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Abstract: There is a vital need for fast and accurate recognition of medicinal tablets and capsules.  Efforts to date have 
centered on automatic segmentation, color and shape identification.  Our system combines these with pre-
processing before imprint recognition.  Using the National Library of Medicine Pillbox database, regression 
analysis applied to automatic color and shape recognition allows for successful pill identification.  Measured 
errors for the subtasks of segmentation and color recognition for this database are 1.9% and 2.2%, 
respectively.  Imprint recognition with optical character recognition (OCR) is key to exact pill ID, but 
remains a challenging problem, therefore overall recognition accuracy is not yet known. 

1 INTRODUCTION 

Adverse reactions to both legally prescribed 
medications and illicit or abused pills are a present 
and growing problem (Moore et al., 2007). When 
patients are brought to medical facilities in a stupor 
or coma with unidentified pills, rapid pill 
identification can be lifesaving. Adverse reactions 
involving anti-hyperglycemic medications, 
anticoagulants, and narcotics are potentially life-
threatening, and all require their own particular care 
paths. Accordingly, automatic pill identification in 
emergency rooms and intensive care units could lead 
to better outcomes for these patients. Additionally, 
automatic pill identification would give police 
officers an efficient alternative to the current tedious 
method of entering each pill’s features into a 
database search and reduces user input errors on 
pills with many characters.  Furthermore, the manual 
method, although it has the accuracy of human 
characterized imprint, color, and shape, fails when 
healthcare workers and police officers find 
themselves in locations with no internet access. 
Thus, there is a widespread need for automatic pill 
identification. 

Recently, large commercial and government pill 
image databases have become available. These 
databases allow development and testing of pill 
identification programs. Among the very few works 

to appear in the literature, Lee et al. (2012) reported 
an identification accuracy of approximately 74%.  
Additionally, Hartl (2010) used the Studierstube ES 
framework for a mobile phone that focuses on speed. 
The accuracy and robustness of pill ID systems must 
be improved before pill identification systems can be 
utilized in the fields of healthcare and law 
enforcement. 

This report details a pilot system that uses novel 
segmentation, shape recognition, color, and optical 
character recognition methods—all applied to pill 
recognition. In this paper, our model system is the 
Pillbox database (U.S. National Library of Medicine, 
2012). The remainder of this article is organized in 
the following sections:  2) Automatic segmentation 
of pills from background, 3) Color identification, 4) 
Pill shape recognition, 5) Preliminary optical 
character recognition of imprint, 6) Results, and 7) 
Conclusions. 

2 SEGMENTATION OF PILLS 

The initial task in pill recognition is segmentation, 
i.e. separating Pillbox images into distinct pill and 
background regions (see Figure 1). This involves 
four steps: 1) Conversion of the captured pill’s 
image RGB color space into L*a*b* color space, 2) 
2D histogram generation along the L*-a* planes, 3) 
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Clustering via K-means++, and 4) Binary mask 
generation. 
 

 

 

 

Figure 1: Original pill image (left); Final binary image 
border mask using our segmentation algorithm (right). 

2.1 RGB Image Conversion to L*a*B* 
Space 

In the RGB color space, the color temperature of 
light and the demosaicing method affects the 
perceived color. Therefore, conversion from RGB to 
L*a*b* color space must be performed to reduce 
these interferences; this process is achieved through 
an intermediate color space, XYZ, described below. 

The pill color in the database image and that of 
the captured image are expected to be different in 
practice, since the camera or the illumination 
conditions for the two images are different, creating 
varying colors with no common reference point 
(Szeliski, 2011). The XYZ color space was created 
to model the response curve of the human eye, to be 
used as a common point of reference. By 
transforming a color represented by an RGB value to 
an XYZ value, two colors can be compared more 
easily because of this common reference. L*a*b* is 
a non-linear re-mapping of the XYZ color space 
“where differences in luminance or chrominance are 
more perceptually uniform” (Szeliski, 2011). 
 

 
Figure 2: Log of the original histogram. This image is the 
L*- a* histogram that has been modified by taking the 
log(1+histogramValue) for viewing. This is done to 
prevent the histogram image from being saturated when 
any particular histogram bin accumulates above 255. 

2.2 2D L*-a* Histogram Generation 

After converting to L*a*b* space, a two-
dimensional histogram using the L* and a* planes of 

the image is generated. (Figure 2) To generate the 
2D histogram, 256 linearly spaced bins ranging from 
0 to 255 for L*, and -127 to 128 for a*, were used 
along each axis. This results in a histogram that 
illustrates the number of pixels that have a particular 
(L*,a*) combination. 

