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Abstract: This paper leverages previous work on the concept of smart object federations and proposes a new dynamic 
programming language for implementing and simulating smart objects and their interactions. Following 
their description in the proposed programming language, smart objects can be fully simulated and used for 
describing ambient intelligence scenarios. In this context, the contributions of the paper are two-fold: (a) the 
introduction of a new programming language whose runtime semantics allows for a simple and effective 
description of smart objects, and (b) the description of meaningful interaction strategies, that are 
implemented in the proposed language, through which executable smart object federations can be used for 
simulating and implementing ambient intelligence scenarios. 

1 INTRODUCTION 

Smart objects, at a basic conceptual level, are 
autonomous computing units that can operate in 
isolation, connect to other objects, thus creating 
complex structures in the form of object federations, 
and interact with each other within their 
environment (Tanaka, 2010). A smart object can be 
viewed in three different ways: as a container unit, 
as a structural unit (passive or active), and as an 
interaction unit. As a container unit, an object 
contains memory and an arbitrary number of 
external services. As a structural unit, it can initiate 
(active) or accept (passive) connections from other 
objects, and, lastly, as an interaction unit, a smart 
object is able to issue and to execute commands, to 
emit and capture events, and to use the functionality 
that is implemented by its contained services. 

Smart objects are thus defined in terms of their 
characteristics, capabilities and behaviour. Provided 
that they follow a basic set of operational primitives 
(Tanaka, 2010); (Julia et al., 2012), they can be 
realized as either software or hardware entities. In 
this paper we will be focusing on software smart 
objects with the final goal being the seamless 
coexistence of software and hardware smart objects 
that federate and interact with each other in order to 

implement ambient intelligence (AmI) scenarios. 
Our primary motivation was to provide an effective 
and intuitive way to program software smart objects 
for (a) the implementation of scenarios whose 
architecture requires software smart objects and (b) 
the simulation of scenarios whose architecture 
requires a mixture of software and hardware smart 
objects.  

Akkadian, the dynamic executable programming 
language proposed in this paper, allows for the full 
implementation of the structure of smart objects and 
all interactions among them. The decision to propose 
a completely new language is justified for three 
reasons. First of all, due to the asynchronous 
semantics of the software smart object model it is 
difficult to create syntactically intuitive and effective 
frameworks in existing popular general-purpose 
languages. Secondly, an implementation in a 
general-purpose language has to accommodate 
extraneous programming statements that increase the 
complexity of the text representation of a program 
without contributing anything to the core 
functionality of the objects themselves (boilerplate 
code). Thirdly, full control to the language’s high-
level constructs was necessary not only to simplify 
the description of smart objects and their interactions 
but to also accommodate for future extensions and 
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common programming and usage patterns that will 
emerge from the application of the smart object 
paradigm to real-world scenarios. In this context, the 
proposed programming language for the description 
of smart objects falls into the category of Domain 
Specific Languages (DSL). 

In the following sections we will describe 
Akkadian’s semantics and usage. Specifically, in 
section 2 we will give an overview of related work, 
in section 3 we will present the language, its runtime 
semantics and the usage of its basic statements, in 
section 4 we will show two examples, one of which 
is a simulated AmI scenario, and finally, we will 
conclude with a short discussion and our future work 
in section 5. 

2 RELATED WORK 

The proposed programming language shares many 
core design goals with the programming language 
nesC (Gay et al., 2003), which is used for 
programming sensor nodes for Wireless Sensor 
Networks (WSNs). Both are component-based, 
event-driven programming languages where the 
execution happens concurrently as emitted events 
reach the relevant code units. Additionally, like 
nesC, the execution of a command in Akkadian does 
not block the flow of the program. However, they 
have four fundamental differences. First of all, the 
proposed language is dynamic and weakly-typed 
whereas nesC, being an extension of the C 
programming language, is static and strongly-typed. 
Secondly, in nesC, the bidirectional interfaces that 
are either “used” or “provided” by a WSN node are 
essentially static libraries that are linked with the 
final program at compile time. In the case of 
Akkadian, a port that “provides” or “requests” a 
service, resolves the service definition dynamically, 
at runtime, and the target service can be 
implemented in any of the supported service 
technologies (see 3.2). Thirdly, in nesC, event 
handlers are implemented for individual events, and 
trigger conditions that involve multiple events have 
to be explicitly identified by the programmer using 
shared variables. On the other hand, in Akkadian, 
multiple events can be considered in an event 
handler and connected with Boolean operators to 
create powerful and expressive trigger conditions. 
Moreover, concerning the fourth fundamental 
difference, changes to the memory of smart object 
ports, can be captured as events and participate as 
trigger conditions in event handlers.  

