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Abstract: Agent-based modelling enables simulating complex systems and controlling them, as well. In the industrial 
domain there are plenty of these systems not only because of the size but also because of the need for fault-
tolerance and adaptability. Typically, these cases are solved by dividing systems into different dimensions, 
including the transportation one. In this paper, we take this approach to build a framework to develop and 
control transportation in applications within the industrial domain, which will be tested on an automated 
laboratory. The framework is based on a multi-agent simulator that contains the model of the plant with 
transportation agents having a multi-layered architecture. The lower-level layers correspond to those that 
would be embedded into physical transportation agents. Therefore, while agents communicate to each other 
within the simulator environment, communication between upper-level layers and lower-lever layers of each 
agent is done internally for the simulated parts and externally for the real counterparts. The simulator can be 
used stand-alone to functionally validate a system or in combination with real agents as a 
monitoring/controlling tool. Preliminary results prove the viability of the framework as a design tool and 
show the difficulties to work with physical agents. 

1 INTRODUCTION 

The industrial domain is populated with highly 
complex and demanding applications that also are 
required to be flexible and robust. Therefore, it has 
become commonplace to use divide-and-conquer 
strategies to develop the systems for these appli-
cations. For instance, splitting system designs with 
respect to different aspects of the application, which 
include the one for internal transportation of material 
(Schreiber and Fay, 2011). 

In this paper, we focus on this aspect to develop 
a framework in which transport systems for 
applications in the industrial domain can be designed 
and further deployed. 

These systems are also required to be as efficient 
as possible. Taking into account that efficiency must 
include cost of failures and planning changes, it 
turns out that a robust and flexible system has more 
chances to be more globally efficient that others that 
lack these characteristics, possibly because of being 
centrally controlled. Following this and other similar 
reasonings, industry has turned to use agents and 

agent technology to obtain fault-tolerant and 
adaptable systems. 

Our approach resembles that of (Fernández-
Caballero and Gascueña, 2009) on complete 
development environments for agent-based systems 
and uses an agent-based model (ABM) of the 
transport system that accepts inputs from the rest of 
the system and outputs control data for the physical 
transportation units as well as other data to the 
system. Differently from their proposal and other 
works alike, our approach uses a single ABM tool to 
simplify the development framework and minimize 
the development costs. 

The proposed ABM has a relatively simple 
architecture (see Fig. 1), that organizes agents into 
two classes: the one for the external elements 
(application-related agents, Aj) to the transportation 
system and the one for the vehicles or taxis (agents 
Ti with links to physical, Ri, and virtual, Vi, lower-
level layers). 

The model is run under inputs that come from 
external agents and physical elements and generates 
outputs for the latter ones. This control loop might 
be too slow for many applications unless physical 
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elements have embedded some controllers and 
relation with the ABM is done at a higher level of 
abstraction. However, even with this solution, ABM 
has to be executed fast enough to interact at real 
time with the physical elements. This requires agents 
to be efficient in taking decisions, which usually 
goes against relexive, ellaborated behaviours and to 
have simple communication protocols that enable 
negotiations to occur within a few messages. 

In the proposed framework, the model has three 
use cases: 1) for functional validation; 2) for plant 
characterization, which includes testing whether real 
time requirements are met, parameter identification, 
and controller setup, and 3) as a model for the 
controller of the transportation system, including a 
mixed-reality environment for monitoring and 
supervising in human-assisted operation. 

As the framework could not be tested on a real 
application, it has been tested with a realistic one 
that could be operated with automated-guided 
vehicles (AGVs) built on small robots. 

For this, we have focused the work on automated 
laboratories of clinical analyses, as they use 
relatively simple transport infrastructures in which 
small AGVs can successfully replace conveyors. 

The paper is organized as follows. The next 
section is devoted to outline the used of agent-based 
models in the transportation arena and our approach. 
Section 3 highlights the application in automated 
laboratories, while the following sections detail the 
mechanisms for plant characterization and 
synchronization between the simulator and the real 
world. The last section concludes this paper by 
summarizing the contribution of our work and 
devising short and long term continuation lines. 

 

Figure 1: Multi-agent architecture of the transportation 
system. 

2 AGENT-BASED MODELLING 

Typically, ABM is used to analyze, via simulation, 
social behaviour of individuals and how it is affected 
by changes on individual behaviour, as presented, 
for instance, by Kashif et al. (2011). Additionally, 
ABMs can be taken as systems models and used to 
control them by generating the commands to the 
individuals so that they behave as required by the 
related applications. 

2.1 ABMs as System Simulators 

In the review of ABM for transport logistics done by 
Davidsson et al. (2005) it is noted that agents are 
used mainly to support decision taking but not to 
automate processes, i.e. not as distributed system 
controllers. 

