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This paper presents a fast method for acquiring 3D models of unknown objects lying on a table, using a

single viewpoint. The proposed algorithm is able to reconstruct a full model using a single RGB + Depth
image, such as those provided by available low-cost range cameras. It estimates the hidden parts by
exploiting the geometrical properties of everyday objects, and combines depth and color information for a
better segmentation of the object of interest. A quantitative evaluation on a set of 12 common objects shows
that our approach is not only simple and effective, but also the reconstructed model is accurate enough for

tasks such as robotic grasping.

1 INTRODUCTION

The objective of this work is to acquire 3D models
of unknown objects lying on a table, using a single
viewpoint. This is of particular interest for
applications that have to deal with new objects
constantly, such as augmented reality or general-
purpose robotic manipulation, which is the context
of this paper (Figure 1). With the availability of
inexpensive RGB-Depth (RGB-D) cameras such as
the Microsoft Kinect (Microsoft, 2010), dense color
and depth information about the scene can be
acquired in real-time with a good precision at short
distances. Thus, a RGB-D image already contains a
lot of information, but a single image only provides
the geometry of the visible parts (Figure 2). Due to
self-occlusions, the hidden parts create empty gaps
that have to be estimated using a priori knowledge.

The literature on object reconstruction from
multiple views is large, but single view modeling
has received a significant interest only recently,
mostly motivated by robotic grasping applications.
A first category of methods assumes that the objects
to be modeled have a simple enough shape, and try
to fit a predefined set of shape primitives (Kuehnle et
al., 2008) (spheres, cylinders, cones or boxes) or a
combination of them (Miller and Allen, 2004). This
approach was made more general in other works
such as (Sun et al., 2011) and (Thomas et al., 2007)
by using a database of objects with known shapes
and a recognition module.
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Figure 1: Robotic platform which is the scenario of this
paper: (1) The Kinect camera is located on the side,
oriented to get a top view of the objects; (2) a 20-DoF,
five-fingers anthropomorphic hand from Shadow; (3) a 7-
DoF PA-10 arm.

Figure 2: Example of a point cloud from the Kinect
camera. Left: view of the visible parts from everyday
objects lying on a table. Right: same point cloud from top
view, where empty gaps belong to occluded parts.

When an extensive database of object models is not
available or practical, more generic a priori
assumptions are required. The most common one is
to rely on the symmetries of real-life objects (Thrun
and Wegbreit, 2005). The problem then becomes to
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find the nature of the symmetries in the partial point
cloud. These are hard to estimate in practice because
of the large search space and limited data, leading
e.g. to limit the set of hypotheses to a vertical plane
axis in a restricted range (Bohg et al., 2011), or to
focus on rotational symmetries (Marton et al., 2010).

Modeling 3D objects by symmetry is a common
approach because many objects are symmetric, but
also, a large class of everyday objects, especially
when manufactured, can be generated by extruding a
2D shape through an extrusion axis. The extrusion
process is widely used by designers and engineers to
generate 3D models from 2D sketch input. This
approach is particularly adapted to the fast
reconstruction of objects lying on a flat table, which
1S a common scenario in robotics, because the table
plane normal provides a natural extrusion axis. Thus,
this paper proposes to leverage this property by
reconstructing the hidden parts with an extrusion of
the top view of the objects.

The contributions of this paper are three-fold.
First, we propose a new technique to extrude an
initial sparse point cloud output by a tabletop object
detector. Second, we propose a refinement step that
takes advantage of the complementarity of the depth
and color images by carefully initializing a graph-cut
based color segmentation with the depth data.
Finally, a quantitative evaluation of the accuracy of
the reconstructed meshes is performed on a set of 12
common use objects, showing that its effectiveness
is comparable to the most recent approach using
symmetries (Bohg et al., 2011). Some preliminary
experiments for grasping applications are also
conducted using the OpenRAVE simulator
(Diankov, 2010).

