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Abstract: Understanding the genetic basis of HIV-1 drug resistance is essential for antiretroviral drug development. 
We analyzed drug resistant mutations in HIV-1 protease and reverse transcriptase under 18 drug treatments. 
The analysis is challenging because there is a large number of possible mutation combinations that may 
jointly affect drug resistance. The mutations are also strongly correlated, imposing inference difficulties 
such as multi-colinearity issues. We applied a novel Bayesian algorithm to the drug resistance data. Our 
method efficiently identified clusters of mutations in HIV-1 protease and reverse transcriptase that are 
strongly and directly associated with drug resistance. In addition to marginal associations, we detected 
strong interactions among mutations at distant protein locations. Most identified protein positions are cross-
resistant to several drugs of the same types. The effects of interactions are mostly negative, suggesting a 
threshold mechanism for the genetics underlying HIV drug resistance. Our method is among the first to 
produce detailed structures of marginal and interactive associations in HIV-1 drug resistance studies, and is 
generally suitable for detecting high-order interactions in large-scale datasets with complex dependencies. 

1 INTRODUCTION 

Human Immunodeficiency Virus (HIV) is a 
retrovirus causing the acquired immunodeficiency 
syndrome (AIDS). There are two major types of 
HIV. HIV-1 is the most common strain of the virus 
that has caused global HIV infection, which is the 
main therapeutic target of interest. HIV-2, on the 
other hand, has relatively lower infectivity and is 
mainly confined within western Africa. Upon entry 
into the target cell, the viral RNA genome is reverse 
transcribed into double-stranded DNA. The resulting 
viral DNA is then imported into the cell nucleus and 
integrated into the host genome to begin replication 
anew. The development of the virus requires several 
critical viral enzymes, including protease (PR), 
which is essential for the life-cycle of HIV, and 
reverse transcriptase (RT), which reverse transcribes 
the single-stranded viral RNA genome back to 
double stranded DNA copies. The drugs for HIV 
treatment therefore are often targeting at these 
enzymes, including several types of protease 
inhibitors and reverse transcriptase inhibitors. The 
drugs work by binding to the active sites of the 
targeting proteins to disable their functions. 
However, due to the high mutation rates of 
retroviruses under selective pressure of drugs, the 

enzymes can rapidly change and thus lead to drug 
resistance. Due to protein structures, not all 
mutations are equally important to resistant drugs. 
The complicated mutation patterns are thus difficult 
to interpret (Shafer, 2002); (Liu and Shafer, 2006).  

By sequencing viral strains in the drug-treated-
patient isolates, the genotypic data have been 
generated for two major viral enzymes: PR and RT. 
Currently the Stanford HIV Drug Resistance 
database (http://hivdb.stanford.edu) contains nearly 
all published HIV-1 PR and RT sequences, along 
with their quantified drug resistance assays. Drug 
resistance of an isolate is measured by IC50 (half 
maximal inhibitory concentration), which is the 
concentration of a drug required for 50% 
inhibition in vitro. Using these data, our goal is to 
infer genotype (protein) and phenotype (drug 
resistance) relationships.  

Several statistical and machine learning methods 
have been attempted on these data to help predicting 
phenotypes from genotypes (Shafer, 2002); 
(Beerenwinkel, 2002); (Ravela et al., 2003); (Liu 
and Shafer, 2006); (Rhee et al., 2006); (Saigo et al., 
2007). However, prediction provides little insight on 
the genetic basis of drug resistance, and often their 
results are inconsistent when analyzing the same 
input data (Ravela et al., 2003); (Liu and Shafer 
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2006). In recent years, advanced statistical methods 
have been developed to particularly study the 
genotype-phenotype relationships, including the 
BVP model (Zhang et al., 2010) and the GKRR 
model (Hinkley et al., 2011). The BVP model is a 
Bayesian partitioning algorithm that recursively 
infers the dependence and conditional independence 
structures of mutations to drug resistance. BVP 
however requires pre-screening of a handful of 
amino acids that are likely to be associated with the 
phenotypes, and thus is not directly applicable to the 
original protein data of hundreds of amino acids. 
The GKRR model stands for generalized kernel 
ridge regression, which is a penalty-based regression 
method. Their approach can detect main and pair-
wise interaction of mutations in regression setting, 
but it is computationally prohibitive to detect higher 
order interactions. Penalty-based regression also 
may not produce consistent results in dependent 
data. 

