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Abstract: This paper presents a method named Depth-Assisted Rectification of Patches (DARP), which exploits depth 
information available in RGB-D consumer devices to improve keypoint matching of perspectively distorted 
images. This is achieved by generating a projective rectification of a patch around the keypoint, which is 
normalized with respect to perspective distortions and scale. The DARP method runs in real-time and can be 
used with any local feature detector and descriptor. Evaluations with planar and non-planar scenes show that 
DARP can obtain better results than existing keypoint matching approaches in oblique poses. 

1 INTRODUCTION 

This paper introduces a novel technique for object 
detection and tracking named Depth-Assisted 
Rectification of Patches (DARP). The proposed 
technique can provide rotation, scale and perspective 
invariant features based on a patch rectification 
approach. The DARP method is designed to make 
use of RGB-D sensors, such as consumer devices 
like Microsoft Kinect, and exploit both image and 
depth data to improve feature detection and 
description. RGB-D sensors became in the last years 
a low cost consumer product of easy access to 
general users. The DARP technique uses the depth 
data provided by such sensors to estimate normals 
on the scene surface of 3D points that correspond to 
keypoints extracted from the RGB image. The depth 
data is also used together with the estimated normals 
to rectify patches around the keypoints with fixed 
size in camera coordinates. This contributes to 
remove perspective distortions caused by oblique 
poses and scale changes, and it shall be 
demonstrated that using the descriptors computed 
from the rectified patches for real-time keypoint 
matching can give improved results. 

Since perspective deformations can be 
approximated by affine transformations for small 
areas, affine invariant local features can be used to 
generate normalized patches (Mikolajczyk et al., 
2005). On the other hand, DARP can use local 

features that are, a priori, not affine and scale 
invariant, performing a posteriori projective 
rectification of the patches. The ASIFT method 
(Morel and Yu, 2009) obtains a higher number of 
matches from perspectively distorted images by 
generating several affine transformed versions of 
both images and then finding correspondences 
between them using SIFT. Alternatively, the DARP 
method is able to use solely the query and template 
images in order to match them. ASIFT also makes 
use of low-resolution versions of the affine 
transformed images in order to accelerate keypoint 
matching. Only the affine transforms that provide 
more matches are used to compare the images in 
their original resolution. The DARP technique is 
able to work directly with high resolution images, 
without needing to decrease their quality to achieve 
real-time keypoint matching. In (Koser and Koch, 
2007), MSER features are projectively rectified 
using Principal Component Analysis (PCA) and 
graphics hardware. However, it does not focus on 
real-time execution and it is designed to work with 
region detectors, while the DARP method works 
with keypoint detectors and computes rectified 
patches in real-time. Patch perspective rectification 
is also performed in (Del Bimbo et al., 2010), 
(Hinterstoisser et al., 2008), (Hinterstoisser et al., 
2009) and (Pagani and Stricker, 2009). These 
methods differ from DARP because they first 
estimate patch identity and coarse pose, and then 
refine the pose of the identified patch. In DARP, the 
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patches are first rectified in order to allow estimating 
their identity. In addition, these methods need to 
previously generate warped versions of the patch for 
being able to compute its rectification, while DARP 
can rectify a patch without such constraint. The 
methods described in (Eyjolfsdottir and Turk, 2011), 
(Kurz and Benhimane, 2011), (Wu et al., 2008) and 
(Yang et al., 2010) first projectively rectify the 
whole image and then detect invariant features on 
the normalized result, while the DARP method does 
the opposite. In addition, (Wu et al., 2008) is 
designed for offline 3D reconstruction, (Eyjolfsdottir 
and Turk, 2011), (Kurz and Benhimane, 2011) and 
(Yang et al., 2010) target only planar scenes and 
(Eyjolfsdottir and Turk, 2011) and (Kurz and 
Benhimane, 2011) require an inertial sensor. 
Concurrent with this research (Marcon et al., 2012) 
used an RGB-D sensor to perform patch rectification 
using PCA, followed by 2D Fourier-Mellin 
Transform for description. Nevertheless, the 
rectification algorithm applied is not clearly 
described, it is not evaluated under a real-time 
keypoint matching scenario and only planar scenes 
are used in the experiments. 

