
Possibilistic Similarity based Image Classification 

B. Alsahwa1,2, S. Almouahed1, D. Guériot1,2 and B. Solaiman1,2 
1Image & Information Processing Dept., Telecom Bretagne, Institut Mines-Télécom, Brest, France 

2Lab-STICC UMR CNRS 3192, Laboratoire en sciences et technologies de l'information, de la communication et de la 
connaissance, Institut Mines-Télécom-Télécom Bretagne-UE, Brest, France 

Keywords: Possibility Theory, Classification, Contextual Information, a Priori Knowledge, Possibilistic Similarity. 

Abstract: In this study, an approach for image classification based on possibilistic similarity is proposed. This 
approach, due to the use of possibilistic concepts, enables an important flexibility to integrate both 
contextual information and a priori knowledge. Possibility distributions are, first, obtained using a priori 
knowledge given in the form of learning areas delimitated by an expert. These areas serve for the estimation 
of the probability density functions of different thematic classes. The resulting probability density functions 
are then transformed into possibility distributions using Dubois-Prade’s probability-possibility 
transformation. Several measures of similarity between classes were tested in order to improve the 
discrimination between classes. The classification is then performed based on the principle of possibilistic 
similarity. Synthetic and real images are used in order to evaluate the performances of the proposed model.  

1 INTRODUCTION 

An accurate and reliable image classification is a 
crucial task in many applications such as content 
based image retrieval, medical and remote-sensing 
image analysis and scene interpretation. Several 
techniques of image classification are built on a 
local approach of the scene to deal with, as opposed 
to those built on segmentation or object (Caloz and 
Collet, 2001). It is generally accepted that taking 
into account the geometric dimension, including the 
context or neighbourhood, contributes to the 
performance of the classification (Tso and Mather, 
2009). Two families of local classification approach 
can be encountered in the literature: The first family 
uses a thematic classifier working, first, at pixel-
level only, followed by a step of integrating 
contextual information (Kim, 1996) and (Shaban and 
Dikshit, 2001). This two-step process constitutes 
clearly a weakness. Conversely, the other family 
simultaneously combines the rules of thematic 
similarity and spatial proximity in a single 
classification process (Rakotoniaina and Collet, 
2010) and (Besag, 1986). 

In this paper, pixel-based image classification 
systems are considered under the closed world 
assumption.  Each pixel from the analyzed image, I, 
is assumed to belong to one, and only one, thematic 

class from an exhaustive set of M predefined and 
mutually exclusive classes Ω = {C1, C2, ..., CM}. 
Prior knowledge is assumed to be given as a set of 
learning areas extracted from the considered image 
and characterizing the M considered classes (from 
the expert point of view). Using this prior 
knowledge, M class probability density functions are 
first estimated using the KDE (Kernel Density 
Estimation) approach (Epanechnikov, 1969) and 
then transformed into M possibility distributions 
encoding the “expressed” expert knowledge in a 
possibilistic framework. In the same way, assuming 
the considered pixel P0 as being of a “homogeneous 
sub-area”, a local possibility distribution P0(x) will 
be constructed. This local possibility distribution 
stands for the possibility degree to observe the pixel 
P0 in the considered sub-area. The application of 
similarity concept on the M possibility distributions 
will lead, on one hand, to determine the similarity 
function which maximizes the discrimination 
between classes, and on the other hand, to enable the 
classification of sub-areas represented by local 
possibility distributions  

The use of possibilistic concepts increases the 
capacity as well as the flexibility to deal with 
uncertainty as, for most real-world problems, the 
modelled knowledge is affected by different forms of 
imperfections: imprecision, incompleteness, 
ambiguity, etc.  
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In the next section, a brief review of basic 
concepts of possibility theory is introduced. Study of 
different similarity functions to quantify the 
similarity between classes is the subject of the third 
section. The proposed approach will be detailed in 
the forth section. Section 5 is devoted to the 
experimental results obtained when the proposed 
approach is applied using synthetic as well as real 
images. 

2 POSSIBILITY THEORY 

Possibility theory was first introduced by Zadeh in 
1978 as an extension of fuzzy sets and fuzzy logic 
theory to express the intrinsic fuzziness of natural 
languages as well as uncertain information (Zadeh, 
1978). In the case where the available knowledge is 
ambiguous and encoded as a membership function 
into a fuzzy set defined over the decision set, the 
possibility theory transforms each membership value 
into a possibilistic interval of possibility and 
necessity measures (Dubois and Prade, 1980).  

