
Decision Models as Software Artifacts
Bridging the Business-Software Gap for Decision Support Systems

Armando Guarnaschelli1, Omar Chiotti2 and Héctor E. Salomone1
1INGAR, Instituto de Desarrollo y Diseño, CONICET-UTN, Avellaneda 3657, Santa Fe, Argentina

2CIDISI, R&D Information Systems Engineering Centre, FRSF-UTN, Lavaisse 610, Santa Fe, Argentina

Keywords: Model Driven Development, Decision Models, Service Oriented Architecture, Reference Modeling.

Abstract: In this work we introduce a methodology for integrating the development of decision models with model
driven software development approaches. This methodology captures the relationships between service
oriented architecture software models and decision models by deriving from a common reference model, the
data and conceptual elements of both types of models. Using this reference model and through successive
model transformations and refinements, the methodology delivers integrated models and implementation
models of software aimed to be more resilient to changes in business models. As all software artifacts are
connected through a unique reference model, the collaboration with business partners is enabled at all levels
by sharing or reusing existent reference models.

1 INTRODUCTION

Decision support community has produced along the
years a rich body of highly efficient models and
algorithms to solve relevant problems applicable to
almost any aspect of decision making. The evolution
of information systems towards complexity and
integration of processes, challenges the survival of
models and algorithms that were conceived and
designed in isolation of the business context and
software engineering considerations.

To unleash the full potential of model-based
decision making in the context of modern software
systems it is mandatory to create bridges among
decision support specialists and software engineers.
This integration can be facilitated by exploring the
interactions of business modeling, service-oriented
software development and Decision Problem (DP)
analysis.

In this paper, we discuss a methodology that
intents to make those interactions explicit and guide
the development of business solutions including DPs
all along its lifecycle. From the very early stages of
requirement analysis and business process modeling
to the final stages of deploying software integrated
to complex software systems. The methodology is
strongly based on service-oriented software
development methods in recognition to the unpaired
advantages this approach has to address the

requirements of current business information
systems.

From this well-established methodological
backbone, we have made an effort to extend the
main concepts behind SOA (Service Oriented
Architecture, (Papazoglou & Van Den Heuvel,
2007) development to strength the interactions with
business modeling and DP solving. A central idea is
to maintain an always traceable relation among the
software artifacts that are being generated and the
business model. This is enabled by prescribing the
specification of a unique reference model serving as
the single source for domain representation,
semantic interoperability and foundation of any
involved data model.

Another important aspect is the adoption of a
Model Driven Development (Hailpern & Tarr, 2006)
approach that prescribes the generation of models at
different stages of the development. These models
provide the anchors for the automatic generation of
the software artifacts required for the project by
means of model to model transformations and
eventually model to code transformations.

The methodology proposed in this work allows
capturing, guiding and in some cases automating the
reflection of changes at the business model into:
Decision Models, their solution methods and
strategies, as well as into Data models and software
services enacting the processes in the business

284 Guarnaschelli A., Chiotti O. and Salomone H..
Decision Models as Software Artifacts - Bridging the Business-Software Gap for Decision Support Systems.
DOI: 10.5220/0004282000860095
In Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems (ICORES-2013), pages 86-95
ISBN: 978-989-8565-40-2
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

model.
This characteristic is possible as this

methodology establishes the specification of
decision models and services independently of
solution and implementation strategies. This
contributes to bridging the business-software gap for
decision support systems.

2 METHODOLOGY ROADMAP

The proposed methodology is schematically
presented as a development roadmap in Figure 1 . It
consists in four modeling workflows: Business
Modeling, DP Modeling, Service Modeling and
Reference Modeling.

The starting point is the Business Modeling
workflow; its purpose is to produce a unified
business model that will drive the development of
every other workflow and becomes a permanent
consulting source of requirements, processes, goals
and objectives.

Reference Modeling is done throughout the
lifetime of the project in order to capture relevant
and essential domain elements used in every other
workflow and data model. It resorts to an abstract
and synthetic representation of the concepts in the
business model including relationships between
elements and possible constraints that validate
instances of them with respect to the business
context. Its purpose is twofold: First, it facilitates the
interaction of the resulting SOA based software
solution with existing systems, other enterprise
systems and with decision model languages (such as
GAMS (Brooke, Kendrick, Meeraus, & Raman,
2008), ILOG (IBM, 2011), etc.) and future systems
to be developed.