In fact, as shown in a more recent review by   
Santa-Eulalia, Halladjian, D’Amours, and Frayret 
(2011), agents are used to distribute the problem into 
its participants, which collaborate to solve their local 
problems. Although this review applies to supply 
chain management, conclusions can be extended to 
the study case on automated laboratories, as they 
have to be supplied with samples and sample 
ordering and distribution has to be solved. 

In Armendáriz et al. (2011), a business model on 
a carpooling application is created upon an ABM. In 
this model, passengers can share cars that move 
autonomously in a network with independent traffic 
lights and local conflict solving at intersections. This 
model can only be successful if users are matched to 
the right cars in real-time. Similarly, in automated 
laboratories, samples should be grouped so that each 
group may follow the same minimal route. 

2.2 ABMs as System Controllers 

Most applications require be implemented with 
systems able to work with dynamically changing 
demands, and transportation systems are not an 
exception. The paper by De Wolf and Holvoet 
(2003) follows the same reasoning and, as other 
authors, state that systems should be transformed 
into autonomic ones to cope with complexity. 

In autonomic systems, components tell others 
what they want and not how to attain the 
corresponding goals. Following this principle, the 
automated laboratory for the study case is divided 
into two parts: the one of the transportation and the 
one for the application, which tells the first one what 
is needed but no how it must be fulfilled. 
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De Wolf and Holvoet (2003) propose using 
ABM to build a model of the system and include one 
module to analyze de dynamics of the system (in our 
case, this module is in charge of measuring 
differences between expected behaviour and sensed 
one) and another to control the rest of the system (in 
our case, the physical agents which are controlled by 
their virtual counterparts). Additionally, cost 
functions have to be measured with respect to model 
parameters so they can be adjusted to keep 
efficiency at the desired reference level. This is a 
top-level controller built on top of local, agent 
controllers. (We have not planned to include such a 
top-level controller because of the relative simplicity 
of the case study.) 

The main problem to use ABM as a controller is 
that ABM can run in real time with the physical 
requirements of the system and its application. 

2.3 ABM to Control Traffic in 
Transportation Systems 

Systems of agents have already been used to control 
traffic. The idea is to have a traffic system that can 
be self-regulated from individual choices and that 
requires as little assistance as possible from agents at 
a higher level of hierarchy. In other words, the idea 
is that transport orders from the applications are 
handled by transportation agents in an autonomous 
manner, with minimal information from other 
agents, including those who may act as planners and 
routers. 

Fig. 2 illustrates how this control scheme is 
organized. Topology of the plant and the number of 
transportation agents (here and after referred to as 
taxis) are among the variables that configure the 
model that is used for controlling the real plant. 

The higher level modules of the taxis ({Ti}) get 
orders from agents that represent other modules of 
the application ({Aj}) and try to fulfil them. 

 

Figure 2: Architecture of an ABM controller. 

To do so, taxis must negotiate with application 
agents {Aj} and other workmates which jobs they 
take and, when in transit, how can they be done in 
the more efficient way. In taking the decisions, taxis 
have knowledge of their own state and the state of 
their lower-level counterparts ({Vi}). Results of 
deliberations are transformed into requests to the 
{Vi} and also to the real robots {Ri}. The last set of 
requests is, in fact, the output of the ABM controller. 
And the inputs include the replies to these requests 
from robots, hence closing the loop between the 
controller and the controlled system. 

Note that the variability of incoming orders 
increases the complexity of a central planner and/or 
a traffic coordinator thus making it difficult to attain 
any gain in cost or throughput. Consequently, the 
taxis operate autonomously, with less guarantee of 
optimality but with the benefits of this mode of 
operation with respect to flexibility and robustness. 

3 AUTOMATED LABORATORIES 

Laboratories of clinical analyses have progressively 
been transformed into complex “manufacturing” 
facilities, able to produce thousands of analyses per 
hour from blood and other body fluids’ samples. 

In these facilities, samples are dropped into tubes 
that are placed in racks which are delivered to 
different analyzing machines by using a conveyor 
system (Ribas-Xirgo, Miró-Vicente, Chaile and 
Velasco-González, 2012). 

Unfortunately, some tests done by analyzers 
have to be repeated, not all racks have to stop at the 
same analyzers and there can be several analyzers 
which can do the same job, though with different 
workload capacities. 

As a result, the complexity of managing this kind 
of laboratories is quite high, even though the use of 
conveyors sets some layout constraints to the 
transport systems thus limiting it. Things can go 
worse when conveyors are replaced with agent-
based AGVs (automated-guided vehicles), as they 
have more degrees of freedom. 

However, the choice for autonomous AGVs 
relieves the plant planner from operating with lots of 
data and makes it possible to obtain optimal 
transport orders, which will be taken by AGVs. 
Additionally, the MAS-based transport gains 
flexibility and robustness. 