In this paper, we develop a new Bayesian 
algorithm to analyze the HIV-1 drug resistance data. 
The algorithm is called BEAM3 (Zhang, 2011), 
which was originally developed for genome-wide 
disease association studies. Distinct from most 
existing approaches, BEAM3 has three main 
features: 1) it is computationally efficient and 
statistically powerful for detecting both marginal 
and joint associations of multiple variables in large 
datasets; 2) it automatically and sufficiently 
accounts for unknown strong dependence among 
variables, such that only the direct association with 
phenotypes are reported, while indirect associations 
are filtered to improve the mapping resolution; and 
3) it outputs a detailed graphical structure of how 
variables interact and jointly affect phenotypes. 
Previous comprehensive simulation studies have 
shown that BEAM3 outperforms many existing 
popular methods (Zhang, 2011). The datasets for 
disease association studies and HIV-1 drug 
resistance share similar properties. First, both studies 
involve genotypic data as predictors. Second, both 
studies identify genotype-phenotype relationships, 
with possibly complicated interactions. Third, in 
both studies, the genotype data are strongly 
correlated. We therefore believe that BEAM3 is 
suitable for the HIV-1 drug resistance analysis. 

Below we briefly introduce the BEAM3 method 
and describe how it is applied to the HIV-1 drug 
resistance data. We then present the results of our 
analysis on PR and RT genes under a variety of drug 
treatments. Our method detected many strong 
associations and interactions between protein 
mutations and drug resistance, and we found high-

degree of cross-resistance of mutations to various 
drugs of the same type. We further constructed 
interaction graphs for PR and RT. Our analysis 
suggested a threshold model of the genetic 
mechanism for HIV-1 drug resistance. We conclude 
with discussion of extensions of our method for 
HIV-1 drug resistance studies. 

2 MATERIAL AND METHODS 

2.1 Datasets and Pre-processing 

From the Stanford HIV Drug Resistance database, 
we downloaded the protein sequences of HIV PR 
and RT isolates and their assayed IC50 values by 
PhenoSense (Monogram Biosciences, South San 
Francisco, CA) under treatments of 7 PR drugs 
(ATV, IDV, LPV, NFV, RTV, SQV, TPV) and 11 
RT drugs (3TC, ABC, AZT, D4T, DDC, DDI, TDF, 
FTC, DLV, EFV, NVP), respectively. For PR gene, 
there are 11731 phenotypes (IC50 of 7 PR drugs) 
from 1727 isolates, and for RT gene, there are 8884 
phenotypes (IC50 of 11 RT drugs) from 1033 
isolates. These datasets have been previously filtered 
and analyzed (Rhee et al., 2006), and thus represent 
high quality data. We also downloaded the 
genotype-treatment datasets for PR and RT genes, 
respectively, where isolates received antiretrovials 
before isolation and sequencing serve as cases, and 
untreated isolates serve as controls. The bulk 
datasets contain 44371 isolates (12510 cases) for PR 
and 43995 isolates (18567 cases) for RT. 

Each dataset contains two types of information 
per isolate: the IC50 value and the protein mutations 
relative to a reference sequence (consensus subtype 
B obtained by aligning untreated isolates). We first 
pre-processed the data to convert the IC50 values 
into binary values 0 and 1 indicating non-resistant 
and resistant status, respectively. The conversion is 
done at the intermediate threshold levels provided in 
Rhee et al. (2006), i.e., we separated the isolates into 
cases and controls, where controls included isolates 
susceptible to drugs, and cases included isolates 
either moderately or stringently resistant to drugs. 
We further converted the protein data at each amino 
acid position to 0 and 1 corresponding to wild type 
and mutant, respectively, relative to the consensus. 

2.2 The BEAM3 Framework 

BEAM3 assumes two sets of input data X 
(genotypes) and Y (phenotypes). Let L denote the 
number of variables in X, i.e., X=(X1,…,XL). In our 
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case, L corresponds to the number of amino acids in 
a protein sequence, and Xi denotes the mutation 
status at the ith amino acid in all isolates. Let N 
denote the number of isolates, then Xi is a N-dim 
vector of mutation indicators, and Y=(Y1,…,YN) is a 
N-dim vector of drug resistance indicators.  

Our method is a full Bayesian approach that 
partitions the L amino acids in X into two non-
overlapping classes. Let I=(I1,…,IL) denote the class 
memberships of the L amino acids, with Ii=1 
denoting that the ith amino acid is directly 
associated with drug resistance, and Ii=0 denoting 
otherwise. Our task is then to learn from the data the 
best partition of the amino acids, and our targets of 
interest are those with indicators Ii=1.  