Second it serves as the conceptual base of the
project facilitating the communication between its
stakeholders: decision support specialists, business
analysts, potential users and software engineers.

In the DP Modeling workflow, the problem is
identified and specified in the context of the
business processes defined in the business model.

Figure 1: Methodology Roadmap.

Business
Modeling

Decision
Problem

Service
Modeling

Reference
Modeling

Definition Review

Domain Elements

Relationships

OCL Constraints

Identification Specification Realization

Identification Specification Realization Implementation

model model

Business model

Capability based
service model

Service
model

Implementation
model for services

B
u
sin

ess M
o
d
elin

g

results in

is refined into

is input of

transformation

TIMELINE

P
ro
b
lem

atic o
f a D

ecisio
n
 P
ro
b
lem

DP initial
description

CODE

Decision�Models�as�Software�Artifacts�-�Bridging�the�Business-Software�Gap�for�Decision�Support�Systems

285

This workflow considers both phases previous to
solve the DP (the data, resources and actors
involved) and post solving the DP (implementing
and using the results). The purpose of this workflow
is twofold: The first is obtaining a DP Specification
independent of the solution strategy. This allows
capturing every detail of the decision processes in
the context of the business and also reflecting future
changes in the business into decision processes and
models. Second the workflow finishes with a
solution strategy including the specification of a
decision model in the context of this solution
strategy (e.g. mathematical programming).

The Service Modeling workflow adapts
approaches for SOA modeling in order to match the
evolution of the DP Modeling workflow capturing
the intermediate models as appropriate software
artifacts.

DP and Service Modeling workflows have a
common structure composed by the phases of:
Identification, Specification, and Realization
(resulting in an implementation model for both DP
and services). The Implementation phase only
applies for Service Modeling as it implies defining
executable code for the SOA solution.

Several relationships are described in the
roadmap, for instance: results in implies the
activity/phase results into a software artifact (a
model), is refined into implies the source model is
refined into a richer model with increasing detail and
introducing new elements, is input of implies that the
source model is used to define the target model,
transformation implies a model transformation into
another model or code.

2.1 Business Modeling

Business modeling captures the vision and processes
that an organization holds and intends to realize. The
resulting models serve as the basis for the derivation
of all software artifacts in a software project.
Understanding the business means that software
engineers, decision support specialists, and every
stakeholder in a software project understand the
organization structure, dynamics, goals, etc. A
correctly built and specified business model
provides a source of consultation on all business
related issues during the software development
lifecycle. Additionally if business modeling is done
in conjunction with model driven development it
provides the benefit of a resilient software solution,
minimizing the effort to update software products
given a change in the business model.

Business modeling is composed by the activities
of business goals definition, business process
modeling, business rules identification and
requirements analysis. Following, these activities are
briefly described:

The definition of business goals encompass the
identification off all relevant goals of the business
and their modeling as a hierarchical three of sub-
goals and further refinement up to the definition of
measurable objectives. These business goals and
objectives must be related to one or more business
processes for allowing the definition of metrics that
measure the degree of goal fulfillment.

Business process modeling provides a detailed
description of the business processes and sub-
processes associated with a specific domain. The
model includes all the business processes that are
object of improvement and systematization and also
includes other related processes that are needed to
provide context and understanding of the business
structure and dynamics.

There are diverse graphical modeling languages
that can be used for business process modeling as
Unified Modeling Language (UML) activity
diagrams (OMG, 2010), Business Process Modeling
Notation (BPMN) (OMG, 2011) and flowcharting
among others. In this methodology we have chosen
BPMN because it provides a common process
description language that is both suitable for high-
level, business-oriented description of the processes
(as it is appealing for business analysts), and for
low-level specifications (as required by software
engineers).

2.2 Reference Modeling

The term reference model has been widely used in
information system literature mostly to denominate
any model which is used as a template to derive
enterprise specific models for a given business area.
A review of the usage of the term in the literature
can be found in (Thomas, 2005), where it is
characterized by its universality within a business
area and its reusability in different system
development projects.

