions.

In ObjectivSim, when an object is defined in
terms of its visual characteristics and its program, it
can be dropped inside the environment (Figure 3)
where it is evaluated and starts interacting with the
other objects. The environment in our
implementation is limited neither with respect to the
number of objects it can host nor its size and can be
zoomed in and out to allow a better view of all
objects that operate in it.

Figure 2: The design environment (ObjectivSim) with the
object library (1), Akkadian text editor (2), object property
editor (3), and output console (4).

Figure 3: ObjectivSim’s smart object environment.

4.1 Replicating a Simple Chain

As the first example of using Akkadian to describe
smart objects we will use a simplification of the
smart object connection algorithm, presented in
(Julia et al., 2012). Given a sequence of an arbitrary
number of smart objects connected through port L
towards the same direction, i.e., a connected chain of
n objects, the path –L–L–L... –L = -Ln, evaluated in
the context of the first object, will reference the last
(nth) one, the Akkadian program presented in this
section, enables them to make an exact replica of
their chain – provided that (a) the environment
contains enough instances of the required objects,
and (b) those objects can enter in the scope of the
objects that participate in the initial chain.

In the first part of the Akkadian program, objects
are assigned a role depending on their relative
position in the chain:

Programming�Smart�Object�Federations�for�Simulating�and�Implementing�Ambient�Intelligence�Scenarios

11

 port +L; port -L;
 when Activated()self.role = Free;
 when +L.Linked() {
 if self.role == Start
 self.role = Middle;
 else self.role = End; }
 when –L.Linked() {
 if self.role == End
 self.role = Middle;
 else self.role = Start; }

The Activated event is emitted the first time an
object is placed in the environment and its program
is evaluated – i.e., the object is activated. At first, the
object is not connected through any other object, and
thus its “role” in the chain is marked as “Free”. In
Akkadian, when an identifier is not an alias for an
event payload (see 3.3), it is equivalent to a string
with the same name. Subsequently, when an object
connects to the current object through port +L, then,
provided that –L is unconnected, the current object is
surely at the end of the chain, and so it is assigned
the role “End”. Conversely, when an object connects
through port –L and +L is unconnected, then the
current object is at the beginning of the chain and is
assigned the role “Start”. If both +L and –L are
connected, then the current object is assigned the
role “Middle”. This can also be seen in Figure 3,
where object N1 has the role “Start”, N5 the role
“End” and all others “Middle”.

After assigning roles, the key point in the
algorithm is for objects participating in the chain to
connect to other “Free” objects with the same name
through a port –C. This happens as soon as those
free objects enter the scope of the object in the
chain. Following that, when the next object
connected through -L (the one on the right in the
case of Figure 3) connects with another object
through port –C and the current object has an object
connected through its own –C port, then those child
objects are connected to each other through their L
ports, thus gradually forming a replica of that part of
the chain.
 port +C; port -C;
 when InScope(*o) and
 o[name]==self.name and
 self.role!=Free and o.role==Free {
 self.Link(-C, o);
 if self.role == Start
 -L.token = true; }
 when -L-C(self).Linked(*nextObj)
 and –C.Linked()
 -C+self(self).Link(-L,nextObj);

 when +L.token and –C.Linked() {
 if self[role] == End
 self.Unlink(-C);
 else -L.token = true; }
 when -L-C(self).Unlinked() self.Unlink(-C);

Finally, the last two when statements describe the
terminal conditions and proceed in breaking all the
connections through the C ports in order to finalize
the replication of the chain (Figure 3). The key part
of the Akkadian program in this case is the
transmission of a “token” from the start-object of the
chain to the end-object, which is gradually
propagated to the next object as soon as the current
object connects with another one through port –C.
When the token reaches the end-object, then it
means that the replication is finished and so end-
object breaks the connection through port –C and,
recursively, every previous object that observes that
disconnection, also disconnects its own –C.

4.2 Ambient Theatre

In this example we consider a simple AmI scenario.
When the user approaches a movie screen and
performs a hand wave gesture with both hands, the
lights turn off and a movie starts playing. While a
movie is playing, the waving of the user’s right or
left hand instructs the movie screen to start playing
the next or previous movie in the playlist,
respectively. When the user moves away from the
screen, the movie stops playing and the lights turn
back on. Subsequently, when the user approaches an
internet stand, the display shows information about
the movies previously watched. Had the user not
used the movie screen prior to approaching the
internet stand, no information is displayed.