Aside from the fundamental differences, the

 common design decisions between Akkadian and 
nesC are no coincidence, since WSNs share similar 
goals with smart objects. However, WSNs are 
primarily designed for implementing low-level 
application scenarios, realized by the redundant 
deployment of low reliability hardware devices. In 
this sense, WSNs are organized and acting 
autonomously while trying to achieve their goals 
requiring little or no user intervention (Akyildiz et 
al., 2002). On the other hand, the target of smart 
objects is the description and implementation of 
high-level user-centric application scenarios in 
which the actions of the user actively influence the 
operation of the smart objects in the environment 
(Tanaka, 2010). Additionally, smart objects as 
mentioned before, are designed to model both 
hardware devices and software entities and it is that 
potential for seamless interoperation that drives their 
effectiveness to describe high-level, user-centric 
scenarios. 

Moreover, languages like ESTEREL (Boussinot 
and de Simone, 1991) and LUSTRE (Halbwachs et 
al., 1991) target embedded hard real-time systems 
following an inherently synchronous message 
passing paradigm. PushLogic (Greaves and Gordon, 
2006) is a compiled block-structured imperative 
language that provides the means to centrally 
manage the services offered by distributed or local 
devices. These devices are collectively referred to as 
pebbles. PushLogic allows the definition of rules 
that are evaluated concurrently ensuring that all the 
assertions over its variables hold during the 
execution of the program. Despite having 
similarities with Akkadian, since both consume 
diverse services and evaluate concurrently their 
rules, PushLogic targets safety-critical systems and 
thus provides only static memory allocation, does 
not implement arrays and provides lower-level 
constructs and operators in order to exercise very 
fine-grained control over the devices it manages and 
to keep the memory and processing requirements of 
the resulting programs low. ArchJava (Aldrich et al., 
2002) is implemented as an extension of Java for 
allowing the latter to dynamically invoke external 
software components by binding them to 
bidirectional interfaces, called input and output 
ports. However, ArchJava is only applicable to 
components running under the same Java virtual 
machine, does not support the binding of distributed 
services, and provides no means for message-
matching and concurrent execution. 

Furthermore, Akkadian, can be viewed as a 
composition language (Nierstrasz and Meijler, 
1995), since smart objects, through their ports, can 

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

6



 

offer or consume services that are either running on 
the same hardware or are distributed over the 
network. A smart object may incorporate an 
arbitrary number of services built on different 
technologies making an object described in 
Akkadian an effective container for composing 
functionalities from diverse, heterogeneous 
components. The composition language PICCOLA 
(Achermann et al., 1999) shares similar goals, while 
supporting both imperative and functional 
programming styles. It also supports concurrent 
component invocations but does neither provide any 
means for filtering invocation results nor is able to 
utilize distributed components. 

Service composability, apart from the efficient 
and rapid implementation of high-level 
functionality, also allows for easier deployment and 
testing of the target application as it is being built. 
This is an important and useful property in the field 
of AmI, as also identified in the AMIGO project 
(Georgantas et al., 2005). In this project, 
composition is possible only for services 
implemented using the supplied libraries for the Java 
programming language. The Business Process 
Execution Language (BPEL) (Curbera et al., 2003) 
is a declarative, XML-based language that supports 
process-oriented service composition. BPEL 
describes a composition result (process), in terms of 
participating services (partners) and message 
exchanges or intermediate value transformations 
(activities). BPELJ (Blow et al.), extends BPL and 
enables the inclusion of standard Java code inside 
BPEL declarations. Aside from the fact that BPEL-
based languages are available only for web services, 
their declarative XML-based syntax makes them 
verbose and difficult to read. Graphical development 
environments for BPEL, however, mitigate the 
readability problem at the cost of requiring the 
programmer to describe the composition with 
graphical elements representing process workflows. 

3 LANGUAGE AND SEMANTICS 

This section describes the structure and runtime 
semantics of Akkadian. At first, the structure of 
smart objects and the environment in which they can 
interact is presented, followed by the definition of 
services within the language’s model. Subsequently, 
we present the basic syntactic constructs that allow 
an object to handle service and memory events, 
invoke service commands, and change memory 
elements. Lastly, we show how objects can sense the 

presence of other objects and establish connections 
in order to form smart object federations.  