In this software development methodology, the
building of a reference model is considered a crucial
step for integrating software designers and decision
support specialists. Every model (software model,
decision model, data model, etc.) will use a
reference model with a specific significance and
functionality as it serves to the following purposes:

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

286

• Semantic source: Every relevant concept
related to the business model is included as an
element in the reference model or can be defined by
a valid combination of reference model elements.
All meta-models in this methodology relate to the
reference model by referencing a generic entity
called DomainElement, which imply in general
terms to any entity of the reference model.

• Foundation for the service data model. All
messages exchanged among service providers and
consumers are defined using reference model
elements and the resulting data model constitutes the
communication schema of the final SOA solution
obtained. This schema is expressed using XML
schema definition language (W3C, 2004).

• Basis to define the enterprise ontology when
additional reasoning about the concepts of the
reference model is required.

• Facilitating interoperability between business
partners. Two business partners engaged in business
collaboration will reduce their semantic
interoperability problems by generating the
reference model for the collaboration and addressing
interoperability only at this level. This is possible
due to the fact that a valid reference model must be
able to represent every domain element used in the
context of the business and as a consequence, every
data element in any related system can be
represented as a combination of reference model
elements. Communicating two business related
systems reduces to agree to use the same Reference
Model.

To build a Reference Model UML class
diagrams are proposed. Classes represent conceptual
elements and their attributes help to specify a
particular instance of a concept. Relationships
between classes model relationships between
concepts. Constraints that ensure valid reference
model elements and instances should be expressed
using OCL (OMG, 2010) which is a widely used
semi-formal constraint language.

2.3 DP Modeling

As a guiding development principle for this phase,
the identification and specification of the DP should
be as rich as possible, and postpone the
considerations about the solution strategies available
and choice of reliable algorithms for the Realization
phase. This strong separation between DP
specification and how it is going to be solved
reinforces the philosophy of this methodology which
is to tighten the business solution (including the
decision models) to the business model.

2.3.1 DP Identification

In organizational or inter-organizational business
processes many decisions are taken either using an
automated mechanism or by a manual tasks. In some
cases the evaluation of the possible alternatives with
respect to business goals and objectives can become
both difficult and relevant enough to constitute a DP
requiring a decision model for representation and
solution. This methodology proposes to identify and
put DPs in the context of the business model relating
them to specific elements of the processes executed.

In general terms, any DP is composed by a set
(finite or infinite) of alternatives (sometimes also
called potential actions) and a set of one or more
criteria (objectives) used to evaluate and compare
alternatives (Figueira, Greco, Ehrogott, & Roy,
2005).

Within a business process a DP arises from two
sources: workflow decisions and decision tasks.

A workflow decision determines the execution
path to be followed in the process. If such decision
needs to be evaluated against business goals and
objectives and this evaluation is complex enough,
the workflow decision determines a DP. Every
alternative in this DP is an execution alternative for
the business process. An example of a workflow
decisions is the evaluation of a loan in a financial
business process, whether the loan is granted or not
different paths take place. If that evaluation is
complex enough it may determine a loan grant DP.

Decision tasks are those that imply the
achievement of a set of objectives with given
characteristics or satisfying certain constraints and
also may include the search for the right executors
and the definition of a right course of actions. Every
decision task intrinsically determines a DP. This
work focuses only in those decision tasks requiring
the formulation and solution of a decision model for
their accomplishment. Examples of decision tasks
are: Defining a production schedule, determining the
optimal routes for a distribution company, and
similar decisions.

In this phase of the DP workflow a DP is
identified within a business process together with an
initial description of alternatives and objectives
derived from the business model as described in
Figure 2. Every DP has a Problematic view referring
to the way a decision model for the problem and
feasible solutions should be built.

Problematic answers questions such: as in what
terms should the problem be posed? What is the type
of solution required?

Decision�Models�as�Software�Artifacts�-�Bridging�the�Business-Software�Gap�for�Decision�Support�Systems

287

Figure 2: DP Identification.

How do the stakeholders see themselves with respect
to the decision process? What kind of procedure
seems the most appropriate for exploring the set of
alternatives?

This methodology proposes to extend the
problematic view to both DP identification and
service identification workflows. Thus, the previous
questions must be addressed in the context of the
business process where the problem arises,
including: who are the actors? And, what are the
roles they play? How is the solution expected to be
implemented in the business process and by which
possible services people or processes.

Once a DP is identified and described, the next
step obtaining a specification model. In the
following section we propose a meta-model for that
purpose.

