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Abstract: In this paper we present a method to compute the Euler charactexjstiod the genus of a volume dataset. It
uses an alternative decomposition model to represent binary volume datasets: the Compact Union of Disjoint
Boxes (CUDB). The method is derived from the classical method used with a voxel model and the computation
of x and the genus is achieved by analyzing the connectivity among boxes and using a CUDB connected-
component labeling process. We have tested our method both with phantom and real datasets and we show
that it is more efficient than previous methods based on the voxel model, and other alternative models.

1 INTRODUCTION 2 BACKGROUND AND RELATED

_ o WORK
The measurement of the topological characteristics of
an object such as its number of connected componentsy binary volume model is a union of voxels with val-

and cavities or its genus is a useful tool in many ap- 65 resricted to 0 (background) and 1 (foreground).
plications. For instance, the genus is related 0 the £qreqround voxels correspond to the interior of the
connectivity and is used to measure the strength Ofobject and background voxels the exterior. Three
bones (osteoporosis) or the quality of the biomateri- g5 of adjacency relations are defined between vox-
als designed to repair them. _ els: 6, 18 and 26-adjacency. Two voxels are 6-
The main contribution of this paper is amethod 10 ,jacent if they share a face, 18-adjacent if they share

compute the Euler characteristig,and the genus of 6446 or a face, and 26-adjacentif they share at least
binary volume datasets as well as of pseudo-manifold 5 | ortex (see Figure 1). An adjacency pait t) de-

orthogonal polyhedra (OP) without voxelizing them, fines the adjacency of a binary volume dataset, mean-

or converting them to a homotopic manifold ana- j,q that the foreground is+adjacent and background
log. The binary volume dataset is represented with ;¢ n-adjacent. Using some adjacency pairs leads to

an alternative model, the Compact Union of Disjoint 4.4 46xes making the choice of foreground and back-
Boxes (CUDB). The computation gfis achieved by 44,0 to become critical, and several times it is not
counting the number of unitary basic elements (VOX- qjear what is the foreground and what is the back-

els, surfels, linear elements an points) with which a ground (Kong and Rosenfeld, 1989; Latecki et al.
box of the CUDB m_odel cqntrlbutes, and taking into a 1995). Therefore proper adjacency pairs that avoid
count the overlapping regions among boxes. Then, 10 54 qoxes are useful and in 3D these adjacency pairs
obtain the genus, we previously computed the numberare (6, 26), (26, 6) (Lachaud and Montanvert, 2000).
of connected components and cavities of the object 5 binary volume model is manifold (well-

by applying a connected-component labeling (CC.L)' composed) if it lacks the shapes shown in Figure
base_d method to the CUDB model of both the object , (left and middle), modulo reflections and rota-
and its complement. tions (Latecki, 1997). However, general binary vol-
We have tested several phantom models and real, as” with adjacency pair (6, 26) or (26, 6) are

datasets and compared the results and performance o on-manifold as 26-adjacency allows non-manifold

our method with those that compute the same param-gpaneg The Euler characterisjiccan be computed
eters using the voxel model and another alternative o a voxel model with the following expression

model. (Odgaard and Gundersen, 1993):
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Although binary volumes with adjacency pairs (6,

26) or (26, 6) are non-manifolgt, and the genus can
be computed unambiguously for them. When com-
puting ng andn; in Expression 1 the adjacency pair
is taken into consideration in such a way that non-
manifold edges and vertices are counted once for 26-

adjacency and twice for 6-adjacency. For example, in
(a) 6-adjacency (b) 18-adjacency thg case of _the object _depicted in Figure 3, consid-
S 7 7 A4 ering the adjacency pair (26, 6), the number of con-
nected components() is 1 and vertices; to vg and
edge®, e are counted just once because they belong
to two connected voxels, so, the genlag (which can
be seen as the number of handles, is 2. But consider-
ing the adjacency pair (6, 2)p = 3 and in this case
the verticevs to vg and edges;, &2 must be counting
twice because they belong to separating two voxels,
(c) 26-adjacency giving a genus=0.
Figure 1: Kinds of adjacency of a voxel with its local neigh-
borhood.

