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Abstract: In this paper, tone mapping operations based on the nonlinear Successive Mean Quantization Transform
(SMQT) are proposed in order to convert high dynamic range images to low dynamic range images. A SMQT-
based tone mapping applied on the luminance channel is derived as well as a SMQT-based method working
directly on all RGB channels. Both methods are compared to other state-of-the-art methods and produce visu-
ally similar results. The processing speeds of the SMQT-based methods are discussed and found to be some
of the fastest reported on a single CPU. Furthermore, additional improvement regarding the processing speed
and its impact on image quality is investigated.

1 INTRODUCTION etal., 2000).
TMOs can generally be divided into two broad

The real world scenes we experience in our daily life categories: global and local tone mapping (Reinhard
have a very wide range of luminance values. The etal., 2005). Global tone mapping techniques utilize
human visual system is capable of perceiving scenesa single, and typically highly nonlinear, spatially in-
over five orders of magnitude and can gradually adapt variant mapping function. In many cases the nonlin-
to scenes with dynamic ranges of over nine orders ear functions are combinations of logarithmic and/or
of magnitude (Duan and Qiu, 2004). While humans exponential operators (Reinhard et al., 2002; Drago
can perceive scenes over five orders the current con-et al., 2003; Reinhard, 2011). Global TMOs tend to
sumer products today typically has display and acqui- preserve the subjective perception of the scene and
sition technology ranging from two to three orders of have the advantage of being simple and fast. How-
magnitude. Hence, pursuing High Dynamic Range €ever, global processing may cause a loss of contrast,
(HDR) images is of interest in order to reduce the Whichis apparentin the loss of detail visibility (Zhang
discrepancy between consumer products and humarand Kamata, 2008). Local TMOs utilize local neigh-
perception. Recent trends in HDR imaging research borhood around a pixel in the mapping. This implies
involves design of HDR imaging sensors, HDR im- that two different HDR image pixels with the same
age generation techniques, encoding methods for effi-intensity can be mapped to different LDR image val-
cient transmission and algorithms designed to display ues. This can make the local TMOs bring out more
HDR images on Low Dynamic Range (LDR) devices details compared to a global method, but usually at a
(Bandoh et al., 2010; Barakat et al., 2008; Lu et al., cost of longer processing time. However, local meth-
2009). Tone Mapping Operation (TMO) is the pro- 0ds may also cause “halo” effects or ringing artifacts
cess of converting an HDR image to an LDR image. in the resulting LDR image (Reinhard et al., 2002).
The task of such a TMO needs to address the issue ofThe processing time of a TMO is also an issue; sev-
finding a good balance between emphasizing all fea- €ral of the existing methods are computationally ex-
tures in the image as well as presenting a good con-pensive. Hence, utilizing Graphics Processing Unit
trast while producing the LDR image. Several recent (GPU) (Zhao et al., 2008) or design of hardware ar-
proposed TMOs can be found in the literature (Chen chitecture (Wang et al., 2007) for existing methods
et al., 2005; Duan and Qiu, 2004; Liu et al., 2010; are of interest unless the TMO method used can run
Lee et al., 2010; Qiu et al., 2010; Kuang et al., 2007; atacceptable times on a single CPU.

Meylan and Susstrunk, 2006; Reinhard et al., 2002; In this paper, new global TMOs are proposed uti-
Reinhard and Devlin, 2005; Mantiuk et al., 2008; Du- lizing the nonlinear Successive Mean Quantization
rand and Dorsey, 2002; Drago et al., 2003; Pattanaik Transform (SMQT) (Nilsson et al., 2005b; Nilsson
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et al., 2005a). To the best of the author knowledge no (MQUSs). A MQU consists of three steps: a mean cal-
prior tone mapping operation of high dynamic range culation, a quantization and a split of the input set.
images based on the SMQT has been proposed or in- The first step of the MQU finds the mean of the
vestigated. The paper will show that the SMQT is data, denotel, according to

a good choice for mapping HDR images to LDR. In 1

particular, it will be shown that the method is fast, V=—" Y V(x. (2)
and gives reasonable visual results comparable to the |D| XeD
state-of-the-art. The second step uses the mean to quantize the values

