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Abstract: In the diagnosis of complex industrial systems arise a lot of sever problems to solve due to the 
heterogeneous information sources, a large number of directly unmeasurable variables, which should be 
replaced by softsensing, big uncertainty of current information, temporal uncoherency of some 
measurements because of the very different requirements for the spectral window of corresponding signals 
in the different stages of the FDD (Fault Detection and Diagnosis) procedure. In the paper a hybrid 
approach of multistep procedure is considered for denoising of diagnostic information in order to achieve 
more realistic and more effective decision in a comparison with the conventional statistical approaches 
using some techniques from the Computational Intelligence like Neural Networks and Case- Based 
Reasoning. The main statements accepted in this investigation are: the different stages of complex 
diagnosis could require different information, different methods of partial diagnosis and different methods 
of decision making; the main method of hybridization is accepted to be consistent data and decision fusion; 
signal processing in particular diagnosis stages should be relevant to the main diagnostic goals in the stage. 
In the paper the proposed method for consistent fusion of data and decisions is implemented for on-
line vibrodiagnosis of mechanical condition of the industrial mill fan of steam boiler in Power 
plant. 

1 INTRODUCTION 

Modern diagnosis significantly extends the scope of 
measurements, information and methods used, as 
traditional techniques themselves turns out unable to 
work in the case of complex problems [10, 16]. 
Along with approved approaches based on models, 
intelligent methods using various techniques of 
computational intelligence increasingly enter: 
Neural Networks [16], Case Based Reasoning 
(CBR) [3,13,15,16], data and decision fusion [3,5,6]. 
A combination of different intelligent methods is 
increasingly observed [5,16,8] for using the 
advantages of each component in the hybrid scheme. 
Diagnosis of complex technological plants is a key 
element in the rapidly evolving field of Condition 
Based Monitoring and Maintenance (CBM) 
[1,9,10,12,14,16]. The complexity of CBM requires 

a new approach in decision making, given the great 
variety of possible solutions and the significant 
uncertainty [1,9,12]. The intelligent methods for 
decision making are an area of intense research in 
recent years [1.12]. 
The present work presents a method for intelligent 
decision making, based on consistent fusion of data 
and knowledge in conditions of heterogeneous 
information, large uncertainty and nonlinearity, 
using some ideas of last achievements in the area of 
signal denoising some new structures are proposed 
in order to overcome the drawbacks in complex 
systems diagnosis.  
It is recognized that the methods of hybridization in 
the field of intelligent decision making are 
promising approach, but require specific research to 
expand all its features for at least sufficiently wide 
class of problems. 

163

Hadjiski M. and Doukovska L.
CONSISTENT DATA AND DECISION FUSION OF HETEROGENEOUS INFORMATION DENOISING IN COMPLEX SYSTEMS DIAGNOSIS.
DOI: 10.5220/0005415401630169
In Proceedings of the First International Conference on Telecommunications and Remote Sensing (ICTRS 2012), pages 163-169
ISBN: 978-989-8565-28-0
Copyright c© 2012 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 PROBLEM STATEMENT 

In the diagnosis tasks of complex technological and 
mechanical plants emerge a set of difficulties. This 
paper tries to handle  with them using intelligent 
techniques to obtain more realistic and more 
effective solutions than the existing conventional 
technologies. 
Some assumptions are stated below: 

 The problem of deep diagnosis is decided as 
multistage procedure. 

 The different steps may require a different 
amount of information, different methods for 
diagnosis and different methods for decision 
making. 

 As a basic method for hybridization scheme 
with weighted linear combination of solutions 
is preferred. 

 The weights in fusion are determined by 
various metrics of closeness. 

 The quality of decision-making procedure of 
diagnostic solution is improved by: 
 Training to optimize the weights; 
 Inclusion of variable number of 

components in the procedure for decision 
making; 

 Using different number of information 
resources. 

The task becomes the combining of three different 
approaches – intelligent filtration  with analytical 
models, logical analysis based on Case Based 
Reasoning and conventional statistical analysis to 
achieve better diagnosis decision making quality. 