.

Figure 2: Non-manifold 2D (left) and 3D (middle and right)
configurations.

X=Ng—Ni+nNp—n3 1)

whereno, ny, np andns are, respectively, the num-  Figure 3: lllustrative figure consisting of 9 voxels for aaic
ber of vertices (points), edges (linear elements), faceslatlng the genus depending on the selected adjacency pair.

(surfels) and voxels of the voxel model. This expres- A binary volume dataset can be represented in a

sion can be applied to several adjacency pairs (Tori- oo nact way by an OP (Khachan et al., 2000). Based
waki and Yonekura, 2002). In the solid modeling o his fact, a previous approach (Ayala et al., 2012)
field, x can also be computed froma polyhedronusing ;o mnte( and the genus of a binary volume dataset
the following expression (Mantyla, 1988): using expression 2. In this method, the binary vol-

ume dataset is represented with a model suitable for

Xx=V-E+F-R (2)  OP and when the object presents non-manifold con-

whereV, E, F andR are, respectively, the number of figurations, it needs to be converted into an homo-
vertices, edges, faces and internal rings of faces. ThistoPic manifold analog. This approach has proved to
expression can also be applied to triangular surfaces,P® more efficient than methods based on voxel mod-
F being the number of triangles a®l= 0. From €IS and triangle meshes.

the theory of homology, the Euler-Poincaré formula ~ EXpression 2 and 3 are used to compute the con-

relatesy with the Betti numberk; (Massey, 1991): nfactivity ofa _trian_gular me_sh repr.esenti.ng some ade-
nine properties in the biochemistry field (Konkle

. et al., 2003). In isosurface extraction, the topology-
X=ho—hs+h, (3) preservation is sometimes a desirable property that
wherehg, hy andh; are, respectively, the number of can be evaluated by computing (Schaefer et al.,
connected components, the connectivity and the num-2007). In the Bio-CAD field, the connectivity is re-
ber of isolated cavitieshg andh, are usually com-  lated to biomechanical properties and is used to mea-
puted using CCL-based methods over voxels, poly- sure the strength of bone or other materials. The
hedron faces or triangles, depending on the model method based on Expressions 1 and 3 is used to eval-
used. Then, the connectivity which is related to  uate the osteoporosis degree of mice femur (Martin-
the genus, can be computed frognhg andhy using Badosa et al., 2003) or human vertebrae (Odgaard and
Expression 3. Gundersen, 1993) or to evaluate hydraulic properties
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of sintered glass (Vogel et al., 2005).

Binary volume models are mostly represented
with the classical voxel model. However, for specific
purposes, several alternative models have been de-
vised. Hierarchical decomposition models as octrees
and kd-trees have been used for Boolean operations
(Samet, 1990), CCL (Dillencourt et al., 1992) and &
isosurface extraction (Anddjar et al., 2002; Vander- }>
hyde and Szymczak, 2008). Other models store only _Z _
surface voxels to improve spatial or querying perfor- Figure 4: Left: an orthogonal polyhedron with 5 cuts.
mance, such as the semi-boundary (Grevera et aI.,R'ght: |t3_seqt_1ence of 4 prisms with the representative sec-
2000) and the slice-based binary shell representationtlons (X direction).

(Kim et al., 2001).

In this work we represent a binary volume with a An OP can be represented with a sequence of or-
decomposition model, the Compact Union of Disjoint thogonal prisms represented by their section. More-
Boxes (CUDB). This model is suitable for binary vol- over, if we apply the same reasoning to the represen-
umes as well as for OP and is introduced in the next tative section of each prism, an OP can be represented
section. Section 4 presents our approach to computeas a sequence of boxes. CUDB represents an OP with
x and the genus of a binary volume. The first con- such an ordered sequence of boxes in a compact way,
tribution is a method to computg that applies Ex- =~ as many boxes generated by the aforementioned split
pression 1 to each box of the CUDB, taking into ac- process are merged into one in several parts of the
count the overlapping regions among boxes. The sec-model. CUDB is axis-aligned like octrees and bin-
ond contribution is a CCL-based method that obtains trees, but the partition is done along the object geom-
the connected components and cavities of the objectetry as in binary space partitioning (BSP). Depend-
in order to compute the connectivity from Expression ing on the order of the axes along which we choose
3. Section 5 presents the results obtained with sev-to split the data, an object can be decomposed into
eral phantom and real datasets, besides, we also comsix different sets of boxes: XYZ, XZY, YXZ, YZX,
pare the performance of our method with the methods ZXY, ZYX, and the set will be ordered according to
based respectively on the voxel model (Toriwaki and the chosen configuration. Figure 5 illustrates two pos-
Yonekura, 2002) and on OP (Ayala et al., 2012). Fi- sible decompositions of the model in Figure 4 (left).
nally, Section 6 concludes this paper.
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3 THE CuDB MODEL