Two versions of the tone mapping operations are of data points into{0,1}. A comparison function is
considered here, one working on luminance and onedefined as

version working directly on all RGB channels. The

framework of the luminance approach is in line with E(V(X).V) = { 1, ifV(x)>V 3)

other works (but they do not use or propose the use of 7)1 0, dse

the SMQT). The presented all channel approach is to |¢ ® denotes concatenation, then

the best of the author knowledge novel. It should be

emphasized that, in order to get a general framework, U— ®E (V(x),V) (4)

the derivation, experiments and processing speeds are

conducted using numbers in double precision describ-

ing the HDR image. Hence, if RGB histograms of

the HDR image is available, the processing described

could be performed on those histograms and lead to

further speed improvements. =
The paper is organized as follows. In the next sec- Do {XV(x) < V,vxe D}

tion formal description of the SMQT is revisited. Sec- D1 = {x[V(x)>V,vxe D},

tion 3 presents how the SMQT TMO works on Igml- where 7, propagates the left ané; propagates the

nance values as weII. as the all c_hannel RGB IMage (gt of the binary tree, see Fig. 1.

and makes a comparison. In section 4 the processing

speed is investigated and a comparison to other state-

of-the-art TMOs is performed. Finally, conclusions

are presented.

xXeD

is the mean quantized set. The géts the main out-
put from a MQU. The third step splits the input set
into two subsets:

(%)

2 DESCRIPTION OF THE SMQT - MQU! MQU b ---»

-y - -
/N /N
/ \ / \

In general, a data point in a set?D consisting of / \ / \
|D| = D data points are the input to the transform. ¥ ¥ 1 o _
The value of a data point is denoted Wyx). Note Figure 1: The operation of one Mean Quantization Unit
that the data structure can be arbitrary, thaDisan (MQU).
be a vector, a matrix or some arbitrary form. In this
paper, the seD is a HDR image of siz® =M x N
if gray-scale (luminance) arid = M x N x 3 if color.
The SMQT has only one parameter input: the
levelL (indirectly, it will also have the number of data
pointsD as an important input). The output set from
the transform is denoted(. It has the same form as
the input, that isD could be a color HDR image of
sizeM x N x 3 thenM is also a color image of size
M x N x 3 but with different range of values. The
transform of level from D to M is denoted

The output settl from a MQU is not a value or a
similarity coefficient as in the linear transforms. In-
stead, U can be interpreted as the structure DOf
Hence, the MQU is independent of the gain and bias
adjustments of the input.

The MQU constitutes the main computing unit for
the SMQT. The first level transform, SMQJTis based
on the output from a single MQU, wherd is the
output set at the root node. The outputs in the bi-
nary tree need extended notation. The output set from
one MQU in the tree is denoted ), wherel =
_ 1,2,...,L is the current level, and=1,2,...,2(-1

SMQTL =D — M. (1) is the output number for the MQU at levekee Fig. 2.
The SMQT function can be described by a binary Weighting of the values of the data points in the
tree where the vertices are Mean Quantization Units 7, , sets is performed and the final SMQIE found
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LDR. To simplify notation, the indiceg j andk are
dropped unless specifically required.
In general, a TMO can be seen as a 3-D matrix

mapping

Level 1: 261

Level 2: 2672

ILor = f(IHDR) (7)

where f(e) is the general tone mapping. One ap-
proach commonly adopted for tone mapping is to con-
vert the RGB to luminancé,ypg, as

Level 3: 283

Lupr = 0.299Rypr + 0.587GHpr+ 0.114BHpRr (8)

and perform a mapping pr = g(Lxpr) On the lumi-
nance only. To find the LDR color channels, the desat-
urated color-to-luminance ratios can be used (Schlick,
1994; Mantiuk et al., 2009)

Figure 2: The Successive Mean Quantization Transform
(SMQT) as a binary tree of Mean Quantization Units

(MQUs).

by adding the results. The weighting is performed by
21 at each level. Hence, the result for the SMQT

S
can be found in the following way Rior = (ﬁggg) Lior
S
L Glor = (%) s|-LDR )
M- = AX| V(=T 13 ha V(U ) -2~ Bior 1= (fﬂgg) Lipr
VX E D, YU ) € Uiy} wheres controls color saturation. Other techniques
(6) may be employed in order to correct the color result

As a consequence of this weighing, the number of (Mantiuk et al., 2009). Note that TMO utilizing the
quantlza_tlon IeveIS, denpted l@f_, for a S.tI'UCtUI'e. of mappmgg() re|y on luminance 0n|y, |mp|y|ng color
levelL will be QU = 2". Since the main aim hereisto  space conversion and that color information is later
produce low dynamic range images the most natural adjusted to achieve the final result.
choice isL = 8. Given an HDR image in red, green and blue for-

mat, Irge, @ TMO aims at finding a good balance
between image features, contrast and color fidelity.
3 SMQT-BASED TONE MAPPING ;I_’he_SMQhT has begnlshow; to r][avetdesr,]irable propt)(fer-
ies in achieving a balanced contrast enhancement for
OPERATIONS LDR gray-scale images (Nilsson et al., 2005b; Nils-
) ) ) ) son et al., 2005a). Note that the SMQT can be seen as