The contributions of this paper are: (1) patch 
rectification method that uses depth information to 
obtain a perspective and scale invariant 
representation of keypoints; (2) qualitative and 
quantitative evaluation of the technique, showing 
that it is suitable to both planar and non-planar 
scenes and provides good results in oblique poses; 
(3) runtime analysis of the method, which shows that 
it runs in real-time. 

This paper is organized as follows. Section 2 
describes each step of the DARP technique. Section 
3 discusses the results obtained with DARP and 
presents qualitative and quantitative evaluations with 
respect to keypoint matching quality and runtime 
performance. Conclusions and future work are 
detailed in Section 4. 

2 DEPTH-ASSISTED 
RECTIFICATION OF PATCHES 

In DARP, keypoints are extracted and their normal 
vectors on the scene surface are estimated using the 
depth image. Then, using depth and normal 
information, patches around the keypoints are 
rectified to a canonical view in order to remove 
perspective and scale distortions. For rotation 
invariance, the rectified patch orientation is 
computed using geometric moments. A descriptor 

for the rectified patch is computed using the 
assigned orientation. The query descriptors are 
matched with previously obtained template 
descriptors. Camera pose can then be estimated from 
the correspondences. Each step of the DARP method 
is detailed on the next subsections. 

2.1 Keypoint Detection 

Any keypoint detector can be used by DARP. Since 
the patch around the keypoint is normalized a 
posteriori with respect to perspective distortions and 
scale, the detector does not have to be affine or scale 
invariant and the use of a scale pyramid for the input 
image is not mandatory. In the current 
implementation, the DARP method uses FAST-9 
(Rosten and Drummond, 2006), since it presents a 
good tradeoff between efficiency and quality. The 
keypoints are detected using the original scale of the 
input image, without employing a scale pyramid. An 
initial set of features is detected on the input image 
and then ݊ points with best Harris response are 
selected. It was used a value of ݊ ൌ 230 in the 
conducted experiments. 

2.2 Normal Estimation 

From the query depth image, a 3D point cloud in 
camera coordinates can be computed for the scene. 
Considering a 3D point ࢓ࢇࢉࡹ ൌ ሾܯ௫,ܯ௬,ܯ௭ሿ் in 
camera coordinates, its 2D projection ࢓ ൌ
ሾ݉௫,݉௬, 1ሿ் is given by: 

࢓ ൌ ൥
௫݂ܯ௫ ௭ܯ ൅ ܿ௫⁄
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where ௫݂ and ௬݂ are the focal length in terms of pixel 
dimensions in the ݔ and ݕ direction respectively, ܿ௫ 
and ܿ௬ are the coordinates of the principal point and 
 ,is known as the intrinsic parameters matrix. Thus ܭ
rearranging the terms and considering ܯ௭ ൌ ݀, 
where ݀ is the depth of ࢓, the coordinates of ࢓ࢇࢉࡹ 
can be obtained by: 

࢓ࢇࢉࡹ ൌ ቎
ሺ݉௫ െ ܿ௫ሻ ∙ ݀ ௫݂⁄
ሺ݉௬ െ ܿ௬ሻ ∙ ݀ ௬݂⁄

݀
቏. (2)

Using this point cloud, a normal vector can be 
estimated for a 3D point ࢓ࢇࢉࡹ that corresponds to 
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an extracted 2D keypoint via PCA. The centroid ࡹഥ  
of all neighbour 3D points ࢏ࡹ within a radius of 
3 cm of ࢓ࢇࢉࡹ is computed. A covariance matrix is 
computed using ࢏ࡹ and ࡹഥ , and its eigenvectors 
ሼ࢜૚, ,૛࢜  ૜ሽ and corresponding eigenvalues࢜
ሼߣଵ, ,ଶߣ  ଷሽ are computed and ordered in ascendingߣ
order. The normal vector to the scene surface at 
 .૚ (Berkmann and Caelli, 1994)࢜ is given by ࢓ࢇࢉࡹ
If needed, ࢜૚ is flipped to point towards the viewing 
direction. Only the keypoints that have a valid 
normal are kept. 