For notation simplicity, let X(0) and X(1) denote 
the collection of amino acids belonging to classes 0 
and 1 (Ii = 0 or 1), respectively. The full probability 
function can be expressed in the form:  

 

Pr(X,Y) = Pr(X(1)|Y)Pr(X(0)|X(1),Y)Pr(Y) (1)
 

Since we assume that class 0 amino acids X(0) are not 
directly associated with drug resistance (Y) given the 
directly associated class 1 amino acids X(1), we can 
drop Y from Pr(X(0)|X(1),Y), and our model becomes 

 

Pr(X,Y) = Pr(X(1)|Y)Pr(X(0)|X(1))Pr(Y) 
(2)

= [Pr(X(1)|Y)/Pr(X(1))]Pr(X)Pr(Y) 
 

It is seen that both Pr(X) and Pr(Y) are invariant with 
respect to any partition of X, and hence our model is 
proportional to the ratio Pr(X(1)|Y)/Pr(X(1)).  

This ratio is essentially evaluating whether or not 
the partition X(1) is indeed related with Y in the 
conditional probabilistic sense compared to its 
marginal distribution Pr(X(1)). In a Bayesian 
framework, the complexity of the probabilistic 
functions in both numerator and denominator of the 
ratio are accounted for by the priors of model 
parameters. Our method therefore can avoid over-
fitting the data, as the numerator function is more 
complex than the denominator function. 

2.3 A Graphical Implementation 

We next define the detailed probability functions 
Pr(X(1)|Y) and Pr(X(1)). In our case, the data are 
categorical, and thus a simple choice could be the 
probability functions of multinomial distributions. A 
naïve usage of multinomial distributions, however, 
is not efficient when the number of variables in X(1) 
is large relative to the sample size. This is because 
the model complexity of saturated multinomial 
distributions increases exponentially with respect to 
the size of X(1). To reduce model complexity and 

thus improve the power of our method, we introduce 
an auxiliary variable G=(V, E), where G is an 
undirected acyclic graph with nodes (V) representing 
a finer partition of amino acids in X(1), and edges (E) 
connecting the nodes representing “interaction” 
(joint association) between sets of amino acids in 
X(1). There are two major advantages provided by 
this additional graph variable G. First, the model 
complexity of Pr(X(1)|Y) can be drastically reduced 
relative to saturated models and thus improves 
power. Second, G represents an interaction graph for 
“causative” drug resistant mutations, which can be 
used for model interpretation and future hypothesis 
testing of genetic interactions towards drug 
resistance. As an example, if a graph G 
reconstructed from the data consists of nodes 
V={{3,6}, {7}, {9}, {11}} and edges E={{3,6}-{7}, 
{3,6}-{9}}, we can interpret the model as that amino 
acids at positions 3, 6, 7, 9, 11 are directly 
associated with drug resistance, while other 
positions are not. In addition, amino acids {3,6,7} 
are jointly associated with drug resistance, so are 
{3,6,9}. Amino acid {11} is marginally associated 
(independent of others), while {7} and {9} are 
conditionally independent given {3,6}. 

We rewrite Pr(X(1)|Y) as Pr(X(1),G|Y), where the 
latter can be decomposed by chain rules as a product 
of marginal and conditional probability functions for 
nodes and edges in G. In particular,  

 

Pr(X(1),G|Y) 
(3)

=vVPr(Xv|Y){u~v}EPr(X{u,v}|Y)/Pr(Xu|Y)Pr(Xv|Y) 
 

where {u~v}E denotes the pairs of connected 
nodes u and v in the graph. We then specify each 
probabilistic function Pr(Xv|Y) as the ratio between 
Pr(Xv,Y) and Pr(Y) by using multinomial 
distributions for each. We further integrate out 
multinomial parameters using Dirichlet priors. In 
similar ways, we rewrite Pr(X(1)) as  
 

Pr(X(1)) = G*Pr(X(1),G*) (4)
 

which again utilizes a graphical structure, but the 
graph G* is different from G and is used  to capture 
the dependence among amino acids in X(1). Since 
Pr(X(1)) is in the denominator in (2), we marginalize 
out G* to improve the convergence of our method.  