2.3.2 DP Specification

In order to relate DPs to the business process they
help to enact we have developed a meta-model
consisting of a set of elements that allows specifying
any DP in a high level of abstraction (Figure 3).

By adopting the specification meta-model, a DP
specification results in a Decision Model that is
composed by four main types of objects: Variables,
Parameters, Functional Relations (between
variables and parameters) and Algorithms that
calculate functions required to describe the decision
model.

This specification is intended to be independent
of a solution strategy, and therefore the classes
representing functional relations, variables and
parameters should be instanced trying to represent
the identified DP in a rich and expressive fashion
without coupling to any solution paradigm

The concept of Functional Relation is extended
by the concept of Constraint and Objective Function
as these concepts are of common use when
developing decision models. It is also extended to
the concept of Function which might have an

algebraic representation or require an algorithm for
their calculation.

In a DP specification model, modeling and
instance parameters can be used. Modeling
Parameters are used to shape the structure of a
model, e.g. a tolerance. Instance Parameters are the
input data for the DP specification, e.g.: a forecasted
demand in a production planning model. Instance
parameters can be deterministic or non-deterministic
(its variability should be considered).

Variables defined in this phase will not include
specific variables related to a modeling technique.
The same applies for the functional relations
defined. For example, if the decision model requires
constraints, the decision support specialists should
not limit themselves to algebraic inequalities and
equalities (the structure of a mathematical program),
but should be able to define constraints such as:

if(tasks a and b is assigned to resource r)

then {
[a precedes b ↔endTime(a)≤startTime(b)]

or[b precedes a ↔ endTime(b)≤startTime(a)]
}

(1)

In constraint (1) the consequences of an assignment
of tasks to a single resources is modeled. This
example could be transformed in the following
phase of the workflow DP Realization into a
mathematical programming formulation with valid
Big-M relaxations, or to a constraint programming
formalism, etc. But strategically in this stage it is
expressed in the natural way in which the constraint
arises without coupling to the limitations of a
solution technique.

It is relevant to analyze this example backwards,
as relevant domain elements arise in its description,
such as tasks having start and end times, resources,
and the assignment relationship between tasks and
resources. This clearly determines alternatives that
belong to the previous identification phase, and
domain elements that belong to the reference model.

The output of this phase will be a decision model
uncoupled from a specific representation technique
(mathematical programming, influence diagrams,
simulation models for decision support, etc.) Many
times a DP representation technique is both
benefited and limited by a set of solution algorithms;
this phase should capture a specification without
these limitations. Without coupling does not mean
the users are unable to use them, instead users
should use all representation artifacts in their reach
to better represent the DP.

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

288

Figure 3: Methodology Roadmap.

The stronger the effort in characterizing the DP
without coupling it to a specific representation, but
relating it to alternatives and goals of a business
model, the stronger the adherence to business
requirements the business solution will have.

Traceability from the identified DP to the DP
specification is required. It can be accomplished by
exploiting the relationships in Figure 4. DP
Alternatives express the alternative in terms of
reference model elements (Domain Elements), and
the relationship with variables in the specification
model is captured by Alternative Definition objects
that express the alternative in terms of reference
model elements (domain elements) and hold a
mapping with variables in the specification model.
This allows a refinement on the representation of
alternatives, because usually alternatives cannot be
mapped directly to variables. Moreover, to represent
an alternative, many variables may be required. For
example a route in a logistic problem may be
represented by a set of nodes and for each node a
variable is required, therefore for this alternative (the
route) a set of variables is required.

2.3.3 Decision Problem Realization

The design of a solution to the specified decision
model representing a DP is captured in a DP
Realization model.

In order to obtain such model, decision support
specialists will explore the technical feasibility of
different techniques to formulate and solve decision
problems. It is in this realization phase where
decision support specialists need to evaluate
different algorithms and modeling languages and
solver engines available for the solution strategy
defined.

According to the DP Specification model, that is,
the type of functional relations, variables, objective
functions and constraints, the correct technique or

combinations of techniques will be chosen.
The tasks involved in this realization phase

encompass the tasks defined in the phases of design
and choice in the Simon´s approach to rational
decision making (Simon, 1977). In the design phase,
alternative solutions to the problem are developed
and explored and in the choice phase, a course of
action is selected. The requirement for this phase is
to obtain a solution that satisfies a realization
contract between the DP specification and
realization models as shown in Figure 5. The
requirements for this contract are of two types,
contractual and operational.