2.3 K-Means++ Clustering 

Input images are assumed to contain a single pill on 
a homogenous background; as a result, two clusters 
in the L*-a* histogram are expected. Therefore, a 
partitioning technique to minimize the total of 
Euclidean distances with two defined cluster 
centroids is applied, known as K-means++ 
clustering. (Figure 3) A variation of the K-means++ 
algorithm is defined and then described below.   

During initialization, Arthur’s “D2 weighting” 
method is employed (Step A) as a more intelligent 
starting point of the two cluster centroids, instead of 
random center initializations (Arthur and 
Vassilvitskii, 2007). The algorithm then iterates 
through each point on the histogram and assigns it to 
the nearest cluster centroid (Step B) (Xu and 
Wunsch, 2005). Once each point is assigned, the 
centroids are recomputed based on newly assigned 
points (Step C). The point allocation and centroid 
recalculation of Steps B and C repeat until some 
termination condition is met (Step D). The clustering 
terminates when either 20 centroid recalculations 
have occurred or the centroids move less than 0.01 
spatial units.  
 
Steps A-D: 
A. Initialize clusters ܥଵ and ܥଶ, with centroids ߢଵ 

and ߢଶ respectively, based on K-means++ 
algorithm 
i. Choose an initial centroid, ߢଵ, uniformly at 

random from data set, ߯	߳	ℝ2 
ii. Let (ݔ)ܦ indicate the smallest distance from 

data point ݔ to the closest chosen centroid, ߢଵ. 
Choose the second centroid, ߢଶ, by selecting ܿଶ 	= 	 ∑߯ with probability ஽൫௫ᇲ൯మ	߳	ᇱݔ ஽(௫)మೣചഖ  

B. Assign each point in the data set to the nearest 
cluster centroid, i.e. 
for ݆ = 1,… ௝ݔ|| ଵ, ifߢ	߳	௝ݔ :ܰ, − ||ଵߢ < ௝ݔ|| −   ଶ, elseߢ	߳	௝ݔ ||ଶߢ

C. Recalculate the cluster centroids, ߢଵ and ߢଶ, 
based on the current point assignments 

D. Repeat Steps B, C until one of two termination 
conditions is reached: 

Automatic�Pill�Identification�from�Pillbox�Images

379



 

i. 20 centroid updates, or 
ii. Both centroids moved < .01 units in 256x256 

histogram space 

Because the K-means++ algorithm is sensitive to 
initialization, the entire clustering process is 
typically run multiple times. The “best” clustering 
result can then be chosen based on a compactness 
score (Equation 1), which is the total sum of squared 
error (SSE) for every point to its centroid. Real-time 
application is of importance here, so the K-means++ 
clustering is limited to three attempts. The clustering 
attempt with the lowest corresponding compactness 
is selected to generate the binary mask. 

The compactness score is shown by Equation 1 
(Itseez, 2012). 
 ෍ฮݔ௝ ,1}	߳	݅	݁ݎℎ݁ݓ		௜ฮଶߢ	− 2}ே

௝ୀଵ  (1)

 
Figure 3: Segmented histogram. This image shows how 
the histogram has been segmented into two clusters using 
the K-means++ algorithm. The red points are the centroids 
of each cluster. 

2.4 Binary Mask Generation 

Once the best clustering result is chosen, then the 
binary pill mask is generated. Previously, each pixel 
was assigned a label corresponding to its cluster. A 
blank binary image of identical size as the original is 
first created. The “background” cluster is then 
determined by finding the cluster that has the most 
member pixels contacting the image edge. This 
cluster’s pixels are assigned a value of 0 on the 
binary mask, while members of the second cluster, 
which theoretically correspond to the pill, are 
assigned a value of 1. The result is shown in Figure 
1. Note that this assumes that the image fully 
captures the pill. The binary pill mask is then used in 
further pill characterization steps. 

3 COLOR RECOGNITION 

Seven hundred forty-four images were gathered 
from the National Library of Medicine’s Pillbox 
website (http://pillbox.nlm.nih.gov) with both front 

and back views. These high-quality images were 
used as the basis to develop a method to recognize 
color. The idea of histogram vector multiplication as 
a method for object recognition (Gonzalez and 
Woods, 2008) led to investigation of a similar 
approach for color histograms. Initially, histograms 
previously used for pill segmentation based on XYZ 
and L*a*b* color spaces resulted in an accuracy of 
86.3% using logistic regression. Using the HSV 
color space which, like L*a*b*, represents luma and 
chroma separately, along with the captured pill’s 
image RGB values, resulted in an increase in color 
recognition to 98.1%.  