3 DATA AND DECISION FUSION 

3.1 Data fusion 

In the case of data alternatives solutions for 
intelligent data processing include: 

 Rejection of corrupted sections of data (non-
stationary, with gaps); 

 Replacement of data and/or sections of data 
(strings) to preserve the integrity of the 
processing sample (training of neural 
networks, statistical analysis); 

 Selection of parameters of the chosen filters 
with predefined structure (moving average, 
exponential smoothing); 

 Correction of available data sets of 
synchronized data, incompatible (data 

reconciliation) in respect of the fundamental 
requirements (material balance,  heat balance). 

Decisions   are made for particular action in 
the signals processing process, and in combining 
several actions  . 

iDM1

iA1

3.2 Decision fusion at higher diagnosis 
level 

Figure 1 shows a generalized scheme for the 
proposed multi-stage intelligent decision-making for 
diagnosis tasks of complex plants and systems. A 
three-stage procedure for Intelligent Decision 
Making (IDM) is adopted: 

 IDM1: solutions to the basic level, mainly 
related to faults detection; 

 IDM2: solutions to average depth of 
diagnosis, most often - without specific 
measurements; 

 IDM3: solutions for identification of complex 
faults or multiple faults. 

Generalized scheme for intelligent decision making 
diagnosis tasks for complex plants is shown in 
Figure 2. In addition to her local feedback, the main 
feedback from the plant itself is shown ( Figure 1) to 
improve the quality of decisions making. Thus, 
assessing both the procedure of decision making and 
the actions realizing it( ). iA1

Σ
Σ

Figure 1: Intelligent Decision Making 
 

Combining the solutions multi alternative for each 
level of IDM. The quality of decisions is measured 
by assessing the effectiveness of diagnosis and is 
improved by training based on modifying the 
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methods of decision making at the basic level 
 their number, as well as the fusion 

weights. 
,ijIDM

 

 
 

Figure 2: Generalized scheme of IDM 

 

3.3 Intelligent diagnosis decision 
making by fusion of data, 
information and knowledge. 

A scheme for consecutive diagnosis through fusion 
is shown in Figure 3. 

 

 
 

Figure 3: Consistent data and decision fusion 
 
With minor modifications, this scheme retains 

its validity in diagnosis of a broad class of complex 
plants from similar class. 

4 APPLICATION OF THE 
PROPOSED METHOD FOR 
DIAGNOSIS OF MILL FAN 

4.1     Characteristics of mill fans as 
objects of diagnosis 

Mill fans (MF) are key element in ensuring the 
reliable functioning of energy boilers burning low-
grade lignite. The structural scheme of MF with the  
necessary signage is shown in Figure 4, but details 
are given in [7, 8, 9]. 
 
 

dn
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САG
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Figure 4: Structure scheme, 

where 1 - Row fuel bunker, 2 - Row fuel feeder, 3 - 
Controller of row fuel feeder, 4 – Upper side of the 
furnace chamber, 5 - Gas intake shaft, 6 - Added cold 
air, 7 - Mill fan, 8 – Electric motor, 9 - Separator, 10 
- Dust concentrator, 11 - Hot secondary air, 12 - 
Main burners, 13 - Discharge burner, 14 - 
Synchronized  valves of discharge burners, �af – 
temperature of air-fuel mixture, �gis – temperature of 
intake drying gases, V – vibration, е – relative 
electric energy consumption, B – Throughput 
capacity of fuel, GCA – Flow rate of added cold air, nd 
– Position of discharge duct valve,  – Low fuel 
caloricity of working mass. 

W
LQ
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The MF diagnosis is embarrassed due to certain 
circumstances: 

 A lot of diagnostic parameters are hardly or 
are impossible to be measured fuel 
consummation, granulometric composition, 
coefficient of grindability, coal quality. 

 Real operation shows asymmetric wear of 
operative wheel blades, variable fan and 
grinding capacity between two successive 
repairs. 