2.1 Possibility Distribution 

Let us consider an exclusive and exhaustive universe 
of discourse Ω = {C1, C2,..., CM} formed by M 
elements Cm, m = 1, ..., M (e.g., thematic classes, 
hypothesis, elementary decisions, etc). 
Exclusiveness means that one and only one element 
may occur at time, whereas, exhaustiveness refers to 
the fact that the occurring element certainly belongs 
to Ω. A key feature of possibility theory is the 
concept of a possibility distribution, denoted by , 
assigning to each element Cm a value from a 
bounded set [0,1] (or a set of graded values). This 
value (Cm) encodes our state of knowledge, or 
belief, about the real world and represents the 
possibility degree for Cm to be the unique occurring 
element. 

2.2 Possibility Distributions Estimation 
based on Pr- Transformation  

Two approaches are generally used for the 
estimation of a possibility distribution. The first 
approach consists on using standard forms 
predefined in the framework of fuzzy set theory for 
membership functions (i.e. triangular, Gaussian, 
trapezoidal, etc.), and tuning the form parameters 
using a manual or an automatic tuning method. The 
second possibility distributions estimation approach 

is based on the use of statistical data where an 
uncertainty function (e.g. histogram, probability 
distribution function, basic belief function, etc.); is 
first estimated and then transformed into a 
possibility distribution 

As we consider that the available expert’s 
knowledge is expressed through the definition of 
learning areas representing different thematic 
classes, i.e. statistical data, we will focus on the 
second estimation approach. Several Pr- 
transformations are proposed in the literature. 
Dubois et al. (Dubois and Prade, 1983) suggested 
that any Pr- transformation of a probability 
distribution function, Pr, into a possibility 
distribution, , should be guided by the two 
following principles:  

 The probability-possibility consistency 
principle: 

 

( ) Pr( ),     A A A      (1)
 

 The preference preservation principle: 

Pr( ) Pr ( ) ( ) ( ),    ,  A B A B A B         (2) 

Verifying these two principles, a Pr- 
transformation has been suggested by Dubois et al. 
(Dubois and Prade, 1983): 

     
M

m m j m
j=1

π(C )= ( C )= min Pr( C ),  Pr( C )     (3) 

In our study, this transformation is considered in 
order to transform the probability distributions into 
possibility distributions.  

3 SIMILARITY MEASURES 

The issue of comparing imperfect pieces of 
information depends on the way these pieces of 
information are represented. In the case of 
possibility theory, comparing uncertain pieces of 
information comes down to comparing possibility 
distributions representing these pieces of 
information.  

Considering the expert’s predefined set of M 
thematic classes contained in the analyzed image, 
={C1, C2 ..., CM}, a  set of M possibility 
distributions can be defined as follows: 

 Cm

Cm

π :   0,1

          (P) π ( (P))

D

x x




 

where D refers to the definition domain of the 
observed feature x(P). For each class Cm, Cm

(x(P)) 

associates each pixel PI, observed through a 
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feature x(P)D, with a possibility degree of 
belonging to the class Cm, m = 1, ..., M.  

Considering two classes Cm and Cn of the set , 
different possibilistic similarity and distance 
functions “Sim” can be defined  between their two 
possibility distributions πCm and πCn. The behaviour 
of these functions can be studied in order to obtain a 
better discrimination between classes Cm and Cn. To 
do this, calculating a similarity matrix Sim(πCm, πCn) 
informs us about such inter-classes behaviour and 
will help in choosing the right measure in the given 
context:  

   
   

C C C Cm m m n

C C C Cn m n n

π ,π π ,π

π ,π π ,π

Sim Sim
S=

Sim Sim

 
 
 
 
 

 (4) 

3.1 Possibilistic Similarity Functions 

This subsection is devoted to review some existing 
possibilistic similarity and distance functions which 
are the most frequently encountered in the literature:  

- Information closeness: this similarity measure 
was proposed by (Higashi and Klir, 1983): 

C C C C Cm n m m n

C C Cn m n

(π ,π )=g(π ,π π ) +

                      g(π ,π π )

G 


 (5)

where g(Cm
,Cn

)=U(Cn
)-U(Cm

).   is taken as 

maximum operator and U is the non-specificity 
measure. Given an ordered possibility distribution π 
such that 1= π1 ≥ π2 ≥…≥ πn the U of π is given by: 

n

i
i=1

i+1 2 1 2(π)=[ π )log i]+(1-π )log n(π -U   (6) 

where πn+1=0 by convention. Hence the similarity 
measure based on the Information closeness is given 
by: 

  C Cm n
C Cm n

max

(π ,π )
π ,π 1Sim

G

G

G
   (7)

- Minkowski distance: Since possibility 
distributions are often represented as vectors, the 
most popular metrics for possibility distributions are 
induced by the Minkowski norm (Lp) which is used 
in vector spaces.  

     
p

p
i i

i=1
p C C C Cm n m n

L π ,π = π x -π x  
D

  (8)