When appropriate, the Z notation (Spivey, 1992) 
will be used to describe more formally the structure 
and semantics of Akkadian’s operations. We decided 
to use the Z notation over π-calculus (Milner et al., 
1992), since the former allows for better modelling 
of the language’s semantics through the changes 
operators perform on the system’s data structures. 
Conversely, π-calculus would be ideal for modelling 
the execution of a specific scenario that utilizes 
many different objects. Hence, we will use Z’s 
named schema notation where the Name of a schema 
appears on top, it is followed by the schema’s 
variables, and the Constraining-Predicates appear 
last, below the short vertical line. Essentially, a 
schema is modelled as a set of tuples Name = 
{x1:T1;…; xn:Tn | Constraining-Predicates}, where 
xi:Ti denotes that xi has type Ti, i.e., xi ∈ Ti. 

3.1 Software Smart Objects 

Software smart object federations are represented as 
labelled directed multi-graphs with no self-loops. 
These graphs are contained within the single smart 
object environment. In a smart object federation 
graph, the vertices represent the smart objects, and 
each directed edge a connection of a smart object to 
another one through a port. The head of an edge is 
the object that requests a service from another one 
(through a service-requesting port) and its tail is the 
object that offers a service (through a service-
providing port). The label of the edge represents the 
common name of the ports through which the 
connection is established. Two objects may be 
connected to each other through multiple ports 
(multi-graph) but cannot establish a connection to a 
port contained in the same object (no self-loops). 
Figure 1 shows a smart object federation graph.  

 

Figure 1: Example federation of 9 objects that are 
connected through ports named “r” (for row) and “c” (for 
column) (left), and the structure of smart objects and their 
connections, with service-requesting (-) and service-
providing (+) ports (right). 

In this sense, the environment is represented by 
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the Z schema below, where ℙT denotes the power 
set of T, i.e., A ∈ ℙT ⇔ A ⊆ T, and X ⇸ Y denotes 
a partial function from a set, X, to another set, Y. 

 Environment  
objs : ℙSO 
conns : ℙ(SO × SO × NAME) 
sport: SO ⇸ ℙSP; rport: SO ⇸ ℙRP 
 

∀x,y∈objs; l∈NAME ⦁ (x, y, l) ∈ conns ⇒ x ≠ y 
dom sport = dom rport = objs 
 

Each smart object is essentially a pair of two sets: 
(SP, RP). The first set, SP, represents the service 
providing ports through which an external service 
can be used by the object or its peers, and the second 
set, RP, represents the service requesting ports 
through which an object can connect to another one 
and thus use the service that is provided by the 
corresponding service providing port.  

An element p of SP is, in turn, associated with 
two partial functions, mem and serv, to an element of 
M and S respectively, with the set M representing the 
memory of the port and the relation S ∈ I* ↔ O*, 
(where I* = I ∪ {nil} and O* = O ∪ {nil}), modeling 
Akkadian’s runtime service representation (see also 
3.2). The aforementioned types are described by the 
Z schemata below, where the symbol “↔” 
represents the set of relations between two sets, i.e., 
S ↔ T = ℙ(S×T). The types (sets) that are irrelevant 
for our modeling are referenced in the declaration 
header using Z’s square-bracket notation. 

[NAME, SP, RP, M, I, O] 
I* ≙ I ∪ {nil}; O* ≙ O ∪ {nil} 

 SO  
sp : ℙSP; rp : ℙRP 
sname : SP ⇸ NAME; rname : RP ⇸ NAME 
mem : SP ⇸ ℙM 
serv : SP ⇸ (I* ↔ O*) 
 

∀x, y ∈ sp ⦁ sname(x) = sname(y) ⇒ x=y 
∀x, y ∈ rp ⦁ rname(x) = rname(y) ⇒ x=y 
dom sname = sp 
dom rname = dom mem = dom serv = rp 
 

3.2 Services and Memory 

From the programmer’s viewpoint, a service-
providing port has memory, and can export and 
make available to its containing object a set of 
commands and events. An object containing a 
service-requesting port can access and utilize all the 
available memory, commands and events as soon as 
it establishes a connection with a service-providing 
port. In this context, the functionality provided by a 
port, i.e., its commands and events, is referred to as a 

“service”. A command invocation does not block the 
evaluation of the program and potential results are 
fed back to the invoking object as events. 