Most color imaging systems today use a single image g nonlinear compression of data points with a higher
sensor and a Color Filter Array (CFA) to capture full nymber of bits to a defined new, and lower, quan-
color images. A color filter array enables each pixel tjzation levelL set by the user. Hence, the SMQT
to Capture the intenSity of I|ght with different color can be used direct]y on gray-scaje HDR images and
Spectrum. The most common design of CFA is the one poss|b|||ty for HDR tone mapp|ng is to app'y it

GRGB Bayer pattern (Bayer, 1976) which consists of jn Juminance space, see Fig. 3. However, a different
two greens, one red, and one blue component. A CFA

image is then interpolated via a demosaicing algo- nor —{Zimn|—{Ea &)} Lo -{SMQTL ()} {Ea. O)}—> Tur
rithm and produces a final RGB color image. Hence,
in most cases color image are initially in RGB format Figure 3: HDR to LDR image using the SMQT on lumi-

from which the proposed TMOs are derived. nance channel as a tone mapping operator.
Let a RGB HDR image be denotddpr(i, j,K)
wherei = 0,1,....M — 1 is the row index, | = approach is also proposed here, the full RGB image

0,1,...,N — 1 the column index an# = 0,1,2 the (all channels) will be used to find a mapping func-
color channels red, green and blue. Addition- tion h(-) using the SMQT which then is employed
ally, let Rupr(i, j) = lnpr(i, j,0),Vi, j, Guor(i, j) = on the channels independently Bsor = h(RupR),
|HDR(i,j,1),Vi,j and BHDRG, j) = |HDR(i,j,2),Vi,j Gipr = h(GHDR) and Bipr = h(BHDR)- Thus, no

be the RGB matrices for the HDR image. Same nota- color space transformation needs to be employed (if
tions will follow for a LDR image, but with subscript  given an image already in RGB), see Fig. 4.
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(a) Tone mapping result by SMQT on luminance. (b) Tone mapping result by SMQT over all RGB channels.

Figure 5: Comparison between luminance SMQT TMO, procgsasinin Fig. 3, and all RGB channel SMQT TMO, processing
as in Fig. 4. The parameters used lre 8,y=1/2.2 ands= 0.8.

Inpp—— Lipp—45MQT, () |—>Irpn il

Figure 4: HDR to LDR image using the SMQT on all RGB
channels as a tone mapping operator.

all channel RGB SMQT, L=8

— = luminance channel SMQT, L=8|

(640 x 480, FPS: ~11.9

FPS

An exemplified comparison between the lumi-
nance version and all channel RGB SMQT-based
TMO can be found in Fig. 5, to the right of each image
the log-luminance of the HDR intensity is plotted ver- b : . . L T . T

sus the mapped intensity of the LDR image for each o e
PP y g Figure 6: FPS for different sizes of HDR images. Circles

color channel. .Note that a property following from with text indicate FPS for the SMQT-based all channel RGB
the SMQT applied on all channel RGB, as well as the 1y10.

luminance mapping according to Eq. 9, is that the or-
der of intensity values in R, G and B for a pixel will to increase its FPS more compared to the luminance
be the same in input and output since the channels useversion. For a timing comparison with other work,
the same monotone mapping, see Fig. 5. Mantiuk et al. implemented a TMO in Matlab and re-
ported a processing speed of 1.7 seconds (0.59 FPS)
on 2.6GHz CPU for a 1M-pixel image (Mantiuk et al.,
2008). The proposed luminance SMQT-based TMO
4 EXPERIMENTAL RESULTS achieves 3.60 FPS and the all channel RGB SMQT-
based TMO 3.80 FPS on a 2.13GHz CPU for a 1M-
pixel image. However, GPU and hardware architec-
ture solutions of TMOs naturally report higher frame
rates (Zhao et al., 2008; Wang et al., 2007). A vi-
ual comparison to other state-of-the-art TMOs can
e found in Fig. 7. The SMQT-based methods use the
parameterk = 8,y=1/2.2 ands= 0.8 and the other
TMOs use the default parameters defined in the Lu-
minance HDR software Note that the SMQT-based
' TMOs, similar to other state-of-the-art TMOs, pro-
duce naturally looking LDR images.