2.3 Patch Rectification 

The next step consists in using the available 3D 
information to rectify a patch around each keypoint 
in order to remove perspective deformations. In 
addition, a scale normalized representation of the 
patch is obtained. This is done by computing a 
homography that transfers the patch to a canonical 
view, as illustrated in Figure 1. Given ࢔ ൌ
ሺ݊௫, ݊௬, ݊௭ሻ் as the unit normal vector in camera 
coordinates at ࢓ࢇࢉࡹ, which is the corresponding 3D 
point of a keypoint, two unit vectors ࢔૚ and ࢔૛ that 
define a plane with normal ࢔ can be obtained by: 

૚࢔ ൌ
ଵ

ฮሺ௡೥,଴,ି௡ೣሻ೅ฮ
∙ ሺ݊௭, 0, െ݊௫ሻ், (3)

 

૛࢔ ൌ ࢔ ൈ ૚. (4)࢔

This is valid because it is assumed that ݊௫ and ݊௭ are 
not equal to zero at the same time, since in this case 
the normal would be perpendicular to the viewing 
direction and the patch would be not visible. 

From ࢔ ,࢓ࢇࢉࡹ૚ and ࢔૛, it is possible to find the 
3D corners ࡹ૚, …, ࡹ૝ of the patch in the camera 
coordinate system. The patch size in camera 
coordinates should be fixed in order to allow scale 
invariance. The 2D corners ࢓૚, …, ࢓૝ of the patch 
to be rectified in image coordinates are the 
projection of the 3D points ࡹ૚, …, ࡹ૝, i.e., 
࢏࢓ ൌ  If the patch size in image coordinates is .࢏ࡹܭ
too small, the rectified patch will suffer degradation 
in image resolution, harming its description. This 
size is influenced by the location of the 3D point 
 is too far from the camera, the ࢓ࢇࢉࡹ e.g., if) ࢓ࢇࢉࡹ
patch size will be small). It is also directly 
proportional to the patch size in camera coordinates, 
which is determined by a constant factor ݇ applied 
to ࢔૚ and ࢔૛ as follows: ࢔૚′ ൌ ݇ ∙ ′૛࢔ ૚ and࢔ ൌ ݇ ∙
 ૛. The factor ݇ should be large enough to allow࢔
good scale invariance while being small enough to 
give distinctiveness to the patch. In the performed 
experiments, it was used ݇ ൌ  is the ݏ where ,ۂ2/ݏہ
size of the rectified patch (set to 31 in the tests). 

 

Figure 1: Patch rectification overview. ࡹ૚, …, ࡹ૝ are 
computed from ࢔ ,࢓ࢇࢉࡹ૚′ and ࢔૛′. An homography ࡴ is 
computed from the projections ࢓૚, …, ࢓૝ and the 
canonical corners ࢓૚′, …, ࢓૝′. 

The corners ࡹ૚, …, ࡹ૝ of the patch are given by: 

૚ࡹ ൌ ࢓ࢇࢉࡹ ൅ ′૚࢔ ൅ ૛′, (5)࢔
 

૛ࡹ ൌ ࢓ࢇࢉࡹ ൅ ′૚࢔ െ ૛′, (6)࢔
 

૜ࡹ ൌ ࢓ࢇࢉࡹ െ ′૚࢔ െ ૛′, (7)࢔
 

૝ࡹ ൌ ࢓ࢇࢉࡹ െ ′૚࢔ ൅ ૛′. (8)࢔

The corresponding corners ࢓૚′, …, ࢓૝′ of the patch 
in the canonical view are: 

′૚࢓ ൌ ሺݏ െ 1, 0ሻ், (9)
 

′૛࢓ ൌ ሺݏ െ 1, ݏ െ 1ሻ், (10)
 

′૜࢓ ൌ ሺ0, ݏ െ 1ሻ், (11)
 

′૝࢓ ൌ ሺ0, 0ሻ். (12)

From ࢓૚, …, ࢓૝ and ࢓૚′, …, ࢓૝′, it can be 
computed an homography ࡴ that takes points of the 
input image to points of the rectified patch. 