For the priors of indicator vector I, we assign 
independent Bernoulli priors to each indicator 
variable Ii, where the Bernoulli parameter is set at 
0.05/L by default. For the priors of graph G, we 
assign a Pitman-Yor process prior (Pitman and Yor, 
1997) to the number of nodes in the graph, and 
assign a Bernoulli prior to each edge between two 
nodes (for presence or absence of the edge) with 
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default parameter 0.1. We further enforce that G is 
acyclic by letting the priors of cyclic graphs be 0. 

Our final model is written as 
 

Pr(X,Y)  Pr(X(1),G|Y) / G*Pr(X(1),G*) Pr(I) (5)
 

based on which we infer G and I from the data by 
Markov Chain Monte Carlo (MCMC) algorithms. 
More details of (5) can be found in Zhang (2011). 

2.4 Markov Chain Monte Carlo 

Our algorithm starts from a random partition of 
amino acids and a random graph on X(1). We update 
the membership variable I of each amino acid 
iteratively, and if the membership is changed, we 
further update graph G. At each step, we update Ii 
conditioning on the other parameters (I-i,G-i), where 
the subscript “-i” indicates the corresponding 
variables excluding Xi. Let Inew denote the new 
partition variable with I-i fixed but Ii=0 or 1. Let 
X(1)

new denote the new set of variables in class 1, 
including all variables (excluding Xi) previously in 
X(1), and also include Xi if Ii=1. We sample the 
values of Ii from the following marginalized 
probability function that is proportional to  

 

G Pr(X(1)
new,G|Y) / G*Pr(X(1)

new,G*)Pr(Inew) (6)
 

Here, the marginalization is done over all possible 
graphs G that includes Xi and the fixed subgraph G-i. 
After updating Ii, and if its value is 1, we sample a 
new graph Gnew by adding Xi to the subgraph G-i 
according to the probability function  
 

Pr(X(1),Gnew|Y,G-i) / G*Pr(X(1),G*) (7)
 

On the other hand, if the value of Ii is 0, we simply 
remove Xi from graph G. We repeat the above 
procedure until the algorithm converges, and then 
collect posterior samples of I and G. We exclude 
samples from the first few iterations as burn-in. 

Our method outputs two types of results. One is 
the posterior probability of association with drug 
resistance at each amino acid position. The 
probabilities are represented as a summation of two 
quantities: marginal association probability and joint 
association probability. Here, marginal association 
means that the amino acid is related with drug 
resistance independently of other amino acids, where 
joint association means the amino acid is 
“interacting” with other amino acids and they jointly 
affect drug resistance. We put a quotation mark on 
interaction because mathematical definition of 
interaction is not given in our context, and it is more 
appropriate to say joint association. The second type 
of results output by our method is a graphical 

structure of how amino acids “interact” to affect 
drug resistance, where “interactions” are represented 
by edges between nodes. For simplicity, we only 
output marginal posterior modes of nodes and edges. 

3 RESULTS 

3.1 Drug Resistant Positions 

We ran our program on the 18 datasets of 11 PR and 
7 RT drug treatments. Each dataset contains treated-
patient isolates of one drug. We first pre-processed 
the data as described in Methods, and we ran our 
program on each dataset for 100 burn-in iterations 
followed by 100 sampling iterations. Running time 
of the algorithm ranges from a few minutes to one 
hour, depending on the complexity of the true 
association structure in each dataset. The protein, the 
drug, and the number of cases and controls in each 
dataset are summarized in Table 1. 

Table 1: Summary of HIV-1 drug datasets (*estimated 
number of positions associated with drug resistance). 

Gene Drug # Case # Control k* 

PR 

ATV 603 410 25.7 
IDV 888 734 34.7 
LPV 787 535 30.0 
NFV 1055 620 33.7 
RTV 930 660 30.8 
SQV 745 895 30.2 
TPV 215 529 9.1 

RT 

3TC 651 287 6.1 
ABC 524 239 8.0 
AZT 508 425 21.4 
D4T 467 469 13.6 
DDC 275 215 4.1 
DDI 449 487 11.0 
FTC 118 49 3.5 
TDF 198 357 7.3 
DLV 420 549 4.1 
EFV 429 553 8.8 
NVP 510 489 8.3 

 

We output the posterior probabilities of each 
amino acid position associated with drug resistance. 
Using these probabilities, we first estimated the 
number of positions showing direct association with 
drug resistance by summing the posterior 
probabilities over all amino acids. Unlike 
conventional approaches, our method sufficiently 
accounts for variable dependence, and hence our 
estimates are accurate and reliable (Zhang 2011). As 
shown in the last row of Table 1, we observed fairly 
consistent results in PR gene. There are ~30 amino 
acids out of 99 in PR sequence that are associated 
with drug resistance for 6 different PR inhibitors. 
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Figure 1: Left: posterior probability (y-axis) of drug resistance per amino acid position (x-axis) in protease. The bottom plot 
shown in red is obtained from the bulk dataset with all 7 PR drugs combined and additional isolates. Right: heatmap of 
correlation of PR drug resistance association posterior probabilities. 