In the following, we shall explain the details 
about the layout of the plant and the behavior of the 
AGVs for the study case selected to validate our 
development and deployment framework. 
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3.1 Plant 

To include most of the characteristics of actual 
plants of automated laboratories, the case study 
includes four different analyzers: one ion-counting 
unit, one coagulometry analyzer and two 
biochemical units, as most of the samples require 
measuring biochemical factors. 

The layout of the plant (Fig. 3) is quite similar to 
that of a conveyor system where conveyors are 
replaced by autonomous AGVs, thus not requiring 
much infrastructure. In this case, to simplify vehicle 
operations, robots move around by following a line 
with marks, which are used by AGVs to self-locate 
within the plant map. In fact, they are used to 
indicate a programming spot, a bifurcation or a 
junction. The type of the mark is determined by 
AGVs in accordance with their location in the plant. 

The programming spots at the loading dock 
(bottom left) and at the beginning of the return lane 
(second to topmost and rightmost cross) are places 
where the LIMS tell AGVs which kind of tests 
should be done on the samples they carry and which 
tests have been done successfully, respectively. 

There is a re-circulating lane (middle line) that 
can be used by AGVs that carry samples that wait 
for acknowledgement of their tests or to repeat them, 
in case the tests go wrong. 

At the beginning of the returning lane (topmost 
rightmost mark), AGVs have their tube racks 
unloaded, and, at the waiting queue, they have their 
batteries re-charged (if needed), and follow their 
pace to the programming spot. 

3.2 Transportation Agents 

In the proposed system, samples are transported 
from one point to another by robots, which are 
intended to give the whole flexibility and fault-
tolerance, and to relieve the global controller from 
most of the systems’ complexity in planning 
(Himoff, Rzevski, Hinton and Skobelev, 2006). 

As already indicated, the overall planning is done 
by the LIMSs, which link samples and tests and, 
subsequently, samples to sets of analyzers. These 
data are used by taxis to determine their goals, i.e. 
their destinations. 

In Wojtusiak, Warden, and Herzog (2011) it is 
shown that an evolutionary learning process to 
optimize individual order selection and routing gives 
best results that a greedy approach. However, 
because of the simplicity of the case-study network 
and that there are only one collection and one ending 
spots, we have opted by implementing a greedy 

approach with some learning from experience when 
solving conflicts. 

Each taxi features an AGV that is aware of its 
own position, recognizes the environment and 
communicates with others to coordinate their 
movements. AGVs use information about the plant 
to determine to which analyzer they should go to 
satisfy the requirements of their loads the fastest 
they can. Currently, in our model, AGVs randomly 
choose from compatible goals, i.e. they can go to 
either biochemical analyzer on a random basis, as 
the focus of this work is about validating the 
proposed ABM-based controller. 

When an AGV arrives at its destination, it docks 
at the port of the corresponding analyzer so that it 
can begin with its work. In case it is busy, the taxi 
puts itself on hold in a parking area (short wait) or 
goes on to a compatible destination or to the re-
circulation lane (long wait). 

In the model, the high-level of taxis {Ti} is 
responsible for telling the lower-levels, simulated 
{Vi} and real {Ri}, what actions to do, and the low 
levels to reply with data about the results of these 
actions. Note that {Ti} and {Vi} are executed on an 
ABM simulator while {Ri} on the embedded 
controllers of the robots of the system, i.e. on actual 
AGVs. At present, the ABM is run on Netlogo and 
the robots are Boebots from Parallax.  

4 PLANT CHARACTERIZATION 

Model accuracy depends on good characterization of 
the actual plant. Static data such as traffic network 
and nominal characteristics of vehicles such as 
average speed and energy consumption can be used 
for functional validation of the system and as a set of 
initial values for the model. However, in order to 
control a real plant, parameters should be as accurate 
as possible so they have to be estimated from a 
series of test runs. 

Our model includes a mechanism for parameter 
identification and updating that can be used for both 
plant characterization and continuous model 
adaptation. 

To activate the mechanism, the model has to be 
set to real-time mode instead of discrete mode. In 
fact, this mode of operation is the only one possible 
when working with actual taxis. 

Plant characteristics are of two types: the ones 
that define its traffic network and the ones that 
define the functional and non-functional behaviour 
of the taxis. We assume the traffic network be 
constant and defined by a topological graph that is 
known to all taxis of the system. 

An�Agent-based�Model�of�Autonomous�Automated-Guided�Vehicles�for�Internal�Transportation�in�Automated�Laboratories

265



 
Figure 3: Plant layout from its simulator within Netlogo.

Each taxi tags the topological graph with data 
related to the cost it takes to itself to get to a node or 
to perform some action at a node. 

In a simple version, the cost data consists of the 
time to go from a node to another and the time 
devoted at each node to decide which outgoing arc 
to take. 