Breaking down this scenario, first of all, we
assume that the following services are implemented
and can be utilized by smart objects: (i) a Human
tracking service that can track the position of the
user inside a room, (ii) a Video playing service that
controls a screen, maintains a playlist and is able to
play movie files on the screen, (iii) a Human-gesture
recognition service that is able to tell apart different
hand gestures performed by a human, (iv) an
Internet service that is able to present information on
a screen about a topic, and (v) a Lights service that
is able to control the room’s lights.

Having the aforementioned services available,
we can fully implement the scenario with software
smart objects. Specifically, we can model the
scenario using three smart objects: (i) a “Movie
Human” smart object whose role is to move around
the room, control the video screen and the internet
stand, (ii) a static (unmovable) “Movie Stand” object
that offers the video service and can control the
lights, and (iii) an “Internet Stand” object that just
offers the Internet service mentioned before.
Implementing the scenario with these smart objects,

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

12

apart from being able to utilize the services through
smart objects (see 3.2), requires the “Movie Human”
to be able to “move” in the environment, following
the user’s physical movement into the room. This
can be achieved by using the events of the Human
tracking service:
 port +Track("ami://room1/HTracking");
 when +Track.PosChanged(*dx, *dy)
 self.Move(dx, dy);

In this example, however, we will show the
implementation of a simulation of this scenario. In
this case, the movement of the object representing
the user can be simulated by dragging (with the
mouse) the visual representation of the object in
ObjectivSim. Additionally, the Human gesture
service can be simulated by providing buttons on the
visualized objects, and lastly, we can show the
actions performed on the video and internet services
by altering the colour and label of the participating
objects. The buttons that trigger the simulated
behaviour of the gesture service are declared in
Akkadian as ports with the “button” scheme:
 port +GestWave("button:///WaveHands");
 port +GestLeft("button:///LeftHand");
 port +GestRight("button:///RightHand");

The object representing the user can, therefore,
determine when it should access or disconnect from
the video service and the internet service through the
InScope and OutScope events:
 port –Video; port –Internet;
 when InScope(*obj){
 if obj.name == "MovieStand"
 self.Link(-Video, obj);
 else if obj.name=="InternetStand"
 and self[movies] != null
 self.Link(-Internet, obj);
 }
 when OutScope(*obj){
 if obj.name == MovieStand
 self.Unlink(-Video);
 else if obj.name == InternetStand
 self.Unlink(-Internet); }

Finishing the description of the object
representing the user, the following statements
describe how the object interacts with the other
ones:
 when -Video.Linked() and
 +GestWave.Pressed() -Video.PlayMovie();
 when -Video.Linked() and
 +GestLeft.Pressed() -Video.PrevMovie();
 // Similarly for GestRight
 when -Video.FinishedMovie(*m)
 self[movies] = self[movies] + m;
 when -Internet.Linked()
 -Internet.Info(self[movies]);

On the other hand we simulate the behaviour of
the “Movie Stand” smart object as follows:

 port +Video;
 when +Video.Linked() self.Color("Black");
 when +Video.Unlinked() {
 self.Color("Gray");
 self.Display("MovieStand"); }
 when +Video.PlayMovie(){
 self.Color("Blue");
 self.Display("Playing"); }
 when +Video.PrevMovie(){
 +Video.FinishedMovie("Blue");
 self.Display("Prev"); }
 // Similarly for NextMovie

Lastly, for simulating the “Internet Stand” smart
object, in this example, we just change the colour of
the object to a value that reflects the name of the
first movie watched.
 port +Internet;
 when +Internet.Info(*m) self.Color(m[0]);
 when +Internet.Unlinked()self.Color("Gray");

The visualization and execution of this scenario in
ObjectivSim can be seen in Figure 4.

Figure 4: The Ambient Theatre scenario running under
ObjectivSim.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we presented a dynamic, weakly-typed
programming language for describing the behaviour
and interactions of smart object federations within
their environment. Using the proposed programming

Programming�Smart�Object�Federations�for�Simulating�and�Implementing�Ambient�Intelligence�Scenarios

13

language, Akkadian, we can fully implement
ambient intelligence scenarios that are described in
terms of software smart objects. Those software
smart objects can consume, and offer to other
objects an arbitrary number of networked services
through which they can sense and change the
physical environment in the way the scenario
defines. Additionally, for scenarios described in
terms of hardware smart objects, Akkadian can be
used for simulating their executions. Finally, we
demonstrated the language’s effectiveness through
two examples in which smart objects are
implemented as Akkadian programs.

As mentioned in the previous sections, one
important short-term goal for Akkadian runtime is
the implementation of additional service engines.
Specifically, the implementation of a Web Service
engine will allow software smart objects to fully
utilize web services through their ports in addition to
the already available service technologies. Provided
that there is a plethora of publicly available web
services on the Internet, this addition will greatly
expand the utility of software smart objects.