 

Figure 2: Left: posterior probability (y-axis) of drug resistance per amino acid position (x-axis) in reverse transcriptase. The 
bottom plot shown in red is obtained from the bulk dataset with all 11 RT drugs combined and additional isolates. Right: 
heatmap of correlation of RT drug resistance association posterior probabilities. 

The only exception is TPV, for which we 
estimated only 9.1 positions with direct association. 
This is likely due to its relatively smaller sample 
size. For RT gene, interestingly, we observed 
uniformly smaller number (~8) of associated 
positions than in PR gene, despite of the fact that 
there are more (~245) amino acids in the RT 
sequence (although there are 560 positions in RT, 
nearly all mutants are found between positions 40-
240). In addition, our method suggested that most of 
the associated positions work together to jointly 
resist drugs. 

We show in Figures 1 the position-specific 
association probabilities for drug resistance in PR. 
The drug resistant positions are strikingly consistent 

across 6 out of 7 PR inhibitors (except for TPV). 
The consistency of the detected positions is known 
as cross-resistance to multiple drugs (Rhee et al., 
2006). We further show in Figure 1 the heatmap of 
pairwise correlation between PR drugs calculated 
from their position-specific association probabilities. 
We observed in the hierarchical tree that 6 PR drugs 
(except for TPV) formed a main cluster, and within 
which (NFV, SQV, IDV, RTV) were more closely. 
The relationships, however, were likely a result of 
the sample size effects of the PR datasets, because 
TPR, ATV, and LPV have the smallest sample sizes 
among the 7 PR drugs.  

We next show in Figure 2 the results for RT 
gene. Again, we observed strong cross-resistance 
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patterns. Among the 11 RT drugs, 3 (DLV, EFV, 
NVP) are nonnucleoside RT inhibitors (NNRTI) 
shown at the bottom of Figure 2, while the other 8 
RT drugs are nucleoside RT inhibitors (NRTI). 
Interestingly, the 3 NNRTIs share a common cross-
resistance pattern that is quite different from the 
cross-resistance pattern of the 8 NRTIs. It is further 
observed that the posterior probabilities of D4T and 
AZT were slightly but consistently different from 
the other NRTIs. These results, together, suggested 
three different resistance patterns in RT drugs. The 3 
clusters of RT drugs are also seen in the correlation 
heatmap in Figure 2, in which FTC appeared to be 
an outlier due to its small sample size. In addition to 
the individual drug datasets, we have also run our 
method on the bulk genotype-treatment datasets for 
PR and RT. The results are shown in the bottom of 
Figures 1 and 2, respectively. From the bulk 
datasets, we estimated that there are 29.7 amino acid 
positions in PR associated with drug resistance, 
which is similar to the numbers obtained from the 
individual PR drug datasets. In contrast, we 
estimated 32.4 drug resistant positions from the bulk 
RT dataset, much greater than those obtained from 
the individual RT drug datasets. The results from the 
bulk datasets also suggested that RT has greater 
diversity of drug resistance patterns than PR does. 

3.2 Correlations and Interactions 

We next evaluated the correlation and interaction of 
the mutation events across amino acids in each 
protein. Given the high-degree of cross-resistance 
for HIV-1 drugs of the same types, we focused on 
analyzing the bulk genotype-treatment datasets for 
PR and RT, respectively, which contained many 
more samples and thus provided more power. 