To introduce the Compact Union of Disjoint Boxes
(CUDB) model, we will consider the pseudo-
manifold orthogonal polyhedron (OP) that constitutes
the continuous analog of the binary voxel model. T i‘.:‘

Let P be an OP andl; a plane whose normal . I
is parallel, without loss of generality, to the X axis, Figure 5: XYZ-CUDB (left) and ZYX-CUDB (right) rep-
intersecting it atx = ¢, wherec ranges from—oo resentation for the model in Figure 4, both with 7 boxes.
to +0. Then, this plane sweeps the whole space
as ¢ varies within its range, intersecting at cer-
tain intervals. Let us assume that this intersection
changes at = Cy, ...,Cy. More formally,PN Mg _5 #
PNMg 45, Vi=1,...,n, whered is an arbitrarily small
quantity. ThenGC;i(P) = PN is called acut of P
andS(P) = PN g, for anyCs such thaG < Cs <

In the CUDB model, the adjacency information
(either 6 or 26-adjacency) of the boxes is stored. Each
box has neighboring boxes in only two orthogonal di-
rections, i.e., for a giveiABC-ordering, a box can
have neighbors only i\ and B direction, and each
direction goes in two opposite ways. Thus, there
i . : are 4 arrays (2 for each direction) of pointers to the
Ci11, is called asectionof P. Figure 4 shows an OP  o0h1ring hoxes. For more details of this model see

with its cutsandsectiongperpendicular to the X axis. Mati .
Since we work with bounded regior&(P) = 0 and (Z%rlulz) Matias and Ayala, 2011) and (Rodriguez et al.,

Si(P) = 0, wheren is the total number ofutsalong a
given coordinate axis.
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4 CONNECTIVITY In CUDB when considering 26-adjacency, it is im-
COMPUTATION portant to notice that two edge-adjacent boeand
Bk are neighbors only in one direction, i.e. if the over-

o lapping region betweefi; andfk is a segment (part
The approach followed in this paper to compute the of an edge), when it i¥ or Z-aligned,B; andp are

Euler characteristic and the genus is based on Expres-__° hbors inX-directi dwhen th v
sion 1, and considers a box as a rectangular prism en—nI‘?Ig dor§| d rection, arr:b w .er? d'e Si’fgmel?ths
closing a finite number of voxels. In the voxel model, aligned,B; andpy are neighbors i-direction. N

a simple way to compute the number of faces, edgesoverlappmg region betwedh andpy is a vertex, then

and vertices reported for each voxel when Expression.they are neighbors just iX-direction. For example,

1is used, is by checking the lower 13 neighbd¥s in the configurations depicted in.Fig_ure 2 (middle and
of the voxel fo?la backwgrd scan, where thge 6 facés, 12 right), the boxes are neighborsidirection in both
edges and 8 vertices of each visited voxel are added®ases:

and the possible shared elements (3 faces, 9 edges and The method performs a traversal of CUDB and for

7 vertices) are subtracted. An analogy to this reason-eaCh bO)B'. computes its unitary elementg( g, e,
ing is used in our approach vg) according to Expressions 4 to 7. However, there

Let B be a box in the CUDB modep is repre- are overlapping regions among boxes and the method

sented by two diagonally opposed vertiggsandvs, must deal correctly with them.

the ones with lesser and greater coordinate values re- Shared El C ’
spectively, wherel = V1 — Vo = (dy, dy,d,) represents 4.1 ared Elements Computation

the main diagonal vector ¢ anddy, dy andd; its di-

mensions. Then, for any bdkin the CUDB model, ~ Overlapping regions can be rectangles (2D), line seg-
the number of enclosed voxelgJ, faces €g), edges  ~Ments (1D) (segments from now on) or points (0D).
(ep) and vertices\g) are computed as: They have to be detected and their contribution com-

puted and added or subtracted to the global value.