For each channel of the HSV color space, along 
with red, yellow, and blue chromaticities (See 
Equations 2-4, Table I, and Figures 4 and 5), 
histograms were calculated for every pill. All 
histograms consisted of 80 bins ranging from 0-360 
for Hue, 0-1 for Saturation, and 0-255 for Value and 
scaled chromaticity. 
 ܿோ = ܴܴ + ܩ +  ܤ

ܿ஻ = ܴܤ + ܩ +  ܤ

ܿ௒ = ܴ + ܴ)2ܩ + ܩ +  (ܤ

(2)
 
 
 

(3) 
 
 

(4)

Table 1: Histogram Channels. 

Orig. CR CB CY H S V 

     

 

 

Figure 4: Blue, red, yellow chromaticity histograms. 

To reduce the effects of pill imprints, a histogram 
filter was developed to remove small peaks. 

From the creation of six histograms for each pill, 
the pills were grouped according to each of the 
defined  pill  colors  (white,  yellow,   orange,   pink, 
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Figure 5: HSV histogram: Blue = H, Green = S. Red = V. 

blue, green, brown, red, purple, gray, and tan) and 
their respective histograms were averaged together. 

Determination of the color of a pill starts with 
using the pill segmentation mask to calculate the 
normalized histogram for the six channels. Each of 
the pill’s six histograms is then vector multiplied 
with its respective template histogram for each of 
the eleven predefined pill colors. For each color 
model, six scalar values resulting from the 
corresponding vector calculation are used as inputs 
into a logistic regression model.   

Logistic regression, or the logit model, is a 
statistical analysis method by which the probability 
of an event occurrence is calculated based on 
predictor variables fitted to a logistic function. The 
logistic function is defined as: 
௜ݖ  = ଴,௜ߚ +෍ ௡,௜௠௡ୀଵݔ௡,௜ߚ  (5)

௜݂(ݖ௜) = 	 ଵଵା௘ష೥೔   ,   ௜݂(ݖ௜) ∈ (0,1) 
Each of the ߚ௡,௜ coefficients is determined using 
maximum likelihood estimation and represents the 
weight of the predictor variable, xn. f(z) represents 
the probability of the outcome of any item and z 
represents the measure of the total contribution of all 
independent variables in the model (Menard, 2001). 

Here, ߚ଴,௜	is defined as the intercept for the ith 
defined color model, and βn,i as the regression 
coefficients of ith color model. The ߚᇱݏ were 
previously determined using a training set to create 
the logistic regression model for each of the defined 
colors. The variables xn,i are the histogram scalar 
values, which were previously described, for the ith 
color. Once the ௜݂ are calculated for each of the 11 
defined colors, recognition of a pill color 
corresponded to the color yielding the maximum	 ௜݂ . 

In the case of a capsule with two colors, the same 
technique is used, with each half of the pill 
processed individually. First, the minimum bounding 
rectangle of the pill’s segmentation mask is 
calculated. Next, the pill mask is cut in half along 

the major axis. The two masks are used to process 
the pill as previously discussed. 

4 SHAPE RECOGNITION 

Classifying shapes was found to be most promising 
when done using Hu invariant moments (Hu, 1962). 
There are seven Hu moments, each independent of 
rotation and scale. Using binomial regression 
methods similar to those in Section 3, shapes were 
matched using Hu moments. 

Difficulties in shape recognition were similar to 
those encountered in color recognition, namely that 
shapes are not always clearly defined, as is the case 
for numerous capsules and tablets. Our solution was 
to create an addition shape label that grouped 
together those similarly shaped pill to train our 
model to use this new label as a parameter to 
distinguish shapes. 

5 IMPRINT RECOGNITION 

The process of extracting imprint information from a 
pill is one which requires the consideration of 
several factors, including the luminance relationship 
between inscription and the pill. Once that 
information is known, two of four morphological 
operators are applied to the image before using an 
Optical Character Recognition (OCR) engine, 
Tesseract (Smith, 2012). Inaccuracies such as 
misplaced characters may sometimes occur. To 
compensate for this, a basic string matching 
algorithm is applied to the OCR output.  

5.1 Imprint Extraction 

Imprint extraction begins by determining pill color 
and luminance characteristics. First, if the capsule 
has two halves of different colors, the halves are 
processed separately. The half-capsule shape is 
automatically identified and separated into two 
pictures. Each picture includes each half capsule and 
therefore consists of two colors: one for the pill and 
one for the homogenous background, allowing the 
pictures to be processed in parallel. 