As shown in Figure 3(ab), both PR and RT 
demonstrated very strong local correlation of 
mutation events, with some distant correlations as 
well. The banded pattern of local correlation is due 
to the duplication and selection process of HIV-1 
viruses. Given the strong correlation of mutation 
events, it is statistically challenging to pinpoint the 
precise positions of drug resisting mutations. Our 
method automatically accounts for strong correlation 
among variables, and thus is able to identify the true 
interacting locations for drug resistance. As shown 
in Figure 3(cd), we highlighted some strong 
interaction hotspots between pairs of amino acids, 
including both local and distant interactions. Note 
that the distribution of interaction hotspots is very 
different from the distribution of strong correlations, 
suggesting that the interactions detected by our 

method are not confounded by correlation.  
We further show in Figure 4 the interaction 

graphs reconstructed by our method. These graphs 
provide detailed landscapes of how amino acids 
work together to resist drugs. The graphs are 
reconstructed such that each node represents an 
amino acid position with total (marginal+interacting) 
posterior probability of drug resistance >0.3, and 
each edge represents an interaction with posterior 
probability >0.3. The threshold 0.3 is chosen such 
that the numbers of nodes included in the graph is 
close to the numbers (k) in Table 1. To our best 
knowledge, previous analyses of these datasets have 
not revealed such detailed relationships. 

 
       (a) |Correlation| for PR              (b) |Correlation| for RT 

 
        (c) Interaction for PR                (d) Interaction for RT 

 

Figure 3: (a, b): Heatmaps of the absolute Pearson 
correlation coefficients between amino acids in PR and 
RT, respectively. (c, d): Heatmaps of the inferred posterior 
probability of pairwise interaction association in PR and 
RT, respectively. Diagonals show the marginal association 
probabilities. Circles highlight interaction hotspots. 

For PR gene (Figure 4a), we observed two major 
interacting clusters. Interestingly, the two clusters 
are relatively symmetric. We draw the amino acid 
positions in two colors: red and green correspond to 
the left half (amino acids [1-49]) and the right half 
(amino acids [50-99] of the protease sequence, 
respectively. In the left cluster in Figure 4(a), there 
are many left-half (red) amino acids interacting with 
a few right-half (green) amino acids, whereas in the 
right cluster, we observed the opposite pattern: many 
right-half (green) amino acids are interacting with a 
few left-half (red) amino acids. The X-ray 3D 
structure of HIV-1 protease revealed that PR is 
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(a) Interaction graph for PR 

 
(b) Interaction graph for RT 

 

Figure 4: Interaction graphs constructed by our method for (a) PR and (b) RT, respectively. Within each node we show the 
corresponding amino acid position along with its association probability in parenthesis. Each edge represents the joint 
association between two nodes, along with interaction probabilities. In (a), red and green colors represent amino acids in the 
first half [1-49] and the second half [50-99] of protease, respectively. In (b), green and red colors represent the finger and 
the palm domain of reverse transcriptase, respectively. 

composed of a homodimer, with each subunit 
consisting of 99 amino acids. It is thus plausible that 
the two clusters of interacting sites correspond to the 
contact sites on the 3D structure of the two subunits 
of HIV-1 protease. The subunits come together to 
form a tunnel, and the active site of the protease is 
located in its interior (Spinelli et al., 1991). Two 
flexible flaps outside the tunnel move around to 
allow proteins to enter the tunnel. Mutations at the 
detected sites may have changed the way the tunnel 
opens and closes, which then lead to drug resistance.  

For RT gene (Figure 4b), we also draw the amino 
acid positions in two colors: red and green 
corresponding to the finger domain (amino acids [1-
84, 120-150]) and the palm domain (amino acids 
[85-119, 151-243]) of HIV-1 reverse transcriptase, 
respectively. All associated mutations we found are 
within the finger and palm domains. We observed 
several strong drug-resistant interactions between 
the finger and palm domains, and also within the 
palm domain. Interpreting these interactions based 
on the current datasets, however, is difficult, because 
the HIV-1 reverse transcriptase is composed of a 
heterodimer: p66 and p51 (Rodgers et al., 1995). 

While the p66 subunit consists of the full set of 560 
amino acids, the p51 subunit only consists of 450 of 
the 560 amino acids after post-translational 
modification. As a result, the two subunits serve 
different functions. While p66 is the catalytic 
subunit with DNA polymerase and RNase H 
activity, p51 is mainly responsible for stabilizing the 
p66 subunit. The mutations at the detected positions 
may affect the activity of either subunit, or both. 

3.3 Significant Interactions and Effects 

We finally used logistic regression to evaluate the 
effects and the statistical significance of the detected 
associations and interactions. We evaluated both 
main effects and pairwise interaction effects 
identified by our method. The regression terms are 
those with posterior probability >0.3 from the bulk 
datasets for PR and RT, respectively. To further 
measure model fitting, we calculated Akaike 
Information Criterion (AIC, Akaike, 1974) and 
Bayesian Information Criterion (BIC, DiCiccio et al. 
1997) of the main effect only model and the main + 
pairwise interaction effect model. 
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Table 2: Amino acid positions with significant main and pairwise interaction effects in (a) protease and (b) reverse 
transcriptase, respectively. The terms are classified by their significance levels. The minus sign indicates that the term has 
negative effects to drug resistance. (c) shows the model fit using main effects only and main + interaction effect models. 