 The measurements of abig number mill fan 
variables in the DCS or SCADA system are 
rather inaccurate due to the significant 
changeability of the conditions for 
measurements (wear, slagging, sensor 
pollution) and the great amount of external 
disturbances (dust and humidity of fuel, 
imprecise of coal, stohasticity of temperature 
of the intake oven gases due to non-
stationarity of the flame position) 

 The mill fan state is multidimensional. The 
basic components are grinding productiveness 
B [t/h], fan productiveness W [m3/h] and 
vibration state. 

 
Because of listed circumstances the vibrations of MF 
could be considered as nonlinear and extremely 
noised with very low relation vibrosignal/noise under 
certain assumptions. The MF nonlinear vibration 
could be represented with the next equation [9]: 

( ) ( )( ) (( tqftqftyF
dt
dy

dt
yd

PM 212

2

,2 +=++ ξ ))   (1) 

where y is amplitude of vibration, the disturbances in 
the right side of the equation may be presented as a 
function of exciting mechanical disturbances 
(damaged bearings, unbalanceness due to wear, etc.) 
qM and due to operational disturbances (loading, 
hydrodynamic instability) qp. 

The exciting effect of the mode disturbances 
qP(t) must be eliminated or to be reduced 
substantially at the stage of analysis. The exciting 
disturbance f1(.) is of a deterministic nature and it is 
possible to be nonstationary if the fault evolves (e.g. 
most often progressive wear leading to debalance). 
The operational disturbance f2(.) is of a cumulative 
nature (due to the co-effect of a variable loading, 
change in the coal composition, hydrodynamic 
instability) and stochastic. This may be used for 
processing of measured vibration signal to separate 
the effect from the mechanical excitement f1(.) of the 
observed vibrations. 

 

4.2     Experimental investigations 

To verify the effectiveness of the proposed above 
method of cascade data and decision fusion 
historical data for 8 months work of MF are used. 

The Fig.5 presents raw measurement data from 
the Experion DCS system for vibrations amplitude of 
the mill fan motor bearing block. The data are 
collected with 1 minute interval.  
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Figure 5: Vibrations amplitude for entire period of 
observations 

The following conclusions may be drawn from 
these data: 
 Because of the large discretization time 

T0 = 1 min these data belong to uncorrelated (due 
to the big values of T0) random processes. 
Therefore these temporal series may be used to 
isolate events in the MF vibration state but not 
for the detailed MF bearings’ diagnostics 
because it is impossible to determine spectra of 
MF vibrations in successive time intervals due to 
the general non-stationarity of the process as a 
result of the wearing-out of the working wheel. 

 Vibrosignals demonstrate significant unstability 
of the MF oscillations due to series of random 
exciting powers qp (equation (1)) – a change in 
the fuel composition, non-homogeneous filling 
of sectors in the working wheel, hydrodynamic 
instability due to a change in the flow for the 
input and output cross sections of the MF. This 
instability is also due to often interrupts and load 
changes. 

 There is observed non-monotonous rise of 
vibrations due to the joint action of leading 
factors – erosive wearing-out of the blades 
leading to a debalance of the working wheel and 
a random combined influence of the enumerated 
above exciting the oscillations mode factors (B BMF 
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– Throughput capacity of fuel,  – Low fuel 

caloricity of working mass, 

W
LQ

afθ  – Temperature 

of air-fuel mixture, gisθ  – Temperature of intake 

drying gases,  – Position of discharge duct 
valve). 

dn

 The root mean square deviation of the vibration 
amplitude Vσ  is changed during the cycle of the 
working wheel from one repair to another.This 
could be used an additional symptom for an 
isolation of an abnormity and also for a forecast. 