Vo =t dy: e (4) A box B shares a rectangR with any backward

fg =[Ok dy- (dz+ 1)] + [dx- (dy+ 1) - 0] neighbor in X (X-BN) and in Y-direction (Y-BN) (see
+[(dx+1)-dy-dj (5) Figure 6(a) and (b) in red). The basic unitary ele-
e = [dx- (dy+1) - (dz+1)] ments enclosed by this rectangle are computed twice

and therefore we have to subtract them once. rl et
H(Gk+1)-dy- (dz+ D] +[(cet 1)- (dy+1)- 0] (6) andry be the dimensions @R, the faces {g), edges
Vp=(dk+1)-(dy+1)-(dz+1) (7)  (eg) and vertices\r) can be be computed in a way

After computing the enclosed unitary elements of similar to that of Expressions 5 to 7:

B, we have to analyze its backward neighbors (BN), fR=rx-ry (8)

in order to subtract the elements reported by the over- er="Ix-(ry+ 1)+ (rx+1)-ry 9)
Iappmg regions. For S|mpI|C|ty we cons_lder the XYZ- VR= (rx+1)-(ry+1) (10)
ordering, therefore, as we said in Section 3, a box can

have neighbors only iX andY direction, so, just the However, more than one BN can share a segment
BN in this directions need to be checked. with 3;. We have performed an exhaustive case study

At this point it is important to say that, indepen- of the overlapping regions by analyzing the possi-
dently of the used adjacency pair, (26, 6) or (6, 26), ble neighborings among boxes in the CUDB model.
in the binary volume model, our method requires the There can be 1, 2 or 3 backward neighboring boxes
CUDB with the neighboring boxes information ac- that share a segment wifh.
cording to 26-adjacency. This is because if we con- In the first case only the shared rectangle must be
sider a CUDB with 6-adjacency, the connected com- computed and subtracted as discussed above. Note
ponents still have boxes with overlapping regions that that in some cases a degenerated rectangle is obtained
are 26-adjacent, which must be considered in the ele-(see boxe§; andy in Figure 6(d)).
ments subtraction (e.g. see the boxes 1 and 4 in Fig- In the case of two BN of}; sharing a segment
ure 5 (left)). Therefore, in order to compugeand S, it has been subtracted twice and therefore it must
genus for a (6, 26) binary volume model, we simply be added again. For example, in Figure 6(c) the red
obtain the connected components of the foregroundregions computed when analyzing the pairs of boxes
according to 6-adjacency and then, each of them is (B, Bx) and (Bi,B:) have been subtracted and there-
separately analyzed with 26-adjacency to count the fore the yellow region has been subtracted twice and
enclosed elements. For now on we suppose the caséas to be added again. There are 4 possible configu-
of the (26, 6) adjacency pair. rations for two BN off3; sharing a segment.
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(e) (H) (€:9) (h)

Figure 6: Backward neighbors(BN) configurations of a Iffpx (a) A X-BN sharing a rectangle. (b) A Y-BN sharing a
rectangle. (c) Two X-BN sharing a segment. (d) degeneraasd of (c). () A X and a Y-BN sharing a segment. (f) Two
Y-BN sharing a segment. (g) A'Y and a X-BN sharing a segmentA(¥f and two X-BN sharing a segment.

C1. Two X-BN (Bx andp), wheref is Y-BN of Bx.
See Figure 6(c and d).

C2. One X-BN (Bx) and one Y-BN f;), wheref; is
Y-BN of Bx. See Figures 6(e).

C3. Two Y-BN (By andf), wheref; is X-BN of By.
See Figure 6(f).