For instance, the characterization of an arc for a 
given taxi consists of measuring how long it takes to 
travel from the origin to the destination. And the 
characterization of the time required to perform an 
action is done by measuring the time to complete it 
after being requested to. Such measures are done 
indirectly from messages between the ABM and the 
physical part of the taxi. 

For every order request from a Ti to a Ri, it is 
recorded the delay time that takes to Ti to get a reply 
from Ri. This delay is compared to the previous one 
in the same node or arc of the map graph and 
updated accordingly so that further decisions of Ti 
and the reactive behaviour of Vi are more accurate to 
the reality. Note that the characterization is made at 
every communication so taxis may end up by having 
very different “views” of the traffic network and 
behaving in a very different manner. 

Other characteristics can be measured by the 
robots and transmitted with the acknowledgement 
messages but, in the first version of the proposed 
model, these are not taken into account. 

5 MIXED-REALITY 
SIMULATION AND CONTROL 
ENVIRONMENT 

To accurately monitor any timing problem between 
controller and real robots, and also when operating 
with real robots in a mixed-reality environment, 

messages from {Ri} and {Vi} have to be 
synchronized. 

In this section we shall explain the problems 
of controlling real AGVs with an ABM and of 
synchronizing the reality and the simulation. 

5.1 Real-Time Monitoring 

In real-time mode, all delays are compared to the 
worst-case execution time (WCET) of the body of 
the main control loop so to guarantee that no inputs 
from the plant will be lost or taken into account out 
of time. Therefore the control loop has a cycle 
period only compatible with robots whose embedded 
controllers can understand quite complex 
instructions, with execution times larger than the 
WCET of the model. 

This is the usual case in transport systems with 
lower-level parts of taxis executing actions such as 
“go to the next landmark”, “take the next turning to 
the right” or “dock at the machine pier”. 

To prevent ABM from missing input data or 
sending outdated orders, our model controls that all 
measured delays go above 2 times the model WCET.  

There are some alternatives to operate with 
delays closer to the WCET such as including time-
stamps into the messages or minimizing it by 
appropriately modifying the scheduling of agent 
execution, as presented by Mathieu and Secq (2012). 

 However, they are not implemented because 
experiments show that the previous rule is normally 
satisfied. 

For instance, a simulation of an ABM of the case 
study with 20 AGVs gives a WCET of 16mS. When 
operated with real robots, communication is 
estimated (we have real data only for up to 4 robots) 
to take an extra time of 20mS per control cycle. As a 
consequence, the ABM controller can handle real 
time at frequencies of 14 cycles per second. 
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This frequency implies that simulated ABM can 
control 20 real robots {Ri} with an spatial resolution 
under the cm, which is acceptable for the laboratory 
previously presented, even if working at 25% more 
than the maximum throughput of the top current 
analyzers (8000 tests/hour). Note that marks and 
objects are more than one cm away from each other. 

5.2 Synchronization with Reality 

The view of the model enables creating a mixed-
reality environment in which it is possible to design, 
supervise and control transport systems of 
applications. 

As already explained, the model records the 
actual delays between requests from Ti and 
corresponding acknowledgements from Ri, but also 
compares them to the delays from Vi. 

For every request-ack. pair between Ti and {Ri, 
Vi}, if the actual delay is longer, the view of the 
corresponding agent remains stand still until the time 
gap is covered. On the other side, if the real delay is 
shorter than the expected one, the view is updated 
for the missed, un-simulated time. This fact implies 
that the WCET must be twice as short as the shortest 
delay so that these extra periods required by the 
simulator to synchronize virtual robots to their 
physical counterparts do not cause any loss in inputs 
from the actual plant. Therefore this synchronizing 
mechanism works fine only if the control loop 
period is shorter than half the delays to be measured. 

6 CONCLUSIONS 

In this work we have focused on the internal 
transportation aspect of systems that run applications 
on the industrial domain and proposed a framework 
to design and deploy the corresponding subsystems. 

The framework uses an ABM simulator as a key 
tool that is used in the following cases: 1) for 
functional validation; 2) for plant characterization, 
which includes testing whether real time 
requirements are met, parameter identification, and 
controller setup, and 3) as a model for the controller 
of the transportation system, including a mixed-
reality environment for monitoring and supervising 
in human-assisted operation. 

We have shown that the higher levels can be 
simulated and, thus, verified in a straithforward 
manner and that it is possible to synchronize the 
model execution with the real plant to use it as an 
actual controller. 

Preliminar results show that the proposed 
strategy minimizes the time-to-prototype as the 
development platform is the same that the 
deployment one. 

In the near future we expect to have complete 
experimental results on real-time control with this 
framework and to develop strategies to solve 
synchronization conflicts when simulation and 
reality differ. 
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