
Multi-tenant Database Clusters for SaaS

Evgeny Boytsov and Valery Sokolov
Department of Computer Science,Yaroslavl State University, Yaroslavl, Russia

 {boytsovea, valery-sokolov}@yandex.ru

Keywords: Databases, SaaS, Multi-tenancy, Scalability.

Abstract: SaaS paradigm brings both many benefits to end users and many problems to software developers. One of
such problems is an implementation of a data storage, which is able to satisfy needs of clients of a service
provider, at the same time providing easy application interface for software developers and great
opportunities for administration and scaling. This paper provides a brief review of existing problems in the
field of organizing cloud data storages that are based on the relational data model and proposes the concept
of architecture of RDBMS cluster dedicated to serve multi-tenant cloud applications.

1 INTRODUCTION

One of most notable tendencies in the modern
software development industry is the shift to
Software as a Service (SaaS) paradigm. The main
ideas of this approach are the following.
 An application is developed as a system of

distributed services interacting with each other.
 All computing power and infrastructure needed

for operating an application is supplied by a
service provider.

 A fee for an application is taken on the basis of
actual usage.

The main advantage of this development approach
for customers is that all expenditures for deploying
infrastructure, required for correct and stable
operation of software suit, are taken by a service
provider. This fact should eliminate the need for a
customer to have his own IT staff and purchase new
computer equipment with every new release of an
application. Besides, this approach allows to
completely solve the problem of software updating,
because now it is done in a centralized manner by
the software company itself, that means, that all
customers always use the most recent (i.e. the most
safe and featured) version of an application.

However the «jump into clouds» brings not only
benefits, but also new problems mostly for
developers and administrators of such systems.

It is known that most of enterprise-level
applications are based on interaction with relational
databases. The de-facto standard for such data
storages are RDBMS. In recent years there was a
tendency to move the most of application logic to

the database tier expressed in appearing procedural
extensions of the SQL language. Modern RDBMS
are able to process very large arrays of data, fulfill
very complex data selection and data manipulation
queries. Most of software development specialists
are familiar with the SQL language and principles of
data organization in RDBMS.

In traditional on-premice applications data and a
database server are hosted by a customer, thus their
safety and availability are under responsibility of
customer's IT-staff. In the case of a cloud
application, data are hosted by (and thus are under
responsibility of) a service-provider which
undertakes to provide instant and fast access to them
for tens or hundreds of thousands of its clients
concurrently. Non-fulfillment of any of these two
requirements (speed and availability) would cause
penalties to the service provider, and, that is much
more important in the cloud industry, would worsen
the image of the provider. A typical service level
agreement for a cloud service guarantees its
availability of 99% (Candan et al., 2009). Thus,
maintenance of a cloud application implies large
expenditures to organization of the data storage,
caused by a need to store data of hundreds of
thousands of clients and their backup copies in order
to restore in case of failure. These expenditures can
drastically limit a barrier of entry to cloud business
and decrease provider’s profits. That is why a
common desire of SaaS vendors is to minimize costs
of data storing and to find architectural solutions that
would lead as much as possible to such a
minimization without compromising performance
and functionality of the application.

144
Boytsov E. and Sokolov V.
Multi-tenant Database Clusters for SaaS.
DOI: 10.5220/0004462101440149
In Proceedings of the Second International Symposium on Business Modeling and Software Design (BMSD 2012), pages 144-149
ISBN: 978-989-8565-26-6
Copyright c© 2012 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

One of such solutions is a multi-tenant
application (thus, also database) architecture. The
main idea of this approach is to share one instance of
an application among many tenants (companies
subscribed to the service), thus drastically reducing
expenditures to application servers, web-servers and
associated infrastructural elements. An application
design according to such architectural principles
imposes some restrictions to functionality, but it
brings unprecedented opportunities to scale the
solution and allows, having sufficient physical (or
virtual) computing power, to set up an unlimited
amount of application instances to serve clients.

However, these considerations do not apply to
database servers which are the first candidates to
become a bottleneck as the system grows. The
reason for this lies in the fact that, in a contrast to
application servers, database servers scale poorly.
To be more precise, application servers are able to
scale well just because they descend most of load to
the level of database servers, often just generating
SQL queries and performing simple post-processing
of the result. The database server should provide
reliable data storage, fast access, transactional
integrity and much more. A trend in recent years,
when the most of the application logic moved to the
database level, increased the load on this component
of the system even more. The total amount of data of
all provider's customers in cloud solutions and the
number of different queries that they have to
perform, make traditional database scaling
techniques (like vertical scaling or database
partitioning) even less ineffective than they were
earlier.

2 BACKGROUND: MODERN
WAYS OF ORGANIZING A
MULTI-TENANT
ARCHITECTURE

There has already been some experience in the field
of organizing cloud data storages (Chong et al.,
2006b). At the moment, there are two main
approaches to designing multi-tenant relational
database.