2 GLOBAL OVERVIEW

For achieving our aim of the acquisition of 3D
models using a single RGB-D image, we propose an
algorithm which can be divided into two main
stages: computation of the initial volume (Section 3)
and its completion through color-based model
refinement (Section 4). These stages include several
steps which are illustrated in Figure 3.

In the first stage, a table-top object detector
identifies and extracts a cluster of 3D points
belonging to the object. Then, existing points are
extruded along the table plane normal to fill a
voxelized volume around the cluster of interest.
Object concavities may get filled during the
extrusion step, which we compensate by checking
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the voxel consistency against the depth image.

Depth images output by low-cost RGB-D
cameras are usually imprecise around the object
borders, and frequently have holes due to reflections
or other optical effects. Since the color image does
not suffer from these issues, in the second stage, we
refine the object boundaries using color
segmentation. The refined set of voxels is then given
as an input to the final meshing algorithm.

3 COMPUTATION OF THE
INITIAL VOLUME

3.1 Cluster Extraction

A table top object detector similar to (Rusu et al.,
2010) is run on the depth image. The dominant 3D
plane is first fitted to the depth data using RANSAC,
then points lying outside of a prism around the table
plane are eliminated. Remaining points are then
clustered using Euclidean - distances with fixed
thresholds. Clusters that are too small or do not
touch the table are eliminated. The cluster of interest
is then determined in a task-dependent way, e.g. by
choosing the most central one. To make 3D
processing faster and get a natural neighborhood
between 3D points, a voxelized volume of fixed size
is then initialized around the cluster, and the voxels
corresponding to a cluster point are labeled as
“object”. The voxel size is a user-defined parameter
depending on the desired precision/speed tradeoff.
All reconstructions shown in this paper are with
3mm voxels.

3.2 Voxel Filling by Extrusion

The objective of this step is to “fill” the occluded
parts by relying on the assumption that the object
can be approximated by an extrusion process.
Taking into account that the table plane normal
provides the natural extrusion axis for most objects,
it is not necessary to calculate the object axis to get
the extrusion direction. Instead, we consider the
table plane normal as the extrusion direction of the
top face of the object. The proposed algorithm is the
following:

1. For each voxel which is considered as “object”,
compute the line segment going from the voxel
to the plane along the plane normal.

2. Label all voxels intersecting a line segment as
“maybe object”.
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Figure 3: Overview of our model acquisition process. The Kinect camera provides a depth and color image, which are used
to obtain the initial volume. This stage includes three key points: table-top object detector, voxel filling by extrusion and
consistency check. The computed model is the input of the color-based refinement model stage.

The result of this step is a rough estimation of the
object volume. The model is then slightly smoothed
by running a morphological closing to cope with the
uncertainties around object borders in the depth
image. The optimal structuring element size depends
on the voxel size and the properties of the depth
data. For voxels of 3mm and a Kinect camera, we
empirically found that a 3x3x3 cube is a satisfying
structuring element. An example of output is given
in Figure 4.

3.3 Consistency Check

The extrusion step may fill regions of the object that
correspond to holes or concavities. This can be
corrected by checking the consistency of “maybe
object” voxels against the depth image. This is done
by reprojecting each voxel onto the depth image, and
comparing the projected depth with the depth image.

Figure 4: Voxel filling by extrusion. Left: raw point cloud
of'a box. Middle: voxelized mesh of the raw object cluster.
Right: voxelized mesh after extrusion towards the table
plane. Gray voxels correspond to unseen parts due to self-
occlusions.

If the difference is greater than a threshold 6d, the
voxel is labeled as “background”. The threshold
depends on the estimated accuracy of the depth
sensor, and is set to 3mm in all experiments with
Kinect. The output of this process is illustrated in
Figure 5.

4 COLOR-BASED MODEL
REFINEMENT

After the above steps, the obtained 3D object model
may still have missing parts and irregularities due to
missing or incorrect depth information in the RGB-
D frame. Incorrect pixels in the depth image usually
belong to object borders and areas of specular,
transparent or reflective objects. Observing that the
color image do not suffer from these issues, we
propose to improve the quality of the model by first
refining the object segmentation using the color
image and then filling-in incorrect depth values
using image inpainting.