Contractually a realization model has to be able
to fulfill as good as possible with the specification of
the DP considering its variables, functional
relationships and objectives. During the formulation
of a realization model the problematic aspects of the
DP should be revised as they affect the feasibility of
implementing the obtained solution in the context of
the business processes.

The realization contract has to establish a well-
defined link with the specified DP. Decision support
specialists should document how specified variables,
constraints and objectives are maped to the
realization model. Every aspect of the realization
model referring to business related concepts should
be included in the specification model before its
usage in the realization model. The realization
model may introduce its own related concepts as
needed by the solution strategy but they should be
clearly differentiated from the former ones.

Operationally in the specification phase of the
DP and services (depicted in the following sections)
it is established that parameters and the solution of
the DP and messages of the service model should be
expressed using reference model elements. For that
purpose an automatic transformation engine that
translates the DP specified parameters and solution
to the realization model parameters and solution

Decision�Models�as�Software�Artifacts�-�Bridging�the�Business-Software�Gap�for�Decision�Support�Systems

289

should be built. From the point of view of decision
support specialists it means that the parameters
needed to solve the realization model should be built
using combinations and transformations of
Reference Model elements.

Figure 4: Traceability of a DP from Identification to
Specification.

Figure 5: DP Realization Contract.

The automatic transformation engine will realize the
one to one relationships between the data artifacts of
both specification model (as required to be used by
the business model) and realization model (as
required to for the realization model to be solved).

2.4 Services Modeling

The main output of this phase is a model that
specifies all the potential services needed to enact
the business process in coordination with the
decision model identified and specified previously.
To define this model we resort to the SOAML
(OMG, 2009) modeling language, in which
Capability is the main concept used to identify
potential services, and serves as container for
Operations that can be seen as related functions.

For this phase, SOAML supports many
identification and development techniques; however
this work proposes an explicit link between every
capability and some aspect of the business model or
the decision model (DP specification model) that can
be labeled as the “source” for that capability.
Therefore the concept Capability Identification
Source is introduced. This source can be either a
specific BPMN element of the business process or
elements of the DP specification model. The
introduction of this dependency has the purpose of
ensuring future developed services can be traced
back to either a function needed by the execution of
a business process or the solution of a DP.
Capabilities also may be related to one specific
participant in a collaborative process, in Figure 6
represented by a pool in such case the capability will
hold operations able to execute every task and
activity (sub-process) the participant performs in the
business process. A capability can also be related to
one specific role/resource, in Figure 6 represented
by a Lane, in such case the capability belongs to a
participant in the business process but defines the
operations related to the role the participant assumes
in a section of the business process. For example a
planner participant in a production system may take
the role of forecasting demand and the role of
creating a production schedule, and SOA designers
may choose to provide different capabilities for both
functionalities. These aspects are shown in the
Service Identification Meta-model shown in Figure
6. On the left of the figure Business process related
capabilities are identified and on the right DP related
capabilities.

Figure 6: Service Identification Meta-model.

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

290

Figure 7: Service Specification Meta-model.

Figure 8: Service Realization Meta-model.

In this phase the problematic aspects identified
in DP Identification must be reflected on the choice
of the capabilities and operations needed to realize
the business processes in the business model. The
result of this phase is a typed initial service model
represented by Business Process and DP related
capabilities and a possible initial services
architecture.

2.4.1 Service Specification

SOAML provides all the needed conceptual
elements to specify a service. This is done by
defining service interfaces (including operations,
protocols, usage contracts), their realizations
(exposed interfaces), and the request of other
services, depicted as usage relationships.

Every service operation requires parameters for
its execution. Instead of using a set of parameters for
accessing an operation, this methodology proposes a
document centric approach, in which each operation
is associated with one single message with a
document attached containing all the required data
defined in compliance and derived from the
reference model.

In Figure 7 these concepts are organized into the
Service Specification meta-model. Although the

concepts in this figure apply to any capability in the
SOA solution, we only depict those capabilities
related to the decision model functions.

Every message is defined within a
ServiceDataModel package, which contains all
messages in a service solution. This package is
defined using the reference model. A service data
model establishes the subset of ReferenceModel
domain elements, and their relationships, required to
be able to define every message in the service
solution.