C4. One Y-BN (By) and one X-BN ), wheref; is
X-BN of By. See Figure 6(g).

Then, ifsis the length of, the enclosed unitary edges
(es) and vertices\(s) of Sare computed as:

es=S5, Vs=sS+1 (12)
In the case of three BN df; sharing a segmeig
there is only one possible configuration:

C5. One Y-BN (y) and two X-BN (1 and Bto),
where bothB; and B, are X-BN of By and Y-
neighbors between them. See Figure 6(h).

Note that configuration C5 is equivalent to two
occurrences of Cl(By, Bt1, Br2) and(Bi, Bz, Br2)) and

two occurrences of C4(B;, By, Br1) and(Bi, By, Br2))-
However, both configurations C4 occur whBnis

4.2 Connected Component Labeling

For the CCL process, we have followed the classi-
cal two-pass strategy of first labeling and then renum-
bering a set of equivalences (Wu et al., 2009). As
we have the neighbors of each box, we avoid the
neighborhood test. In our labeling process the CUDB
model is traversed and, on the fly, each lfipxs la-
beled with the minimum value of its already labeled
BN, or with a new label if it doesn’t have labeled
BN. When[3; has two or more labeled BN with dif-
ferent values, a label equivalence is recorded into a
map, where the key value corresponds to the region
number and the mapped value to its label. All the
equivalences are solved in the renumbering pass that
first sorts out all the equivalences and then propagates
them correctly. As a result, we get the number of con-
nected components.

As both the connectivity computation and the
CCL processes require a traversal of the boxes and
its BN, we have merged both algorithms into one.
The proposed method uses the CUDB representation
(CUDB-Rep) of an OP that has already been com-

being analyzed and, therefore, some shared elementuted. The next pseudo-code represents the whole

with Bt in one occurrence and wifB, in the other,
are added twice, so, the shared segn&by (i, Bt1
andp. (highlighted in red in Figure 6(h)), represents

process.

Input: CUDB-Rep of the OP.

the region that must be re-subtracted. The enclosedOutput: Euler characteristicy) and genus.

unitary edgesds) and vertices\(s) are computed as
in Expression 11. This case is solved by inserting all
the; of configurations C4 into a list and then the list
is analyzed in order to check for boxes that are Y-BN.

22
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B. Domlabel= .
C. for each X-BNpy do:

iv.

if Bx.label < mlabelthen, mlabel= (3y.1abel

Computefg, er andvg.

Do fi—=fgr, §—=er andvi—=Vgs.

for each X-BN,B; do: //Configurations C1

(a) if Bt is Y-BN of By, then, computees and
vs, and dog+=eg andv;+=vs.

. for each Y-BN,[3; do: /[Configurations C2

(a) if Bt is Y-BN of Bx, then, computess and
vs, and dog+=eg andvj+=vs.

D. for each Y-BN,By do:

i.
ii.
iii.
iv.

if By.label < mlabelthen, mlabel= By.label

Computefg, er andvg.

Do fi—=fgr, §—=€r andvi—=vr.

for each Y-BN,[3; do: /[Configurations C3

(a) if B¢ is X-BN of By, then, computees
andvs, and dog+=eg andv;+=vs.

v. Create a list of boxels.

5 RESULTS

We have measuredand the genus for a selection of
datasets with different shape features and size. They
present non-manifold configurations and may contain
isolated cavities and disconnected components. Fig-
ure 7 shows rendered views of the test datasets and its
size in the voxel model, where from (j) to (r) are real
volume data coming from CT or MRI scanners. These
datasets come from public volume repositories. Three
methods have been compared: voxel-based, OP-based
(see Section 2) and CUDB-based, presented in this
paper. These methods produce exactly the same re-
sults. The algorithms has been written in C++ and
tested on a PC Int@Core 2 E6600 at 2.4 GHz with
3.2 Gb RAM under Linux.