720p, FPS: ~4.1

1080p, FPS: ~1.9

8

The proposed luminance SMQT and all channel RGB
SMQT based TMO are implemented in Matfab
with parts of the SMQT operation rewritten in ANSI
C and wrapped to a mex file in order to gain speed.
The processing speed for the processing chains foun
in Fig. 3 and Fig. 4 (note that it includes gamma cor-
rection) for HDR images of various size can be found
in Fig.6. The processing speed between the lumi-
nance and all channel RGB method are very similar
but the all channel RGB is somewhat faster. This im-
plies that SMQT oM x N x 3 data points is similar to
SMQT onM x N data points with additional color to
luminance found in Eqg. 8 and producing color output
foundin Eq. 9. Hence, if the SMQT processing speed 1 uminance HDR version 2.2.1 from http://
can be reduced the all channel RGB TMO is expected tpfsgui.sourceforge.net/
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(c) HDR image Iwate from MPI.

(f) HDR image Snow from MPI. (9) HDR image MPI Atrium 1 from MPI.

Figure 7: Tone mapped HDR images. TMO by (A) Reinhard et atirf{Rard et al., 2002), (B) Durand and Dorsey (Durand
and Dorsey, 2002), (C) Drago et al. (Drago et al., 2003), (@ndMik et al. (Mantiuk et al., 2008), (E) the proposed
luminance channel SMQT-based method and (F) the proposetiaainel RGB SMQT-based method. Zooming in the pdf
images is recommended for detail studies.
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L= 1 2 3 4 5 6 7 8

Figure 9: Example of image quality on Stanford memorial fiffiedent levelsL. Top is SMQT-based all channel RGB tone
mapping operation. Bottom is SMQT-based luminance chaonel mapping operation.

10 \ \ \ \ — The all channel RGB method benefits more from the
of e e ST reduction in processing speed of the SMQT, for ex-
ample atL =5 the speed is more than 30% higher
in FPS compared to the luminance method on a one

megapixel image.

FPS

Naturally, the image quality decreases as the level
is decreased, see Fig. 9. A subjective observation
from the resulting images constructed with different
‘ ‘ ‘ levels is that arountl = 4 andL = 5 acceptable re-

. sults can be achieved. In order to objectify this state-
Figure 8: Processing speeds on a one megapixel image inment the Peak Signal to Noise Ratio (PSNR) is cal-
Frames Per Second (FPS) on a 2.13GHz CPU. The param-culated for the luminance of images and as reference

ab

3

eters used arg=1/2.2 ands=0.8. the eight bit image is used. The seven images found
] ] in Fig. 7 are used and the mean PSNR is calculated,
4.1 Improving Processing Speed see Fig.11(a). Selecting a threshold at 30 dB, which

has been found to be suitable from a psychophysical
While the processing speed for the proposed SMQT viewpoint (F. Xiao, 2005), coincide with choosing a
TMOs are some of the fastest reported on a single level around four for both methods. Additionally, the
CPU, with regard to implementation on embedded quality mapped to mean opinion scor&yos, from
systems, it is still desirable to achieve better process-HDR-VDP-2 (Mantiuk et al., 2011) is investigated.
ing speeds. The choice of the level used so far is The settings foQwos calculation are color encoding
L = 8, simply due to the fact that the aim is eight selected asRGB-display and pixels-per-degree as 30.
bit images. However, selecting a levellower can  The seven images found in Fig. 7 are used and the
be a direct way to reduce processing speed but with meanQyos is calculated, see Fig.11(b). Note that
reduced image quality. Note that the final output is aroundL = 5 the Quos starts dropping and PSNR
still desired to be eight bits and selectibgs a lower drops below 30 db at arourid= 4, hence this coin-
number results il bit output. Hence, a direct way to  cides well with the initial subjective statement from
again produce a eight bit result from any seledtesl observing Stanford memorial, see Fig. 9. Further-
to multiply the result from Fig. 3 or Fig. 4 with®2" more, the all channel RGB SMQT keeQgios higher
resulting in an eight bit image compared to luminance channel SMQT lak 5.
28-L (10) Hence, a reasonable conclusion from this analysis is
' that usingL = 5 could be a fair choice in order to
As mentioned, it is expected that the all channel reduce computation speed while retaining decent im-
RGB will benefit more than the luminance version in age quality. A comparison of processing speed using
a reduction of the SMQT processing speed, see Fig. 8.L = 5 can be found in Fig. 10.

I8 bit LDR = ILDR"
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all channel RGB SMQT
— -— - luminance channel SMQT

a0

QMOS
o
3

T

; ; ; ; ; ; ; ; ; ; ; ; — «— - Juminance channel SMQT
0 1 2 3 4 5 6 7 1 2 3 4 5 6 7
L L
(a) PSNR for different levels using level eight as reference (b) Quos quality measure for different levels using level eight demence.

Figure 11: Peak Signal to Noise Ration (PSNR) and qualitysmeaQyos) for different choices of level. The parameters
used argy=1/2.2 ands=0.8.

e S nel method achieves 12.5 FPS, on a VGA size image
T enea g o an and a 2.13 GHz computer.
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