4.1 Improvement of the Object
Segmentation

There are many existing techniques for color-based
segmentation, but this is still an open problem in the
general case. However, when a good initialization is
available, graph-based techmiques (Boykov and
Jolly, 2001) have proven very effective for
foreground/background segmentation (Lombaert et
al., 2005). In particular, the GrabCut variant (Rother
et al., 2004) combines graph cuts with Gaussian
mixture models and is designed to take advantage of
a user provided mask. It is thus particularly adapted
to the refinement of an initial segmentation.
Recently, GrabCut has been extended in the work
described in (Vaiapury et al., 2010) to use depth
information by combining the RGB and depth
channels with a weighting factor. Instead of merging
both information in a single energy, we propose to
run GrabCut only on the color image, but using
depth information for the initialization of an accurate
mask. This approach takes a greater advantage of the
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complementarity of the techniques, since the depth
image is misleading near the object borders, and the
color information is not necessary and more
sensitive to background clutter for the initial
segmentation. The initialization is thus taken from
the initial model output by the algorithm of Section
3 using depth information only, re-projecting every
3D point from the volume onto the depth image.
Then, pixels are labelled as object (foreground),
background or unknown (if their projected depth is
not consistent or they do not have depth
information). Taking this initialization as a starting
point, the mask is created. GrabCut can take four
different initialization values according to pixels
belong to foreground, background, most probably
foreground or background. Pixels which have been
considered as foreground and background will not
be changed by the algorithm and thus ensure a good
robustness to segmentation errors. To handle the
uncertainty associated to edge pixels in the depth
image, only pixels which are not on a boundary are
marked using those definitive labels. The GrabCut
algorithm on the color image is then run using the
computed mask for one iteration.

Thanks to the accuracy of the initial mask, Grab-
Cut performs well even if the object and the
background have a similar color distribution or if the
background is cluttered, as shown in Figure 6.

4.2 Hole Filling through Depth
Inpainting

The obtained object segmentation is accurate but
some pixels which have been classified as object
after the color refinement do not have depth. Most of
the hole filling methods use image interpolation or
inpainting techniques to fill up the remaining holes
using neighbouring pixels. Recently, to improve the
depth map output by Kinect, a cross-modal stereo
vision approach has been presented in (Chiu et al.,
2011). However, it does not benefit from a
foreground/background segmentation. Furthermore,
a hole-filling method using depth-based inpainting
for 3D video was proposed in (Oh et al., 2009).

Following this, image inpainting is proposed in
this work to fill missing depth values, but using the
segmentation mask to fill pixels with only
surrounding values of the same kind. Thus, object
holes are filled only with depth information coming
from the other "object" pixels and background holes
are filled only with depth coming from surrounding
"back-ground" values.
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Figure 5: Consistency check to carve holes and
concavities. Left: color image. Middle: colorized voxels
after extrusion. Right: remaining voxels after consistency
check. Holes and concavities that were wrongly filled by
the extrusion algorithm are removed if they are visible.

Figure 6: Snapshot of a refined object segmentation even
when the foreground is similar to background. Left: color
image, the object of interest is a storage jar on a color
poster. Middle: initial segmentation. Pixels are marked as:
unknown (black), object (white) and background (gray).
Right: final object segmentation, after Grabcut. Pixels are
marked as: object (white) and background (black).

The OpenCV implementation of Telea (Telea,
2004), a fast inpainting technique based on fast
marching, is the used method. It takes as input the
original depth image and an inpainting mask
specifying the pixels to be filled.

To fill the depth image, two masks are used
depending on the pixel class:

1. Object: the target area to be filled corresponds to
"object" pixels without depth value or with
inconsistent depth values determined in Section
4.1. Pixels which belong to background are also
marked as target area to prevent them from
influencing the inpainting.

2. Background: the target area corresponds to pixels
labeled as “background” without depth value.
Similarly to the previous case, "object" pixels are
also marked as target area.