(a) Protease 
P-value Positions with main effects Pairs of interacting positions 
0.05~0.01  (13,90), (25,91), (31,91), -(67,86), -(74,89), -(89,91) 
0.01~0.001 67 -(13,94), -(18,21), (21,91), (23, 84), -(36,90),  

-(51,83), (54,83), -(86,91) 
<0.001 -13, -14, 24, 25, 31, 33, -36, -37, -38, -40, -42, 

47, 49, 51, 55, -61, 62, -71, 74, 75, 77, 83, 85, 
86, 89, -90, 91, -94, -99 

(13,14), (21,36), (21,75), -(31,47), -(31,83), -(31,89), 
-(33,91), (36,37), (36,38), -(47,91), -(55,91),  
-(83,90), -(85,91) 

(b) Reverse Transcriptase 
P-value Positions with main effects Pairs of interacting positions 
0.05~0.01 139, -177, 222 (71,215) 
0.01~0.001 -97 -(42,185), -(104,191) 
<0.001 42, 66, 70, 71, 76, -87, 91, 104, 107, 117, -122, 

123, 152, -159, -163, 182, 185, 189, 191, -201, 
-205, 211, -215, 216 

-(42,71), -(63,159), -(71,185), -(104,182),  
-(104,185), (159,163), -(182,185), -(182,191),  
-(185,191), -(185,216) 

(c) Model Fit 
 PR RT 

AIC BIC AIC BIC 
Main effect only 26736 27004 28736 28986 

Main effect + pairwise interaction 26374 26975 28194 28548 

 
As shown in Table 2(a,b), in both PR and RT, we 
identified strong interaction effects between 
mutations at different positions. Most of the detected 
effects are highly significant (p-value < 0.001), 
because those terms are identified by our method 
with large posterior probabilities (>0.3). We further 
show in Table 2(c) the comparison of the model fits 
between the main effect model and the main + 
interaction model. It is seen that the interaction 
model has much better (smaller) AIC and BIC 
values for both PR and RT. Combining all evidence 
we have shown, we believe that there are strong 
interactions among mutations at different positions 
in the protein sequence jointly resisting drugs. 

Interestingly, most interaction effects in the 
regression models are negative, suggesting that the 
effects of multiple mutations tend to be smaller than 
their additive values. This observation may indicate 
a threshold model for the genetic mechanism of drug 
resistance: once the joint effects of multiple 
mutations reached a threshold, it leads to a 
phenotypic change (such as disabling the protein’s 
active sites and resisting drugs), where additional 
mutations contribute no more. We also observed 
several negative main effects in both PR and RT, 
indicating marginal drug susceptible positions. 

4 CONCLUSIONS 

We have introduced a novel Bayesian method to 
analyze the complex mutation patterns for drug 
resistance in HIV-1 protease and reverse 
transcriptase. The important mutations identified by 
our method agree with those reported in previous 
studies (Johnson et al., 2008), but our results 
revealed stronger cross-resistance of the detected 
mutation sites, using posterior association 
probabilities, than by previous studies (Rhee et al, 
2006). In addition, we observed different groups of 
RT drugs that showed deviation of mutation patterns 
in drug resistance. The identified groups of drugs 
coincided with the NRTI and NNRTI drug 
categories, and within the NRTI drugs, D4T and 
AZT further showed slightly but consistently 
different mutation patterns from the others. The 
mutation patterns for cross-resistance as well as 
divergence to specific drugs revealed by our method 
can shed lights on the design of new antiretroviral 
drugs and on using genotypic drug resistance testing 
to select optimal therapy (Rhee et al 2006). For 
example, combination of drugs with the least cross-
resistance may be identified to improve the 
effectiveness of HIV-1 drug treatment. 