2.4 Orientation Estimation 

In order to achieve rotational invariance, patch 
orientation can be estimated based on the intensity 
centroid, which is computed from geometric 
moments (Rublee et al., 2011). Compared to 
gradient-based methods, the use of intensity centroid 
has the advantage of presenting a uniformly good 
orientation even under large image noise (Rublee et 
al., 2011), besides being fast to compute. 

2.5 Patch Description 

The same way DARP can use any keypoint detector, 
it is also possible to have any patch descriptor. In the 
current implementation, the Rotation-Aware BRIEF 
(rBRIEF) was used due to its good performance and 
simple rotational invariance treatment (Rublee et al., 
2011). The rBRIEF descriptor is based on binary 
tests over a smoothed patch, but with steered 
versions of the tests. Each steered pattern 
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corresponds to a discretized rotation angle applied to 
the coordinates of the binary tests. A lookup table of 
the steered patterns is created to speed up the 
matching process. In addition, a learning approach is 
used in order to obtain a good set of binary tests. At 
runtime, the steered version to be used for 
generating the descriptor is chosen based on the 
assigned orientation of the patch. DARP used 30 
distinct angles for the discretization. 

2.6 Descriptor Matching and Pose 
Estimation 

For descriptor matching, a nearest neighbour search 
is performed in order to find the corresponding 
template descriptor for each query descriptor. In the 
tests performed, a brute force search with Hamming 
distance was applied, where matches with a distance 
greater than 50 are discarded.  

Regarding pose estimation, if the objects present 
on the scene are planar, homography estimation can 
be used to compute their pose. If the scene is non-
planar, a Perspective–݊–Point (P݊P) method can be 
applied. In the experiments performed, planar 
objects pose were computed using homography 
estimation with the DLT method, while non-planar 
objects pose were estimated using the EP݊P method 
(Moreno-Noguer et al., 2007). In both cases, the 
RANSAC algorithm was applied for outliers 
removal. 

3 RESULTS 

In order to evaluate DARP, some image sequences 
from the publicly available University of 
Washington’s RGB-D Object Dataset (Lai et al., 
2011) were used and synthetic RGB-D images were 
also generated. All the experiments were performed 
with 640x480 images. The hardware used in the 
evaluation was a Microsoft Kinect for Xbox 360 and 
a laptop with Intel Core i7-3612QM @ 2.10GHz 
processor and 8GB RAM. 

The results obtained with DARP were compared 
with ORB (Rublee et al., 2011), since the current 
implementation of DARP performs keypoint 
detection, orientation assignment and patch 
description in a way similar to ORB. It should be 
noted that ORB uses an image pyramid with 5 levels 
and a scale factor of 1.2 in order to obtain scale 
invariance, while DARP does not make use of an 
image pyramid, since scale changes are inherently 
handled using the patch rectification process. ORB 
extracts 631 keypoints per image pyramid, 

distributed in the levels in ascending order as 
follows: 230, 160, 111, 77 and 53 keypoints. The 
DARP technique uses only the 230	keypoints 
extracted from the first level. Two images of the 
same object with different poses were matched using 
both techniques. Descriptor matching and pose 
estimation were performed using the same 
procedures for both DARP and ORB, as described in 
Subsection 2.6. 

3.1 Qualitative Evaluation 

Initially the tests were done with planar objects. It is 
shown in Figure 2 and Figure 4 the matches between 
the two instances of a planar object in the frames 
cereal_box_1_1_176 and cereal_box_1_1_208 from 
the University of Washington’s RGB-D Object 
Dataset. The 2D points that belong to the object 
model transformed by the homographies computed 
from the matches are shown in Figure 3 and Figure 
5. It can be noted that the DARP method provides 
better results than ORB when the object has an 
oblique pose with respect to the viewing direction. 
The matches obtained with ORB led to a wrong 
pose, while it was possible to estimate a reasonable 
pose using DARP, as evidenced by the transformed 
model points. 