 Vibrosignals must be analyzed synchronously 
together with the extracts for the operational 

parameters ( afθ , gisθ , ) due to the high level 
of the noise in the causal-effective relations. 

dn

4.3     Implementation of the proposed 
method 

In order to make denoising of heterogeneous 
information from vibrosensors and a various regime 
parameters a consistent data and decision fusion is 
accomplished according the Fig. 6. 
fusion in Mill Fan state estimation 
As a main approach for data fusion Neural Networks 
(NN) are accepted. The intermediate result of the 
proposed intelligent filtration is illustrated in the 
Fig.7. 
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Figure 6: Scheme of sequential data and decision  
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Figure 7: Maximal density values of vibrations amplitude 
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4.4.    Application for Condition Based 
Maintenance of MF 

The MF vibration state may become a rather useful 
component of their diagnostics to determine their 
affiliation to some zone of efficiency - S1 – the 
normal one; S2 – partial damages; still possible 
exploitation with lowered mode parameters (e.g. 
loading) and measures for current maintenance 
(lubrication, jamming bolt joints of MF to the 
bearers, technological adjustments (angles of 
rotation of valves, jalousie); S3 – zone of serious 
damages, requiring immediate stopping at the first 
opportunity (stop the unit). 

Each of the diagnostic states Sj is related to a 
given discrete moment of time k and it also 
possesses a structure of the “attribute-value” type. 

 

 ( ) ( )( ) ( 3,2,1, )== ikHGkS j    (2) 

 

The current state ( )kSMB  of a mill fan is related 
to some diagnostic state Sj( k ) using a classifier of 
the “comparison-with defined-thresholds” type 
based on the values hi( k ) using a system of N rules 
Ri, for ( i=1,N ). 

According the proposed above method (Fig.3) a 
multistage procedure is accepted to estimate the 
mill fan vibrational state – , where the defined 
limits h

V
MBS

i
t are changed adaptively depending on the 

estimate of the root-mean-square value for the 
reduced noise in the registered vibrations.  

The actions for technical support M are 
represented as a multiset: 

( )4321 ,,, MMMMM =   (3) 

The components ( )4,1=iM i  are subsets with 
the following components: 

M1 – change in the mode parameters in cases of 
conditionally allowed diagnostic state, e.g. with 3 
elements. 

M2 – current repair, e.g. with 5 elements. 

M3 – replacing elements without big breaks of 
the mill fan operation, e.g. with 4 elements. 

M4 – stopping for repair, e.g. with 7 elements. 

It is accepted in the present paper that the basic 
part of the attributes in the problem section P and 
the solution S are presented by the simplest type of 

data: “number” and “symbol”. Still for some 
attributes such representation by pairs “attribute-
value” is incomplete and they (especially in the 
portion for the supporting activities M (13)) may 
include free text or they may contain links to other 
related external information. Part of this 
information may not be directly used in the CBR 
algorithm but it gives the operators an additional 
knowledge for secondary using of archived results 
from the mill fan exploitation. 

Independently on the presented significant 
difficulties during the determination of the vibration 
state of MF - , it is advisable to include it as an 
important component in the assessment of the 
overall technical state of mill fan. The assessment 
of the mill fan vibration state is a complex problem 
due to the exceptionally big uncertainty in the 
measurements which follows from the temporally 
re-covered changes of multimode factors. The mill 
fan vibration state ( ) is a valuable integral 
indicator for its working capacity. The 
determination and the usage of mill fan vibration 
state indicators are realistic and profitable for the 
operative staff because vibrosensors are obligatory 
for contemporary decentralized control DCS 
systems. 

V
MBS

V
MBS

5 CONCLUSIONS 

1. The proposed method allows resolving 
complex diagnostic tasks in multistage hierarchical 
sequence, which cannot be done in single stage 
procedure.  

2. Heterogeneous data from different resources 
could be used – direct and indirect measurements, 
data bases, case bases and knowledge bases. 

3. At each stage of decision making process the 
most appropriate method for fusion, FFD and 
decision making could be used. This allows 
improvement of decision making quality, based on 
the specific characteristics of the considered 
diagnostic problem. 

4. The method allows the fusion of particular 
procedures of decision making, which have 
different time evaluation scope, because of the 
different time characteristics. 

5. This method allows estimation of the decision 
quality at each hierarchical level, and based on this 
to improve the particular and the common 
procedure of decision making. 
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