Therefore, as mentioned in the previous section, 
services in Akkadian are modelled as a binary 
relation S ∈ I* ↔ O*. The domain of the relation 
represents the set of commands that can be issued 
through the service and the codomain represents the 
events that can be received through the service. The 
relation specifies that certain events (elements of the 
codomain) are generated as a result of the invocation 
of a command (elements of the domain). All the 
pairs of the form (nil, o), with o ∈ O, denote events 
that are generated by the service automatically 
without any previous command invocation (e.g., an 
asynchronous “door-opened” event). Similarly, all 
pairs of the form (i, nil), with i ∈ I, denote those 
commands that do not cause the service to produce 
any events (e.g., a “turn-off” command). Based on 
this, the semantics of the invocation of a command 
(cmd) that does not produce any event and the 
semantics of receiving an event (evt) that is not 
associated with a command are defined below. In the 
Z notation, the symbol “Δ” includes the referenced 
schema in the current one, allowing the use of the 
variables defined previously. The symbol “?” 
indicates the schema variables that work as the 
inputs of the operation. The symbol “⩤” denotes the 
domain subtraction operation, which obtains all the 
pairs of the second set whose first member is not 
contained in the first set, i.e., R ∈ S↔T and A⊆S, A 
⩤ R = {a:S;b:T|(a, b)∈R ∧ a∉A}. Finally, variables 
decorated with an apostrophe (′) refer to their value 
in the post-state, after the evaluation of the schema.  

 InvokeCommand  
ΔSO 
cmd?: I; p? : SP 
 

p? ∈ sp 
serv (p?)′ =({cmd?} ⩤ serv (p?)) ∪ {(cmd?, nil)} 
 

 ReceiveEvent  
ΔSO 
evt? : O; p? : SP 
 

p? ∈ sp 
serv (p?)′ = (serv (p?) ⩥ {evt?})  ∪ {(nil, evt?)} 
 

As long as services adhere to this model, they can be 
fully used by smart objects through their service-
providing ports. In the actual implementation of the 
language, different service technologies can be 
adapted to adhere to the model through the runtime 
environment’s service-engine extension mechanism. 
Currently, we have implemented one service engine 
that is able to view any .NET (CLR) object as a 
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service and another engine through which we can 
utilize all the services built on top of our in-house 
middleware, which is based on CORBA (DEC et al., 
1992). It is our short-term goal to also implement a 
web service (Christensen et al., 2001) engine. 

In Akkadian programs, services can be attached 
to service-providing ports using Uniform Resource 
Identifiers (URIs). The schema indicates the service 
technology whereas the rest of the URI is evaluated 
by the indicated service-engine to identify and 
resolve the actual service. The syntax for attaching 
services to service-providing ports appears below. 
    +a("clr://mscorlib/System/IO/Console"); 
    +b("ami://LightService/bedroom"); 
 

Apart from the set of commands and events, a 
service-providing port, as mentioned in the previous 
section, also contains memory independently from 
the attached service. The port’s memory is defined 
only within the context of Akkadian’s runtime and is 
not associated with the actual service 
implementation. This is the only way for an 
Akkadian program to keep its state, since the ad-hoc 
definition of variables is not allowed. The update 
operation of a port memory is defined below, where 
the ∖ symbol represents the set difference operation. 

 UpdateMem  
ΔSO 
n:M ⇸ NAME 
v? : M; p? : SP 
 

p? ∈ sp ∧ dom n = mem(p?) 
mem(p?)′ = (mem(p?) ∖  
 {m:M  | n(m) = n(v?)}) ∪ {v?} 
 

Given a service-providing port with the name 
“a”, which is expressed in Akkadian as “+a”, the 
following statements can be used to invoke a 
command (first statement) and to write to the 
service’s memory (second and third statements): 
    +a.WriteLine("Hello World"); 
    +a["last_msg"] = "Hello World"; 
    +a.previous = 1821; //+a["previous"]=1821; 

3.3 Handling Memory and Service 
Events 

Memory and service events are emitted from a 
service-providing port in the following cases: (a) 
when the port’s memory is modified by the 
container object, (b) when the attached service emits 
an event – either due to the execution of a command 
on the same service or because the attached service 
independently emitted the event to indicate a sudden 
change in its state, (c) when another object 

connected through a matching port modifies its 
memory, or (d) when another object connected 
through a service-requesting port invokes a 
command on the service associated with the port. On 
the other hand, memory and service events are 
emitted from a connected service-requesting port in 
each of the aforementioned cases except (d). 