Protocols define the interaction between the
service and its consumers. Protocols can be defined
using UML interaction diagrams, that later can be
transformed into a service choreography (artifact to
define a collaboration between different services) or
into a service orchestration (artifact to define
internal interaction of a compound service).

An emphasis should be made in order to make an
explicit relationship between the DP specification
model and the service model. Parameters in a DP
(Figure 3) are captured in the service specification
model as well but they are hold by one or more
messages of the ServiceDataModel. Every parameter
of the specified decision model must have a
parameter definition built up with reference model
elements.

Decision�Models�as�Software�Artifacts�-�Bridging�the�Business-Software�Gap�for�Decision�Support�Systems

291

2.4.2 Service Realization

In this phase software developers need to take
decisions to answer questions such as: which service
providers will provide which services? How services
operations will be implemented determining the
internal behavior of a service? How services
providers will be assembled to constitute
participants in the business process enactment by
services? How service channels, to provide
communication between participants will be
realized?

After answering all these questions the SOA
solution is ready for its implementation. Many
authors have dealt on how to anwer these questions
properly (Bercovici, Fournier, & Wecker, 2008;
Flaxer & Anil, 2004).

In Figure 8 we provide a meta-model for the
realization and composition of services regarding to
the objectives of this methodology. We propose that
SOA participants be always related to one Swimlane
which could be either a lane (a role of a participant
in BPMN business process) or a pool (a participant
in a BPMN business process). Each SOA
Participant will assemble a set of services and will
provide the corresponding ports to listen the request
for its services. In this way, the business process will
be realized by a set of SOAML participants (service
providers) through their interactions. The flow of
messages in the business process is realized by the
exchange of messages in the service interfaces
exposed by the participants. There is not a one to
one relationship between a SOAML participants and
business process participants because to provide the
functionality of a BPMN participant one or more
SOAML participants can be required. The
abstraction provided by the concept of participant,
allows the enactment of the business process
regardless of the actual implementation of the
service, which can in practice be deployed across
multiple enterprises, via web services, or within a
given single enterprise service bus (the
communication channel within an enterprise).

In particular reference to the implementation of
the service for supporting the realization strategy for
the decision model, Figure 8 shows the Solver
Engine as a participant offering the service to solve
the decision model.

3 VALIDATION

The methodology presented here was applied and
validated in the development of a software system

for collaborative management of disruptive events in
supply chains. This project, used as a case study,
included the definition of a complete new business
process conceived to be executed collaboratively by
independent supply chain partners with the intention
of providing system support for companies willing
to engage in collaboration agreements for
controlling the execution of their supply processes.

As result of the business model analysis, the
collaborative management of disruptive events in a
supply chain was modeled as a collaborative
business process that specifies a set of decision
making activities that require complex models to
systematize the capture of information about internal
and external changes, the prediction of disruptive
events that can affect the schedule execution, and the
activities of feasibility checking and schedule repair
considering the distributed nature of a supply chain.

The resulting business solution consisted in a
service-oriented information system where standard
SOAML techniques were applied following the
guidelines of the methodology of this work in order
to derive the architecture, define the services
interfaces, the service data models and the
choreographies representing the collaborations.

The proposed reference model accomplished the
description of the problem information in a very
high level of abstraction and therefore is applicable
to a wide range of supply chain processes, from
procurement, manufacturing, distribution, and
retailing domains.

In particular, the reference model proposed has
the characteristic of providing self-contained
descriptions of the information required for the
decision making activities involved in the business
process. This feature enables the possibility of
automating the generation of decision models
expressed in standard representations for decision
making tools (as mathematical programming solvers
or inference engines)

The details of the case study describing the
business process, the reference model and other
artifacts produced as the result of each phase can be
found in (Guarnaschelli, Fernandez, Chiotti, &
Salomone, 2012).

4 CONCLUSIONS

The methodology proposes to identify a DP starting
from the context of an enterprise business model,
specifically where it arises, in the enterprise business
processes. Current DP and modeling practices tend
to formulate decision models to solve DPs without

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

292

prescribing an explicit link between model
formulation and the enterprise business model. It
also formally preserves these relationships for
tracing purposes all along the development life
cycle. By ensuring a well-defined link between the
business model and the solved DP, more reliable and
usable Decision Support Systems can be obtained.
This is possible because the link obligates to
consider the context of the decision which is
composed by people, resources, data sources,
workflows, goals, business rules, etc. The risk of not
making this explicit link is that even a good solution
for the DP fails at its insertion in the business.