We work on a platform where the main represen-
tation models are CUDB and the Extreme Vertices
Model (EVM), which is a very concise B-Rep model
for OP with very fast Boolean operations. EVM can

vi. for each X-BN,(3; do: /[Configurations C4 be obtained from the voxel model, in turn, CUDB
(@) if By is X-BN of By, then, computees is obtained from EVM. The conversions. algorithms
andvs, do g+=es andvj+=vs and insert have been published (Aguilera, 1998; Cruz-Matias
B toL. and Ayala, 2011). These models are used in other
vii. for each pair B1 , Br2) in L which are Y- processes in diverse research topics, so, we consider

neighbors do: €onfigurations C5
(a) Computees andvs.
(b) Doeg—=esandvi—=vs.

E. Dong+=vi, ni+=g, no+=f;, andnz+=y;.
F. if mlabel= o then

Do mlabel= currentLabel
Do currentLabet+.

G. for each X-BN and Y-BNf; do:

i. if Bt is labeled, then, add equivalence

[i.label=mlabelinto the mapequivalences
elsedo (;.label= mlabel

3. Dox=ng—ni1+n2—ns.
4. Number of cclfo) = renumberingéquivalences
5. Compute the complement of CUDB-Rep.
6. Number of cavitiesh) = CCL(complement)-1.
7. Dogenugh;) = hg+hy—X.

Step 2 computes the same number of voxels, tion, itis by far, faster than the voxel-based method, in

that they are available and ignore the cost of conver-
sion from the voxel model, similar to the OP-based

method. Thus, to compute the complement of the in-
put model, we use the EVM representation, whose
runtime is negligible. However, the conversion time

of the complement to CUDB is considered in our

computation times (step 5 of the algorithm).

Table 1 shows the attributes of the tested datasets:
number of foreground voxels, number of boxes in
their CUDB-Rep, number of connected components
(C*), number of isolated cavitie€(), X and genus
using the adjacency pair (26, 6).

Table 2 shows the required time in seconds to
computex and the genus for each referenced method.
To compute the genus, the three methods need to com-
pute the complement of the model, and besides, the
OP-based method needs to convert the OP to a homo-
topic manifold analog. Note that our proposal is very
fast to compute, and regarding the genus computa-

faces, edges and vertices that the voxel-based methodome datasets up to two orders of magnitude (pelvis,
and simultaneously performs the first step of the CCL golfBall, pegasus, aneurysm and beetle). Compared
process. Step 3 computeaising Expression 1. Step  to the previous OP-based our method is also faster in
4 performs the CCL relabeling process, which returns all the tested datasets, in some of them up to an order
the number of connected components. Step 6 appliesof magnitude (pegasus, teddy and femur). Moreover,
our standard version of CUDB-based CCL to com- we report the conversion times: voxel to EVitA)

pute the number of internal cavities (the connected and EVM to CUDB {cp) in order to show that, even
components of the object complement). Finally, step considering these costs, the overall tinig 6f our

7 computes the genus using Expression 3. method is better than the voxel-based method.

23



GRAPP 2013 - International Conference on Computer Graphics Theory and Applications

Table 1: Attributes of the test datasets. For each datdsesize of the voxel model, number of foreground voxels, rermb
of boxes in its CUDB-Rep. Next, with an adjacency pair (266 number of connected components, number of isolated

(a) Tool

(k) Lobster

() Engine

(p) Mineral

(m) Beetle

(g9) Rock

(n) Skull

(r) Femur

Figure 7: Rendered images of the test datasets.

cavities, the Euler characterisficand genus.
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(o) Teddy