Regardless of the reason an event is emitted, in 
Akkadian, its presence is checked with the when 
statement. The statement’s syntax is: when capture-
expr statement, where capture-expr is a Boolean 
expression of either a service-event-capture-expr or 
a memory-event-capture-expr, and statement is any 
valid Akkadian statement. In EBNF-like syntax, this 
can be expressed as follows: 
    when-stmt := 'when' capture-expr statement; 
    capture-expr := capture-expr 
      ('and' | 'or') capture-expr 
      | 'not' capture-expr 
      | service-event-capture-expr 
      | memory-event-capture-expr; 

Essentially, a service-event capture expression 
and a memory-event capture expression are satisfied 
when the respective predicates below are true. In Z, 
the symbol “Ξ” adds the referenced schema in the 
current one, like “Δ”, but also indicates that its post-
state is not affected. We also assume three functions, 
memmatch, eventmatch, and payloadmatch that 
check whether a memory element, an event and its 
payload are, respectively, satisfied by the relevant 
capture expression. The operator “ran” obtains the 
range of the relation. 

ΞSO 
memmatch: M → {true,  false} 
eventmatch: O → {true, false} 
payloadmatch : O → {true,  false} 
v? : M; e? : O; p? : SP 
 

p? ∈ sp ∧ v? ∈ mem(p?) ∧ memmatch(v?) 
p? ∈ sp ∧ e? ∈ ran serv(p?)  ∧ eventmatch(e?) 
 ∧ payloadmatch(e?) 
 

When the capture expression is satisfied by all 
the conjunct event-capture expressions, then the 
statement is said to be “matched” and its associated 
actions are evaluated by Akkadian’s runtime. 
Consider, e.g., the capture statement below. 
    when +t.TemperatureChanged(*sensorId,      
        temp < +t["low_temp_thr"]) 
      and not +t.disabled {actions...} 

This statement captures an event called 
“TemperatureChanged” (checked by eventmatch) 
that is emitted by the service attached to the service-
providing port with name t, which is contained in the 
object described by the Akkadian program. Also, 
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this statement captures two memory locations 
(checked by memmatch) that are part of the 
aforementioned service-providing port (t). Those 
memory locations are named “low_temp_thr” and 
“disabled” respectively. Interpreting the inequality 
and the Boolean operators, this specific statement is 
triggered when the “TemperatureChanged” event is 
emitted, its second parameter is less than the number 
written in memory position “low_temp_thr”, and the 
value of the memory position “disabled” is evaluated 
to false. The event in the above statement has two 
named parameters in its payload. The second one is 
called “temp” (for temperature) and is compared 
(checked by payloadmatch) with the value of the 
memory location “low_temp_thr”. The first 
parameter of the payload is the id of the specific 
sensor that reported the temperature, and since it is 
not needed in this specific instance, we could have 
omitted it completely from the event-capture 
expression. Alternatively, we can use the parameter 
alias syntax as above, an identifier prefixed with ‘*’ 
(in which case payloadmatch evaluates to true), in 
order to be able to refer to that parameter with the 
given identifier in the capture statement’s actions. 

The actions of a “when” event-capture statement 
are evaluated every time the capture expression is 
matched. Testing of whether the capture expression 
is matched by the emitted events happens every time 
an event that participates in a specific event-capture 
expression is emitted to the containing object. 

Capture statements can be nested in other capture 
statements. Consider, for example, the following 
statements: 
    when +t.TemperatureChanged(temp < 1) 
      { when –g.Humidity(v > 0.2){} } 
If the outer statement’s actions do not contain any 
other invocations, the above statements are 
semantically equivalent to the following: 
    when +t.TemperatureChanged(temp < 1) 
      and –g.Humidity(v > 0.2){} 

When a capture statement is matched, then all 
the encapsulated capture statements become eligible 
for being matched, i.e., they become active. 
Conversely, when a matched capture statement 
becomes unmatched, all the encapsulated capture 
statements cannot be matched even if their capture 
expression can be satisfied by the emitted events, 
i.e., they become inactive. 

3.4 Scope, Linking and Path 

A smart object A can connect to another smart object 
B through a port named p, when: (a) object A 
becomes “aware” of object B, (b) object A has a 

service-requesting port with name p (-p), which is 
unconnected, (c) object B has a service-providing 
port with the same name p (+p), (d) the command 
“Link(-p, B)” is invoked in the context of object A. 

An object can become aware of another object 
through the InScope event. The event’s payload 
includes a reference to the object that enters the 
scope of the first object. Currently, Akkadian defines 
scope only in terms of proximity among smart 
objects. Namely, when the Euclidean distance 
between two smart objects in a two-dimensional 
space becomes less than the predefined value that 
represents the first object’s range, then, an InScope 
event is sent to that object with a reference to the 
second object. If the first and second objects have 
equal range, the InScope event is emitted to both 
objects. Among objects that are in the same 
federation (graph), InScope is not emitted, as those 
objects can be accessed through a path expression 
(see 3.4). Conversely, the OutScope event is emitted 
when an object exits the scope of another object. It is 
our short-term goal to define the scope in a broader, 
more systematic manner, in order to incorporate 
security primitives in the smart object model. 