Three particular cases of equation (10) are often 
investigated: L1-norm (Manhattan distance), L2-
norm (Euclidean distance), and L∞-norm (Maximum 
distance). These cases of Minkowski distance can be 
transformed into similarity measure by the 
following: 

  p
C Cm np p

L
π ,π 1Sim

D
   (9)

- Information affinity: this similarity measure 
was proposed by Jenhani et al. (Jenhani et al., 2007) 

  C C C Cm n m n
C Cm n

κ L (π ,π ) λ Inc(π ,π )p
π ,π 1

κ λ
SimIA

  
 


 (10)

Where κ>0 and λ>0, Inc(Cm
,Cn

) represents the 

inconsistency degree between Cm
 andCn

 defined 

as follows  

C C C Cm n m n
Inc(π ,π ) 1 max(min(π , π )   (11) 

3.2 Evaluation of the Similarity 
between Two Classes 

A 100×100 synthetic image composed of two 
thematic classes is generated in order to evaluate the 
similarity between two classes. The intensity of the 
pixels from C1 and C2 are generated as two Gaussian 
distributions G(m1=110, σ1=10) and G(m2=120, 
σ2=10)(Figure 1) 

The evaluation principle of the similarity 
between the two classes is to retain the similarity 
function whose similarity matrix is the closest to the 
identity matrix I2 in term of Euclidean distance D: 

   
,

2

2D= S i,j -I i,j
i j

    (12) 

D was calculated for each similarity function by 
firstly varying the mean of the class C2 and then the 
standard deviation of class C2, while maintaining a 
fixed value for the mean and standard deviation of 
the class C1(Figure 1). 

From the curves in Figure 1, the similarity 
function called “Maximum distance” Sim∞(Cm

,Cn
) 

tends to the identity matrix faster than the other 
functions when the studied values m2-m1 and σ2-σ1 
increase. 
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Figure 1: (a) Synthetic image (b) Evolution of the measure D as a function of the mean difference between classes C1 and 
C2 (c) Evolution of the measure D as a function of the difference of deviations between classes C1 and C2. 

4 THE PROPOSED 
CLASSIFICATION APPROACH 

As previously detailed, the samples initial set, 
considered by the expert, is used in order to estimate 
the probability density functions of different 
thematic classes, which in turns are transformed into 
possibility distributions through the application of 
the Pr- Dubois-Prade’s transformation.  

The estimation of these M possibility 
distributions forms the first step in the proposed 
approach. The second step consists in the 
classification of each pixel of the analyzed image I 
by firstly estimating the local possibility distribution  

 

Figure 2: Synthetic image, possibility distributions of 
classes C1, C2 and the local possibility distribution in a 
subzone around the pixel of interest P0. 

around the pixel of interest P0. Second, the process 
of assigning a class to the considered pixel P0 is to 
determine the nearest class via the similarity 
function Sim∞ used to measure the similarity 
between this pixel’s local possibility distribution and 
possibility distributions of each of the M classes 
(Figure 2). 

5 EXPERIMENTAL RESULTS  

5.1 Simulated Data 

For the experimental evaluation purpose, a new 
synthetic image of size 96×128 pixel is generated 
(Figure 3). Pixels from C1 and C2 are generated as 
two Gaussian distributions G(m1=125, σ1=15) and 
G(m2=100, σ2=20). This synthetic image is classified 
using the proposed approach and the Bayesian 
approach      (Hand,    1981),    respectively.      The 

 

Figure 3: (a) Synthetic image (b) Bayesian classification 
(c) Proposed approach classification. 
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classification error rate when using the possibilistic 
approach with Sim∞ function is 8.5% while the error 
rate obtained by the Bayesian approach is 18.3%.  

5.2 Medical Application 

The proposed approach of classification is applied 
on a mammographic image composed of two 
classes: tumor and normal tissue (figure 4). This 
image is extracted from the MIAS image database 
(Mammographic Image Analysis Society).  

 

Figure 4: (left) A mammographic image composed of two 
classes, (right) Classified image using the proposed 
approach. 

A visual analysis of the obtained results shows 
that the proposed approach allows obtaining an 
interesting homogeneity of the regions determined 
from samples based on measures limited to windows 
of size 3 \times 3.  

6 CONCLUSIONS 

In this study, a classification approach was 
developed based on the possibility theory that 
enables the integration of contextual information and 
a priori knowledge. Indeed, one of the key points of 
the proposed approach is to characterize the pixel to 
be classified taking into account its neighbourhood 
through the creation of local possibility distribution. 
Another key point of our approach is to propose a 
classification method based on the similarity 
between class possibility distribution and local 
possibility distribution, and not on a membership 
degree, of parameters extracted from the local 
window, to possibility distributions of classes. The 
first results on both the synthetic image and the real 
medical image (compared to the results obtained 
using a Bayesian approach) seem promising.  
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