Dataset size | # for. vox. | # boxes Cct [ X | genus
(a) Tool 511x339x48| 1778611| 11000 1 0 -10 6
(b) Wheel 120x300x300| 3809958| 13207 1 0 -14 8
(c) DiskBrake| 511x512x73| 2584762 29516 1 0 -20 11
(d) Foot 183x512x185| 1818019 35498 6 24 -86 73
(e) Menger-4 | 162x162x162] 1280000 46704 1 0 | -52864 | 26433
(f) Knot 329x350x257| 7509337| 76831 1 0 0 1
(g) Pelvis 368x512x450, 5920950| 85923 1 8 -10 14
(h) GolfBall | 510x509x511| 13645424| 129493 1 0 2 0
() Pegasus | 598x800x574| 24683709 191747 1 8 2 8
()) Aneurysm | 213x215x240 69743| 10705 406 12 544 146
(k) Lobster 244x239x49|  233509| 19322 53 180 -638 552
() Engine 139x197x108| 901818| 25524 9 194 146 130
(m) Beetle 411x371x247| 1737343| 36052 17 114 -190 226
(n) Skull 256x256x256/ 1112906| 114563| 1624 337 | -1020| 2471
(o) Teddy 424x321x493 24758866| 124063 59 212 | -2580| 1561
(p) Mineral 376x375x206| 7363953 232008 724 5| -2792| 2125
(g) Rock 240x406x267| 19348939| 331491| 1336| 17263| 25828| 5685
(r) Femur 463x494x628 4014089| 838585| 22714 | 7909 | -25144| 43195
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Table 2: Statistics of the test dataset. For each datasebthputation time in seconds for the voxel-based (mvx), @setd
and the CUDB-based methods. The last columns represenbiiversion times: voxel to EVMt¢€;) and EVM to CUDB
(tcp) of the original modelty =tcy +tc, + CUDB®.

Timex Total time (genus)
Dataset mvx] OP [CUDB| mvx| OP|cCUDB | '©&@| & b
(@) Tool 177 026] 001] 622 084 01l| 147|013 171
(b) Wheel 384 024 001| 1084| 1.47| 020] 260|020 3.00
(C) DiskBrake| 4.94| 081| 001| 17.09] 2.42| 028| 524| 022| 5.73
(d) Foot 772| 079| 002 2222 245| 029| 458|025 513
(e)Menger-4 | 1.30| 0.70| 002| 3.85| 152| 027| 1.05] 021] 153
(f) Knot 919| 1.04] 005| 2007 583 064| 1.04| 0.49] 3.06

(9) Pelvis 26.81| 2.16 0.06| 101.21| 6.93 0.71| 23.33| 0.55| 24.59
(h) GolfBall 41.53| 2.90 0.07| 150.37| 9.49 1.20| 34.72| 0.89| 36.81
(i) Pegasus | 71.54| 6.15 0.13| 274.83| 20.81 1.88| 72.82| 1.46| 76.16
() Aneurysm | 2.99| 0.37 0.01| 10.26| 0.92 0.10| 2.57| 0.08| 2.75
(k) Lobster 0.61| 0.49 0.02 214 131 0.16| 0.63| 0.13| 0.92

() Engine 0.77| 0.62 0.02 243 177 0.21} 0.71|0.16| 1.07
(m) Beetle 11.08| 2.01 0.02| 39.39| 2.34 0.29| 9.49| 0.25| 10.03
(n) Skull 574| 3.51 0.06| 19.40| 9.16 0.94| 5.10| 0.68| 6.71

(0) Teddy 20.97| 3.49| 0.09| 74.07|10.39| 1.02| 18.23| 0.77| 20.01
(p) Mineral 935| 592| 0.16| 31.04| 19.25| 1.97| 8.76| 1.48| 12.22
(q) Rock 12.48| 9.47| 039| 33.80| 24.43|  3.44]| 8.65| 1.93| 14.01
(r) Femur 4594 31.16| 0.80] 170.64| 80.66| 8.06| 41.90| 569 | 55.65

6 CONCLUSIONS AND FUTURE have used the CUDB model in a method to simulate
WORK the mercury intrusion in a porous medium (Rodriguez

et al., 2011). At present, we are beginning to study

simplification (Cruz-Matias and Ayala, 2012) and

We have presented a method to compute the EU'ertime_Varying techniques based on EVM and CUDB
characteristic and the genus of binary volume datasetsmodels.

using the CUDB model, and we have evaluated its
performance compared to existing methods applied to
voxel models and OP. We have tested several public
volume datasets, both phantom and real. We concludeACKNOWLEDGEMENTS
that computing the connectivity is notably faster in
our approach. The performance variability is cause
by the dataset size but above all to their surface in-
tricacy: the voxel-based method performance is func-
tion of the number of voxels, but our method depends
on the number of boxes, tightly related to the model’s
tortuosity (a property that represents the twist of a
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