A connection between two smart objects can 
only be established through their ports. A service-
requesting port that is not already connected can be 
connected to a service-providing port of another 
object as long as the latter has the same name as the 
former, i.e. the ports are “matching ports”. If these 
conditions are met, the Link command, successfully 
establishes the connection. 

 Link  
ΔEnvironment 
ΞSO 
o1?, o2? : SO; p1? : RP, p2? SP 
 

p1? ∈ rport(o1?) ∧ p2? ∈ sport(o2?) 
rname(p1?) = sname(p2?)  
¬(∃ x ∈ objs; l∈NAME ⦁ (o1?, x, l) ∈ conns) 
conns′ = conns ∪ {(o1?, o2?, rname(p1?))} 
 

The Link command’s syntax in an Akkadian 
program, given a reference to an object (objref) and 
a service-requesting port (-p) is the following: 
    self.Link(-p, objRef); 

The identifier “self” above, refers to a standard 
port that is part of all objects. Its attached service 
and memory enables an Akkadian program to invoke 
object-wide commands (e.g., Link/Unlink), to access 
object-wide state (e.g., object’s name, position), and 
to sense object-wide events (e.g., InScope). The self 
port cannot be used for establishing a connection. 
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Each smart object can refer to another object in 
the same federation through Akkadian’s path 
expression. In a federation a port sequence defined 
in the context of a specific object can describe a path 
from that object to another one by means of the 
established connections through the ports that appear 
in the path sequence. Therefore for the federation 
depicted in Figure 1, object A can refer to objects C 
and H respectively through the expressions below, 
which are evaluated in the context of object A. 
    -r(self);     // object C 
    -c-c-r(self); // object H 

Path expressions can participate in capture 
statements through which an object can capture the 
events of other objects. E.g., in Figure 1, object A 
can capture the connection of object H to I through 
port r with the following statement. 
    when –c-c-r-r(self).Linked(*obj) {} 

If any of the ports referenced by a path 
expression is not connected, then the path is invalid, 
i.e., it is dangling. Capture expressions that contain 
dangling paths cannot be matched. However, as soon 
as the path becomes valid, the affected expressions 
are evaluated and are subsequently tested against the 
emitted events on the target object. 

The above examples, lastly, showcase another 
trait of Akkadian, which is weak typing. Whenever 
possible, the type of a value changes implicitly to 
match the one expected by the operation in which 
the value participates. Therefore, in the above 
examples, a port reference is implicitly converted to 
an object reference (to the object that contains it). 

4 EXAMPLE 

Akkadian’s programming and runtime environment 
is implemented as a graphical tool in which 
developers can program and deploy smart objects. 
This tool, named ObjectivSim, can be seen in Figure 
2 and Figure 3 and contains all the necessary 
components for (a) editing Akkadian programs and 
smart objects, (b) executing, simulating and 
visualizing their federations and interactions. 

In ObjectivSim, when an object is defined in 
terms of its visual characteristics and its program, it 
can be dropped inside the environment (Figure 3) 
where it is evaluated and starts interacting with the 
other objects. The environment in our 
implementation is limited neither with respect to the 
number of objects it can host nor its size and can be 
zoomed in and out to allow a better view of all 
objects that operate in it. 

 

Figure 2: The design environment (ObjectivSim) with the 
object library (1), Akkadian text editor (2), object property 
editor (3), and output console (4). 

  

Figure 3: ObjectivSim’s smart object environment. 

4.1 Replicating a Simple Chain 

As the first example of using Akkadian to describe 
smart objects we will use a simplification of the 
smart object connection algorithm, presented in 
(Julia et al., 2012). Given a sequence of an arbitrary 
number of smart objects connected through port L 
towards the same direction, i.e., a connected chain of 
n objects, the path –L–L–L... –L = -Ln, evaluated in 
the context of the first object, will reference the last 
(nth) one, the Akkadian program presented in this 
section, enables them to make an exact replica of 
their chain – provided  that (a) the environment 
contains enough instances of the required objects, 
and (b) those objects can enter in the scope of the 
objects that participate in the initial chain. 