In current practice, the model formulation is
generally biased by the modeling and solution
paradigm chosen for the formulation (e.g.
mathematical programming models). The adoption
of a particular paradigm normally forces to make
some strong hypothesis about the DP (e.g. avoiding
nonlinear constraints, hypothesis on unknown but
required probability distributions, among others). As
a result, a premature abstraction of the DP normally
takes place with the risk that the models obtained do
not represent correctly the actual problem by
accepting limitations or formulating assumptions
without enough business information. In the
proposed methodology, the identification and
specification of the DPs are conducted
independently from a solution or formulation
paradigm using a general meta-model.

Sometimes the lack of a unified data sources and
models results in the introduction of concepts and
entities for the DP formulation and solution without
connection to the business process, where messages
are exchanged between participants and software
systems that might not have a close and easily to
capture relationship with DP concepts and entities.
As a consequence a misalignment between the
required data to solve the DP and the existent data
exchanged in messages in the business processes
arises, causing implementation and integration
problems both at the syntactic and semantic level.
The methodology proposes that once a solution
paradigm is finally adopted, its formulation relies
always on combining existent elements in the
reference model, avoiding the aforementioned
misalignment.

ACKNOWLEDGEMENTS

This work is partially supported by Consejo
Nacional de Investigaciones Científicas y Técnicas
(CONICET) and Agencia Nacional de Promoción

Científica y Técnica (ANPCyT).

REFERENCES

Bercovici, A., Fournier, F., & Wecker, A. (2008). From
Business Architecture to SOA Realization Using
MDD. In I. Schieferdecker & A. Hartman (Eds.),
Model Driven Architecture – Foundations and
Applications (Vol. 5095, pp. 381-392): Springer Berlin
/ Heidelberg.

Brooke, A., Kendrick, D., Meeraus, A., & Raman, R. (
2008). GAMS User Guide

Figueira, J., Greco, S., Ehrogott, M., & Roy, B. (2005).
Paradigms and Challenges Multiple Criteria Decision
Analysis: State of the Art Surveys (Vol. 78, pp. 3-24):
Springer New York.

Flaxer, D., & Anil, N. (2004, 15 Sept. 2004). Realizing
business components, business operations and
business services. Paper presented at the E-Commerce
Technology for Dynamic E-Business, 2004. .

Guarnaschelli, A., Fernandez, E., Chiotti, O., & Salomone,
H. E. (2012). A service-oriented approach to
collaborative management of disruptive events in
supply chains. International Journal of Innovative
Computing, Information and Control, 8(7 B), 5341-
5368.

Hailpern, B., & Tarr, P. (2006). Model-driven
development: the good, the bad, and the ugly. IBM
Syst. J., 45(3), 451-461.

IBM. (2011). IBM ILOG CPLEX Optimization Studio.
from http://www-01.ibm.com/software/integration/
optimization/cplex-optimization-studio/

OMG. (2009). Object Management Group - SoaML
Version 1.0 - Beta 2. from
http://www.omg.org/spec/SoaML/1.0/Beta2/PDF

OMG. (2010). Object Management Group, Unified
Modeling Language (UML) 2.3. from
http://www.omg.org/spec/UML/2.3

OMG. (2011). Object Management Group , Business
Process Model and Notation (BPMN) 2.0 from
http://www.omg.org/spec/BPMN/Current

Papazoglou, M. P., & Van Den Heuvel, W. J. (2007).
Service oriented architectures: Approaches,
technologies and research issues. VLDB Journal,
16(3), 389-415.

Simon, H. A. (1977). The New Science of Management
Decision: Prentice Hall PTR.

Thomas, O. (2005, September 5, 2005). Understanding the
Term Reference Model in Information Systems
Research. Paper presented at the Business Process
Management Workshops, Nancy, France.

W3C. (2004). XML Schema Part 0: Primer Second
Edition. from http://www.w3.org/TR/2004/REC-
xmlschema-0-20041028/

Decision�Models�as�Software�Artifacts�-�Bridging�the�Business-Software�Gap�for�Decision�Support�Systems

293