Using our method, we were able to reconstruct a 
sophisticated interaction graph delineating the 
detailed interaction relationships between amino 
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acid positions in each protein sequence. From the 
reconstructed interaction graphs, we observed 
clusters of mutations at distant locations that work 
together to resist drug binding. The mutation sites 
within an interacting cluster are likely in close 
contact in the protein folding space that jointly resist 
drug binding. Our logistic regression analysis using 
the identified interaction models revealed that most 
identified interaction effects are statistically 
significant, but have negative effects on drug 
resistance. This observation may suggest a threshold 
model that multiple occurrence of mutations up to a 
threshold is needed to resist drug binding. In 
addition, the negative main effects estimated by our 
regression model also indicated positions that may 
increase HIV-1 susceptibility to drugs. Follow-up 
investigation of the directions and properties of 
specific mutants at the identified amino acid 
positions can help us truly understanding their 
genetic mechanisms underlying drug resistance. 
Molecular dynamics (MD) simulations (Zhang et al. 
2010) can also be used to evaluate the molecular 
basis of how mutations interfere with drug binding. 

Previous works using the genotype-phenotype 
data from Stanford HIVdb were mostly focusing on 
predicting drug resistance from the genotype 
information. The phenotype data were all measured 
in vitro. Due to the complex disease progression and 
pharmacokinetic factors, however, the phenotypes 
measured in vitro may not necessarily imply 
virologic failure in vivo (Shafer, 2002). Also, 
predicting the failure of drug treatments does not in 
general help us understanding its genetic and 
molecular mechanisms, and provides little insights 
to the development of optimal therapies. Our 
analysis, in contrast, is not designed for predicting 
phenotypes, but for identifying important mutation 
sites and their interaction patterns that are directly 
influencing drug resistance. Given the observed 
strong correlation among mutations in PR and RT, 
precisely pinpointing the causative mutations from 
the genotype-phenotype data is an extremely 
challenging inference problem. Our method utilizes 
graphs to account for variable dependence. 
Extensive simulation studies (Zhang, 2011) have 
shown that our method is able to account for most 
complex dependence structures and is more 
powerful than existing methods to identify the true 
models underlying the data. Only until recently 
advanced statistical methods have been developed 
for analyzing the HIV-1 drug resistance data for 
detecting mutation interactions (Haq et al., 2009); 
Zhang et al., 2010); (Hinkley et al., 2011). Yet those 
methods do not sufficiently address the correlation 

problem, and thus have limitation in their abilities to 
find complex interactions. 

Our analysis of the Stanford HIVdb datasets is 
still preliminary. Several complications have not 
been considered in our current model. For 
simplicity, we only considered mutation versus wild 
type at each amino acid position. An obvious 
extension of the analysis is to include the specific 
mutation types into our model. We can solve this 
problem by introducing a dummy variable for each 
type of mutants, and expanding the current datasets 
of L amino acids to L  p dummy variables, where p 
denotes the average number of different mutants per 
position. Such an extension is straightforward, 
although it requires further computing. Also, we 
only considered two categories of drug resistance 
levels in this study: susceptible versus intermediate 
to stringent resistance. Given that the basis function 
in our model is multinomial distribution, it is 
straightforward to extend the current model to 
include k levels of drug resistance. It is also possible 
to directly include the continuous IC50 values into 
our model by defining a continuous probability basis 
function. In addition, the bulk datasets we analyzed 
contain HIV-1 isolates from various studies of 
different drug treatments. It is thus possible that 
there are subpopulations in both treated and 
untreated samples. Population structure and possibly 
other confounding factors may bias our statistical 
analysis. A remedy is to perform isolate-matching 
(based on their genetic contents) between cases and 
controls before running our algorithm. Alternatively, 
we may design a hierarchical model for the drug 
resistance of different drugs, where each mutation 
can be classified as either cross-resistant or drug (or 
study) specific, depending on whether the 
distribution of the mutations agree across different 
drug treatments (or studies). Such an analysis will 
then directly reveal cross-resistant and drug-specific 
mutations interconnected in a hierarchal way for 
downstream use. Finally, HIV-1 integrase is another 
critical protein for the HIV development. It is 
desirable to further analyse the HIV-1 integrase drug 
resistance data if available. 

In summary, we have demonstrated the potential 
of our method and the feasibility of reconstructing 
the complex structure of mutation patterns in HIV-1 
drug resistance datasets. Further investigation of the 
growing Stanford HIVdb datasets and development 
of new advanced statistical methods are warranted 
for improving the potency of drugs to combat HIV 
resistance. Our method is also generally applicable 
to other studies for understanding the complex 
phenotype-genotype relationships, such as human 
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complex disease studies and cancer studies. 
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SOFTWARE 

The method discussed in this paper is implemented 
in the BEAM3 package and is freely available for 
academic use. The package can be downloaded at: 
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