In the first part of the Akkadian program, objects 
are assigned a role depending on their relative 
position in the chain:  
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    port +L; port -L; 
    when Activated()self.role = Free; 
    when +L.Linked() { 
      if self.role == Start 
        self.role = Middle; 
      else self.role = End; } 
    when –L.Linked() { 
      if self.role == End 
        self.role = Middle; 
      else self.role = Start; } 

The Activated event is emitted the first time an 
object is placed in the environment and its program 
is evaluated – i.e., the object is activated. At first, the 
object is not connected through any other object, and 
thus its “role” in the chain is marked as “Free”. In 
Akkadian, when an identifier is not an alias for an 
event payload (see 3.3), it is equivalent to a string 
with the same name. Subsequently, when an object 
connects to the current object through port +L, then, 
provided that –L is unconnected, the current object is 
surely at the end of the chain, and so it is assigned 
the role “End”. Conversely, when an object connects 
through port –L and +L is unconnected, then the 
current object is at the beginning of the chain and is 
assigned the role “Start”. If both +L and –L are 
connected, then the current object is assigned the 
role “Middle”. This can also be seen in Figure 3, 
where object N1 has the role “Start”, N5 the role 
“End” and all others “Middle”. 

After assigning roles, the key point in the 
algorithm is for objects participating in the chain to 
connect to other “Free” objects with the same name 
through a port –C. This happens as soon as those 
free objects enter the scope of the object in the 
chain. Following that, when the next object 
connected through -L (the one on the right in the 
case of Figure 3) connects with another object 
through port –C and the current object has an object 
connected through its own –C port, then those child 
objects are connected to each other through their L 
ports, thus gradually forming a replica of that part of 
the chain. 
    port +C; port -C; 
    when InScope(*o) and 
      o[name]==self.name and 
      self.role!=Free and o.role==Free { 
      self.Link(-C, o); 
      if self.role == Start 
        -L.token = true; } 
    when -L-C(self).Linked(*nextObj)  
      and –C.Linked() 
        -C+self(self).Link(-L,nextObj); 
 
    when +L.token and –C.Linked() { 
      if self[role] == End 
        self.Unlink(-C); 
      else -L.token = true; } 
    when -L-C(self).Unlinked() self.Unlink(-C); 

Finally, the last two when statements describe the 
terminal conditions and proceed in breaking all the 
connections through the C ports in order to finalize 
the replication of the chain (Figure 3). The key part 
of the Akkadian program in this case is the 
transmission of a “token” from the start-object of the 
chain to the end-object, which is gradually 
propagated to the next object as soon as the current 
object connects with another one through port –C. 
When the token reaches the end-object, then it 
means that the replication is finished and so end-
object breaks the connection through port –C and, 
recursively, every previous object that observes that 
disconnection, also disconnects its own –C. 

4.2 Ambient Theatre 

In this example we consider a simple AmI scenario. 
When the user approaches a movie screen and 
performs a hand wave gesture with both hands, the 
lights turn off and a movie starts playing. While a 
movie is playing, the waving of the user’s right or 
left hand instructs the movie screen to start playing 
the next or previous movie in the playlist, 
respectively. When the user moves away from the 
screen, the movie stops playing and the lights turn 
back on. Subsequently, when the user approaches an 
internet stand, the display shows information about 
the movies previously watched. Had the user not 
used the movie screen prior to approaching the 
internet stand, no information is displayed. 

Breaking down this scenario, first of all, we 
assume that the following services are implemented 
and can be utilized by smart objects: (i) a Human 
tracking service that can track the position of the 
user inside a room, (ii) a Video playing service that 
controls a screen, maintains a playlist and is able to 
play movie files on the screen, (iii) a Human-gesture 
recognition service that is able to tell apart different 
hand gestures performed by a human, (iv) an 
Internet service that is able to present information on 
a screen about a topic, and (v) a Lights service that 
is able to control the room’s lights. 

Having the aforementioned services available, 
we can fully implement the scenario with software 
smart objects. Specifically, we can model the 
scenario using three smart objects: (i) a “Movie 
Human” smart object whose role is to move around 
the room, control the video screen and the internet 
stand, (ii) a static (unmovable) “Movie Stand” object 
that offers the video service and can control the 
lights, and (iii) an “Internet Stand” object that just 
offers the Internet service mentioned before. 
Implementing the scenario with these smart objects, 
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apart from being able to utilize the services through 
smart objects (see 3.2), requires the “Movie Human” 
to be able to “move” in the environment, following 
the user’s physical movement into the room. This 
can be achieved by using the events of the Human 
tracking service: 
    port +Track("ami://room1/HTracking"); 
    when +Track.PosChanged(*dx, *dy) 
      self.Move(dx, dy); 