Once the area of interest is acquired, the color 
image is converted into a gray-scale image. 
Luminance information allows determination of 
whether the capsule is darker than the text or vice 
versa. The appropriate gray-scale morphological 
operators are then applied. 
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Depending on the relative luminance of the pill 
and text, two of four morphological operators are 
applied to the image (Equations 6-11). The Black 
Hat operator locates areas of an image that are 
darker than their surroundings (Figure 6a), whereas 
the Top Hat operator locates areas that are lighter 
than their surroundings (Figure 6b) (Gonzalez and 
Woods, 2008). Applying either dilation or erosion to 
the image before the Black Hat/Top Hat operator 
often improves OCR results. For dark text on a light 
pill, dilation is used; for light text on a dark pill, 
erosion is used. Previous work has shown that the 
number of dilation or erosion iterations affects the 
results on a pill-by-pill basis. After the appropriate 
operators are applied to a given image, it is passed to 
the OCR, where text extraction is attempted. 
 

Top Hat 
Black Hat 
Closing 
Opening 
Dilation 
Erosion 

݌ݐ = ܫ − ܫ) ∘ ܾ) ܾℎ = 	ܫ) ∙ 	ܾ) − ܣ ܫ ∙ ܤ = ⊕ܣ) ⊖(ܤ ܣ ܤ ∘ ܤ = ⊖ܣ) ⊕(ܤ ܣ	 ܤ ⊕ ܤ = ෠൯ܤ൫	|	ݖ} ∩ ܣ ≠ ܤ⊖ܣ {∅ = ௭(ܤ)|	ݖ} ⊆  {ܣ

(6)
(7)
(8)
(9)

(10)
(11)

 

      
Figure 6a: Pill requiring 

Black Hat operation. 
Figure 6b: Results of 
Black Hat operation. 

5.2 Integration of Tesseract  

Once a given image has been processed to 
emphasize the text on the pill, it is passed to an 
open-source character recognition engine known as 
Tesseract (Smith, 2012). Tesseract analyzes the 
image and returns the identified characters. 
Typically, the OCR output will contain some 
mistakes, as 100% accuracy is uncommon. A 
solution to this problem is approximate string 
matching with a limited vocabulary. Since only pills 
are considered in this project, the possibilities of text 
are limited to the imprints that are found on pills. As 
a result, it is possible to construct a dictionary that 
includes only the possible text outputs. By using 
dynamic programming to implement the edit 
distance match method (Apostolico & Galil, 1997), 
each OCR result can be compared to the dictionary 
entries. This method indicates which word in the 
dictionary is most similar to a given OCR output; 
essentially, it takes what may only be a partial match 

and finds the dictionary word that it most closely 
resembles. The next step in the previous example 
involves passing the image in Figure 6b to Tesseract. 
Due to the curvature of the pill, part of the text is 
missing and, as expected, the OCR returns only the 
partial match, “yVATSOi 3159.” However, by 
performing string matching with limited vocabulary, 
the correct imprint, “WATSON 3159,” is obtained. 

6 RESULTS 

The segmentation section of this algorithm was 
evaluated by comparing it to a set of ideal 
segmentation masks for 50 Pillbox images. By 
applying a threshold across the RGB planes and 
mathematically intersecting the results, an ideal pill 
mask was obtained for each pill image. Note that the 
“ideal” mask can easily be found in the Pillbox 
images because the background is uniformly black. 
A percentage error for the K-Means++ segmented 
images was found by locating all pixel locations 
where the two masks differed and dividing that 
value by the total non-zero pixels in the ideal mask. 
The algorithm’s average error was 4.05%, with a 
median error of 2.2% in the image set. 

In reference to color, our methods and images 
from the Pillbox database achieved a high level of 
accuracy based on using multiple color spaces and 
classification using logistic regression. In the 
situation that a color was asserted only when ݖ was 
greater than zero, probit regression accurately 
identified 95.8% of pills and logistic regression’s 
accuracy was as high as 96.8%. When z was less 
than zero, probit regression identified 96.6% correct 
while logistic regression showed 98% accuracy. 

With regard to pill shape, when ݖ was greater 
than zero, probit and logistic regression showed 
accuracies of 64.9% and 88.5%, respectively; when 
less than zero, probit and logistic regression showed 
accuracies of 65.5% and 90.9%, respectively.  

In terms of type of pill, capsule was matched 
with 98.9% accuracy and tablet at 99.6%. A negative 
factor contributing to this yield is that the “tablet” 
and “oval” shapes sometimes overlap. 

Considering imprint, the raw OCR output often 
contains words with several inaccuracies; ideally, 
these mistakes would simply be fixed by finding the 
dictionary word with the minimum number of edits 
between an OCR word and a dictionary word. If 
there are multiple dictionary words that yield the 
same number of minimum edits, the final output 
string will be incorrect. To quantify the results of the 
imprint extraction, the edit distance match method 
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was used to count the number of edits necessary for 
the final output string to be transformed into a 100% 
match. An average of 2.48 edits per sample was 
found to be necessary to have optimal results. 