A big section missing from Akkadian, and the
smart object model in general, is the support for
security primitives. Currently, as mentioned before,
an object can connect to another object and use the
services it offers as soon as it senses its presence
(see 3.4). For achieving an effective level of
security, the notion of the scope and the process
through which objects can connect to each other,
needs to be refined. Towards this direction, we are
working on introducing scope-specific statements in
Akkadian, through which an object will be able to
define its own scope and control if, and under which
conditions, it can appear in the scope of other
objects.

Ultimately, the most important reason for
proposing a new language – and not developing a
framework in a general-purpose language – for
programming smart objects is to systematically
extract and support, in a syntactically intuitive way,
common usage patterns as smart objects are used in
ambient intelligence and ubiquitous computing
scenarios. It is an important goal of Akkadian, its
runtime environment, and its design environment to
be robust and easily extensible for incorporating
new, high-level behaviours.

ACKNOWLEDGEMENTS

This work has been supported by the FORTH-ICS
internal RTD program “Ambient Intelligence

Environments”.

REFERENCES

Achermann, Franz, Markus Lumpe, Jean-guy Schneider,
and Oscar Nierstrasz. 1999. PICCOLA - a Small
Composition Language.

Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E.
Cayirci. 2002. “Wireless Sensor Networks: a Survey.”
Computer Networks 38 (4) (March 15): 393–422.

Aldrich, J., C. Chambers, and D. Notkin. 2002. “ArchJava:
Connecting Software Architecture to Implementation.”
In Proceedings of the 24rd International Conference
on Software Engineering, 2002. ICSE 2002, 187 –197.

Blow, M, Y Goland, M Kloppmann, F Leymann, G Pfau,
D Roller, and M Rowley. “BPELJ: BPEL for Java
Technology”.

Boussinot, F., and R. de Simone. 1991. “The ESTEREL
Language.” Proceedings of the IEEE 79 (9)
(September): 1293 –1304.

Christensen, Erik, Francisco Curbera, Greg Meredith, and
Sanjiva Weerawarana. 2001. Web Services
Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl.

Curbera, F, Y Goland, J Klein, F Leymann, Thatte, and S
Weerawarana. 2003. Business Process Execution
Language for Web Services, Version 1.1.

Digital Equipment Corporation, Object Management
Group, and X/Open Company. 1992. The Common
object request broker : architecture and specification,
revision 1.1. New York, NY: John Wiley.

Gay, David, Philip Levis, Robert von Behren, Matt Welsh,
Eric Brewer, and David Culler. 2003. “The nesC
Language: A Holistic Approach to Networked
Embedded Systems.” SIGPLAN Not. 38 (5): 1–11.

Georgantas, N., S. B. Mokhtar, Y. Bromberg, V. Issarny,
J. Kalaoja, J. Kantarovitch, A. Gerodolle, and R.
Mevissen. 2005. “The Amigo Service Architecture for
the Open Networked Home Environment.” In 5th
Working IEEE/IFIP Conference on Software
Architecture, 2005. WICSA 2005, 295 –296.

Greaves, D., and D. Gordon. 2006. “Using Simple
Pushlogic.” In WEBIST 06: Proceedings of the Second
International Conference on Web Information Systems
and Technologies. Citeseer.

Halbwachs, N., P. Caspi, P. Raymond, and D. Pilaud.
1991. “The Synchronous Data Flow Programming
Language LUSTRE.” Proceedings of the IEEE 79 (9).

Julia, Jeremie, Yuzuru Tanaka, and Nicolas Spyratos.
2012. “Formalization of an RNA-inspired Middleware
for Complex Smart Object Federation Scenarios.” In
PECCS 2012, 96–105.

Milner, R., J. Parrow, and D. Walker. 1992. “A Calculus
of Mobile Processes, i.” Information and Computation
100 (1): 1–40.

Nierstrasz, Oscar, and Theo Meijler. 1995. “Requirements
for a Composition Language.” In Object-Based
Models and Languages for Concurrent Systems,

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

14

 924:147–161. LNCS. Springer.
Spivey, J. M. 1992. The Z Notation: a Reference Manual.

Hertfordshire, UK, UK: Prentice Hall International
(UK) Ltd.

Tanaka, Yuzuru. 2010. “Proximity-Based Federation of
Smart Objects: Liberating Ubiquitous Computing from
Stereotyped Application Scenarios.” In Knowledge-
Based and Intelligent Information and Engineering
Systems, 6276:14–30. LNCS. Springer.

Programming�Smart�Object�Federations�for�Simulating�and�Implementing�Ambient�Intelligence�Scenarios

15