In this example, however, we will show the 
implementation of a simulation of this scenario. In 
this case, the movement of the object representing 
the user can be simulated by dragging (with the 
mouse) the visual representation of the object in 
ObjectivSim. Additionally, the Human gesture 
service can be simulated by providing buttons on the 
visualized objects, and lastly, we can show the 
actions performed on the video and internet services 
by altering the colour and label of the participating 
objects. The buttons that trigger the simulated 
behaviour of the gesture service are declared in 
Akkadian as ports with the “button” scheme: 
    port +GestWave("button:///WaveHands"); 
    port +GestLeft("button:///LeftHand"); 
    port +GestRight("button:///RightHand"); 

The object representing the user can, therefore, 
determine when it should access or disconnect from 
the video service and the internet service through the 
InScope and OutScope events: 
    port –Video; port –Internet; 
    when InScope(*obj){ 
      if obj.name == "MovieStand" 
        self.Link(-Video, obj); 
      else if obj.name=="InternetStand"  
        and self[movies] != null 
          self.Link(-Internet, obj); 
    } 
    when OutScope(*obj){ 
      if obj.name == MovieStand 
        self.Unlink(-Video); 
      else if obj.name == InternetStand 
        self.Unlink(-Internet); } 

Finishing the description of the object 
representing the user, the following statements 
describe how the object interacts with the other 
ones: 
    when -Video.Linked() and  
      +GestWave.Pressed() -Video.PlayMovie(); 
    when -Video.Linked() and  
      +GestLeft.Pressed() -Video.PrevMovie(); 
    // Similarly for GestRight 
    when -Video.FinishedMovie(*m) 
      self[movies] = self[movies] + m; 
    when -Internet.Linked() 
      -Internet.Info(self[movies]); 

On the other hand we simulate the behaviour of 
the “Movie Stand” smart object as follows: 

    port +Video; 
    when +Video.Linked() self.Color("Black"); 
    when +Video.Unlinked() { 
 self.Color("Gray"); 
 self.Display("MovieStand"); } 
    when +Video.PlayMovie(){ 
 self.Color("Blue"); 
 self.Display("Playing"); } 
    when +Video.PrevMovie(){ 
     +Video.FinishedMovie("Blue"); 
 self.Display("Prev"); } 
    // Similarly for NextMovie 

Lastly, for simulating the “Internet Stand” smart 
object, in this example, we just change the colour of 
the object to a value that reflects the name of the 
first movie watched. 
    port +Internet; 
    when +Internet.Info(*m) self.Color(m[0]);  
    when +Internet.Unlinked()self.Color("Gray"); 

The visualization and execution of this scenario in 
ObjectivSim can be seen in Figure 4. 

 

 

Figure 4: The Ambient Theatre scenario running under 
ObjectivSim. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper we presented a dynamic, weakly-typed 
programming language for describing the behaviour 
and interactions of smart object federations within 
their environment. Using the proposed programming 
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language, Akkadian, we can fully implement 
ambient intelligence scenarios that are described in 
terms of software smart objects. Those software 
smart objects can consume, and offer to other 
objects an arbitrary number of networked services 
through which they can sense and change the 
physical environment in the way the scenario 
defines. Additionally, for scenarios described in 
terms of hardware smart objects, Akkadian can be 
used for simulating their executions. Finally, we 
demonstrated the language’s effectiveness through 
two examples in which smart objects are 
implemented as Akkadian programs. 

As mentioned in the previous sections, one 
important short-term goal for Akkadian runtime is 
the implementation of additional service engines. 
Specifically, the implementation of a Web Service 
engine will allow software smart objects to fully 
utilize web services through their ports in addition to 
the already available service technologies. Provided 
that there is a plethora of publicly available web 
services on the Internet, this addition will greatly 
expand the utility of software smart objects. 

A big section missing from Akkadian, and the 
smart object model in general, is the support for 
security primitives. Currently, as mentioned before, 
an object can connect to another object and use the 
services it offers as soon as it senses its presence 
(see 3.4). For achieving an effective level of 
security, the notion of the scope and the process 
through which objects can connect to each other, 
needs to be refined. Towards this direction, we are 
working on introducing scope-specific statements in 
Akkadian, through which an object will be able to 
define its own scope and control if, and under which 
conditions, it can appear in the scope of other 
objects. 

Ultimately, the most important reason for 
proposing a new language – and not developing a 
framework in a general-purpose language – for 
programming smart objects is to systematically 
extract and support, in a syntactically intuitive way, 
common usage patterns as smart objects are used in 
ambient intelligence and ubiquitous computing 
scenarios. It is an important goal of Akkadian, its 
runtime environment, and its design environment to 
be robust and easily extensible for incorporating 
new, high-level behaviours. 
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