 

Figure 2: Planar object keypoint matching using ORB 
finds 10 matches. 

 

Figure 3: Planar object pose estimation using ORB. 

 

Figure 4: Planar object keypoint matching using DARP 
finds 27 matches. 
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Figure 5: Planar object pose estimation using DARP. 

After, some tests were done with non-planar objects. 
In this case, Figure 8 illustrates the projection of a 
3D point cloud model of the object using the pose 
computed from the matches found by DARP shown 
in Figure 7. The frames from the University of 
Washington’s RGB-D Object Dataset used in this 
experiment are food_can_14_1_181 and 
food_can_14_1_197. DARP also obtained better 
results than ORB in the oblique pose scenario, since 
DARP provided matches that allowed computing the 
object pose, while ORB did not find any valid 
matches, as can be seen in Figure 6. 

 

Figure 6: Non-planar object keypoint matching using ORB 
finds 0 matches. 

 

Figure 7: Non-planar object keypoint matching using 
DARP finds 14 matches. 

 

Figure 8: Non-planar object pose estimation using DARP. 

 

3.2 Quantitative Evaluation 

Keypoint matching quality was evaluated by 
measuring the correctness of the poses estimated 
from the matches with a database of 280 synthetic 
RGB-D images of a planar object (a cereal box) 
under different viewpoints on a cluttered 
background. The poses were under a degree change 
range of ሾ0°, 70°ሿ with a 10° step and a scale range 
of ሾ1.0, 2.0ሿ with a 0.2 step. The percentage of 
correct poses estimated by each method was 
calculated. The pose was considered as correct only 
if the root-mean-square (RMS) reprojection error 
was below 3 pixels. Figure 9 shows that DARP 
outperformed ORB in larger viewpoint changes. 

 

Figure 9: Percentage of correct poses of ORB and DARP 
with respect to viewpoint change. 

3.3 Performance Analysis 

Table 1 presents the average time and the percentage 
of time required by each step of ORB and a non-
optimized implementation of the DARP method. It 
shows that the DARP method runs at ~36 fps and its 
most time demanding step is the normal estimation 
phase, which takes more than 50% of all processing 
time. The patch rectification step also heavily 
contributes to the final processing time. ORB takes 
more time than DARP for keypoint detection and 
patch description, since it uses an image pyramid 
and extracts a higher number of keypoints. ORB 
estimates patch orientation in a faster manner than 
DARP because it makes use of integral images in 
this step. DARP could be optimized to perform 
orientation estimation in the same way, but it would 
not represent a significant performance gain, as this 
step takes less than 1% of total processing time.
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Table 1: Average computation time and percentage for 
each step of ORB and DARP methods. 

 ORB DARP 

 ms % ms % 

Keypoint detection 16.11 80.89 2.63 9.40
Normal estimation – – 14.99 53.56
Patch rectification – – 8.40 30.01

Orientation estimation 0.14 0.71 0.20 0.72
Patch description 3.67 18.40 1.77 6.31

Total 19.92 100.00 27.99 100.00

4 CONCLUSIONS 

The DARP method has been introduced, which 
exploits depth information to improve keypoint 
matching. This is done by rectifying the patches 
using the 3D information in order to remove 
perspective distortions. The depth information is 
also used to obtain a scale invariant representation of 
the patches. It was shown that DARP can be used 
together with existing keypoint matching methods in 
order to help them to handle situations such as 
oblique poses with respect to the viewing direction. 
It supports both planar and non-planar objects and is 
able to run in real-time. 

As future work, tests with other keypoint 
detectors and patch descriptors will be done. 
Optimizations on normal estimation and patch 
rectification are also planned, since they showed to 
be the most time demanding steps of the technique. 
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