Once the depth image has been refined and filled, the
algorithm of Section 3.3 is run again. The
improvement obtained after segmentation refinement



and depth inpainting is shown in Figure 7, filling
pixels without depth information and border pixels
whose depth was not correct. The final object model
is obtained using Poisson surface reconstruction
(Kazhdan et al., 2006) on the voxelized point cloud
to create a smooth mesh of the object.

5 EXPERIMENTS

5.1 Evaluation of the Accuracy of the
Reconstructed Mesh

+
D.aa

Figure 7: 2D images results of the color-based model
refinement using a book as illustrative example. Images
from the Kinect camera: (a) color image and (b) depth
image. (c) Initial segmentation re-projecting every 3D
point from the volume of Section 3.3. Pixels are marked
as: unknown (black), object (white) and background
(gray). (d) Final object segmentation after GrabCut
according to Section 4.1. Pixels are marked as: object
(white) and background (black). (e) Depth image after
hole filling through depth inpainting.

The proposed algorithm has been tested on a set of
12 real objects with very different sizes and shapes,
which are shown in Figure 8. For each of the object,
between 5 and 9 meshes have been acquired using
our algorithm in the scenario showed in Figure 1,
where the objects lie off the table in different
orientations and places. Therefore, the data set
contains 72 reconstructed models which have been
calculated from a single view of Kinect camera. For
the evaluation, the geometric difference between
reference and reconstructed meshes using our
proposed algorithm has been calculated. The
reference models have been acquired with a
commercial laser scanner.

The processing time of the whole algorithm is
currently less than 2 seconds on a 2Ghz computer

3D Object Reconstruction with a Single RGB-Depth Image

for a point cloud with less than 30000 points,
significantly improving computation time achieved
in (Bohg et al., 2011) with a similar number of
points. Although this computation time is suitable
for the current application, optimization is
considered as future work.

A free 3D mesh processing software, MeshLab
(MeshLab, 2011), has been used to compute the
geometric  difference between reference and
reconstructed 3D models which should be well
aligned in the same space. Iterated Closed Point
(ICP) is used to align the meshes and the Hausdorff
distance to measure the geometrical distance
between them.
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Figure 8: The 12 real objects of the database. For each
object, at least 5 images have been acquired from the
object in different orientations and places on the table.

Figure 9 shows the mean and the standard
deviation between reference and reconstructed
meshes for all objects. The average error for all
meshes is 3.87mm and the standard deviation is
0.96mm. Taking into account that the objects are
similar to the set used in (Bohg et al., 2011), our
extrusion approach provides a similar effectiveness
in comparison with earlier symmetry method and a
significant improvement for large objects. With our
method, the mean error is less than 5mm in all
objects, independently of their size while in (Bohg et
al., 2011) the average error is less than 7mm and
20mm for bigger objects.

It is important to note that the experimental
measurement gathered is statistically very rich in the
sense that each object image was captured in
different orientations and different locations on the
table, as it is shown in Figure 10. Such set takes into
consideration most of the possible sources of errors,
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Figure 9: Evaluation of the mean error and standard deviation between reference and reconstructed meshes for all objects of
the database. The mean error is less than Smm in all objects, being the average error less than 4mm.

such as hiding different geometric details, reflections
or other optical effects, which affect the obtained
results and increase the error.

Figure 11 shows as, due to the position of the
“pink handle” object, the error is lower when the
visible parts provide enough information to
approximate the geometry by an extrusion of its top-
view (Case 2 and 3), but the error increases when the
top-view is not very informative (Case 6).

Taking into account that the voxel size chosen in
this work is 3mm (Section 3.1) then it is fairly
obvious that we cannot obtain reconstructions with
errors less that the mentioned voxel value. This can
be seen in the table of the average errors of the
different objects, where only the Rubik’s cube
average error is 2,5mm while the rest are above
3mm. If more precision is required, we may scarify
the speed and improve the accuracy of the
reconstructed object models. This can be done if a
particular task requires it.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4
(e) Case 5 (f) Case 6 (g) Case 7 (h) Case 8

Figure 10: The “pink handle” object in the 8 evaluated
orientations on the table.
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Figure 11: Evaluation of the error for 8 orientations on the
table of the “pink handle” object, shown in the Figure 10.
Comparing to its reference model, the mean error is
4.09mm and the standard deviation is 1.49mm.