7 CONCLUSIONS 

This report outlines a pill identification system that 
achieves a higher degree of automatic identification 
than previously reported. Further improvement is 
needed prior to practical application. 

7.1 More Image Testing 

Images in other databases, especially those taken in 
the field, have variable lighting and focus. It is likely 
that our successful segmentation accuracy, with a 
median error of 2.2%, will fail when algorithms are 
applied to other images. Other algorithms and 
additional color space dimensions such as the b* 
dimension in L*a*b* color space will be attempted. 

7.2 Color Recognition Improvements  

Color recognition accuracy measured by logistic 
regression, with a current error of 1.9%, is expected 
to fail with other images.  Future steps to improve 
color recognition are more image blurring, RGB 
histogram normalization before processing, and 
adding L*a*b* to the current list of channels. We 
will explore other adaptive methods to ensure that 
data is not lost in the averaging method. 

7.3 Shape Recognition Improvements  

A secondary problem concerns shape recognition. 
Of twelve shape types, the three most common are  
prevalent enough such that that uncommon shapes, 
e.g. teardrop or pentagonal shapes, are under-
selected. A special function for these uncommonly 
shaped pills is needed. 

7.4 Imprint Recognition Improvements 

The algorithm for imprint extraction that has been 
outlined suggests a two-part system. First, the image 
should be processed in order to improve raw OCR 
results. Secondly, the OCR output string should be 
analyzed to limit the final output to a finite 
vocabulary. Preliminary efforts have been 
inconclusive. The optimal number of mathematical 
morphology operations, such as repeated dilation or 
erosion to produce the best results for a given image, 

is not known.  This currently relies largely on human 
input. The techniques in string matching could also 
be improved in returning only the relevant 
information and excluding words of little value. 

7.5 Improvements for a Practical 
System  

Multiple challenges must be met to complete a 
working system. Fusion of the information from 
shape, color, and character determination will be 
needed. The images in the Pillbox database are of 
higher quality than can be obtained with a 
smartphone under real-life conditions.  Overcoming 
non-ideal lighting, irregular positioning, and limited 
resolution are additional challenges that must be met 
before a practical system is available for health and 
law enforcement. 

REFERENCES 

Apostolico, A., & Galil, Z. (1997). Pattern matching 
algorithms. Oxford: Oxford University Press, p. 123-
125. 

Arthur, D., & Vassilvitskii, S. (2007). K-means++: The 
Advantages of Careful Seeding. In Proceedings of the 
eighteenth annual ACM-SIAM symposium on Discrete 
algorithms, 1027-1035. 

Gonzalez, R. C., & Woods, R. E. (2008). Digital Image 
Processing (3rd ed.). New Jersey: Pearson Education.    

Hartl, A. (2010). Computer-Vision Based Pharmaceutical 
Pill Recognition on Mobile Phones. CESCG 14th 
Central European Seminar on Computer Graphics.  

Hu, M.-K. (1962). Visual pattern recognition by moment 
invariants.  IRE Transactions on Information Theory, 
8(2), p. 179-87. 

Itseez. (2012). OpenCV. Open Source Computer Vision 
Library. http://www.opencv.org 

Lee, Y., Park, U., Jain, A. K., & Lee, S. (2012). Pill-ID: 
Matching and retrieval of drug pill images. Pattern 
Recognition Letters, 33(7), p.904-910.  

Menard, S. (2001). Applied Logistic Regression (2nd ed.). 
Thousand Oaks: Sage Publications, Inc. 

Moore, T. J., Cohen, M. R., & Furberg, C. D. (2007). 
Serious adverse drug events reported to the Food and 
Drug Administration, 1998-2005. Archives of Internal 
Medicine, 167(16), 1752-9. 

Smith, R. (2012). Tesseract Code. http://code.google.com/ 
p/tesseract-ocr 

Szeliski, R. (2011). Computer Vision: Algorithms and 
Applications. New York: Springer.  

Umbaugh, S. E. (2011). Digital Image Processing and 
Analysis (2nd ed.). Boca Raton: CRC Press. 

United States National Library of Medicine. (2012). Pill 
Beta. National Institutes of Health.  

Xu, R., & Wunsch, D. (2005). Survey of clustering 

Automatic�Pill�Identification�from�Pillbox�Images

383



 

algorithms. IEEE Transactions on Neural Networks, 
16(3), 645-78.  

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

384