5.2 Model Reconstruction Results

Figure 12 shows some meshes acquired using our
algorithm for the tested set of 12 real objects. Figure
13 shows objects for which a very good model could
be obtained despite of a very sparse initial point
cloud. The quality of the top view is essential for the
approach, but it was made significantly more robust
thanks to the segmentation and depth filling steps.
Reconstruction is even possible in some cases where
almost no information was present in the original
image.

Figure 14 gives examples of objects which have
a geometry that cannot be roughly approximated by
an extrusion of their top-view. Note that even if the
obtained models are not wery accurate, useful
estimations for grasping are still obtained. Adding
another camera with a different point of view would
be enough to obtain a good model in these cases.
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5.3 Application to Grasping

Since grasping itself is not the main scope of this
paper, the suitability of the acquired meshes for
grasping has been tested on a single object as a
representative way. Both planning and grasping
experiments have been performed  within
OpenRAVE simulator (Diankov, 2010). It simulates
grasps in many positions to determine a set of stable
grasps for a given object, as illustrated in Figure 15.

(b)
Figure 14: Model reconstruction results of a camera on a
tripod (a) and a tennis ball (b). Left: color image. Middle:
initial cluster. Right: final mesh wusing Poisson
reconstruction.
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Figure 12: Model reconstruction results of the 12 real
objects of the database, shown in Figure 8.

Figure 15: Five grasps of the grasp table generated by
OpenRAVE for a pink handle whose mesh has been
generated using the proposed algorithm.

(b)

[ L

Figure 13: Model reconstruction results of a pencil holder

(a), a pink handle (b) and a camera (c). Left: color image.

Middle: initial point cloud (white points correspond to the

table). Right: final mesh using Poisson reconstruction. Figure 16: Simulated and real sequence of the trajectory
toward the selected grasping position, which has been
calculated off-line previously. Both planning and grasping
have been performed within OpenRAVE.
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Then it can be used for online path planning in a
given scene, where the object is recognized and its
pose estimated to perform the suitable grasp, which
has been calculated off-line previously.

Figure 16 shows the sequence of the trajectory in
simulation and on the real robot of our scenario
(Figure 1), suggesting that the acquired mesh is
suitable for grasping. A more exhaustive evaluation
of grasping from a single viewpoint in simulation
and on our robotic platform is considered as future
work.

6 DISCUSSION AND FUTURE
WORK

In this paper, a method that reconstructs a model of
everyday, man-made objects from a single view has
been proposed. We have validated the precision
evaluating the difference between the reference and
the reconstructed model for 12 real objects. The
average error for all meshes is less than 4mm and
the standard deviation is less than 1mm.
Furthermore, compared to earlier methods, our
approach provides 3D models improving run-times
significantly with a similar accuracy and even, a
significant improvement both in run-time and
accuracy for bigger objects.

Experimental results with different objects
demonstrate that the obtained models are precise
enough to compute reliable grasping points. Thus,
the current system is an easy and effective approach
but it has some limitations when objects have very
thin structures, or with objects whose top-view is not
very informative. However, thanks to the generality
of the proposed algorithm, this could be
compensated by adding more cameras as needed,
applying the same technique on each view and
finally merging the resulting voxels. Furthermore,
symmetry and extrusion could complement one
another.

In the future, to handle a wider range of objects,
rotational symmetries exploitation is planned
through the combination with techniques of shape
estimation such as the work described in (Marton et
al., 2010). Moreover, for manipulation applications,
the integration of single view estimation with the
incremental model refinements techniques of e.g.
(Krainin et al.,, 2010) and (Krainin et al., 2011)
would be interesting. Finally, the combination of this
approach with an online grasp planner is also
planned to enable fast online grasping and
manipulation of unknown objects.
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