 Usage of shared tables for all clients with
attachment of tenant identifier to every record
— this is the shared table approach.

 Creation of the own set of tables for every
tenant (usually, these tables are united into one
database schema) — this is the shared process
approach.

Both approaches have its pros and cons.

2.1 Shared Table Approach

This approach is the most radical in answering a
question of sharing server resources. Its usage
requires adding a special column to every table in a
database which stores a tenant identifier to
distinguish data of different clients. Every SQL
query to the database of such architecture should be
supplemented with an additional WHERE/HAVING
predicate, that leaves in the query result only records
that belong to a specific client. There are also some
projects of SQL extensions (Schiller et al., 2011), that
allow to add such predicates automatically. The
advantages of the shared table approach are the
following:

 better usage of a disk space;
 small size of a data dictionary;
 better usage of a query planner's cache (i.e.

shorter time of query analyzing and generation
of its execution plan).

This approach also has some drawbacks. First of all,
it is the enlarging of the size of database tables and
their indexes (Jacobs and Aulbach, 2007). This
drawback results in a requirement of very high
qualification of developer of database queries, since
any mistake or inefficient solution can lead to
significant degradation of an application
performance. In second, usage of this approach
implies a need to always add predicate of selection
of data of a current tenant. This drawback leads to
access errors, when users of one tenant can see data
of another tenant in a case of a programmer error.
The above mentioned (Schiller et al., 2011) concepts
of extensions of the SQL language are possibly able
to solve this issue. The third issue of this approach is
a complexity of replication and backup copying of
data of a separate tenant.

In general, this approach shows good results,
when application's data schema does not contain
many tables, and a typical query is relatively simple.
If the above conditions are met, this approach allows
the most effective usage of hardware resources.

2.2 Shared Process Approach

This approach occupies an intermediate position in
solving a problem of sharing server resources,
between complete isolation of tenant's data in a
separate database and a shared storage of them in the
shared table approach. The separation of tenant's
data is achieved by creation of the own set of
database objects (tables, views, e.t.c.) for each
tenant. This approach has some advantages.

Multi-tenant Database Clusters for SaaS

145

 Unification of the code of database queries and
ease of writing new ones, because, in contrast to
the shared table approach, queries known to
operate only the current tenant's data, which
usually have relatively small size, and,
therefore, do not require a lot of memory and
other database server resources for their
execution (Jacobs and Aulbach, 2007).

 Relative ease of backup copying and data
replication of data of a single tenant.

 Decrease of data security risks since tenant's
data are grouped together in the own schema;

 Simplification of system administration.
But there are also some drawbacks of this approach.
Its usage makes data dictionary of a database very
large and heavyweight, decreasing overall database
performance. Because of that a query planner is
unable to use its cache effectively, that makes him
generate a new plan of execution for almost every
incoming query (Schiller et al., 2011). Compared to
the shared table approach, a disk space is used less
effectively (Schiller et al., 2011). Large amount of
database objects results in a very long and hard
procedure of a data structure change if it is required.

In general, this approach shows good results, if
an application data structure is complex, and a
typical query selects data from a large set of tables,
makes nested subqueries and other complex data
manipulations.

3 MOTIVATION: LIMITATIONS
OF EXISTING APPROACHES
AND GOALS OF THE
RESEARCH

Despite the fact that they are not directly supported
by most of database engines, both approaches are
successfully used by the software development
industry. However, generated databases are very
large and complex, and therefore they are hard to
manage. But every cloud application that aims to
have a large user base has to operate on dozens of
databases of such a complex structure. It is
physically impossible to place all clients into one
database. The highest level of database resource
consolidation known today is about 20 000 tenants
in one database with a relatively simple data
structure (Candan et al., 2009). A simple calculation
shows that even with such a high degree of resource
consolidation, a company would require 50 database
servers to serve 500 000 tenants, storing one backup
copy of data for each of them for load balancing and
data protection against failures and errors. In reality

such system would require much more database
servers.

But the quantity of database servers is not the
only problem in organization of a cloud cluster.
Even a more significant point is a load balancing for
the optimal usage of computing power and disk
space at the entire cluster level. The nature of a
cloud application is that the load on it is
unpredictable, it may rise and fall like an avalanche,
and "burst" of activity can occur from a variety of
tenants. To provide the required level of service, an
application should be able to dynamically adapt to
changing conditions by automatically redistributing
available resources. At the moment, there are no
software systems that are able to solve this problem,
as there are no clear requirements and approved
algorithms for them. This general problem assumes
the study of the following directions of research:

 development of algorithms of load balancing for
multi-tenant cloud database clusters;

 research of developed algorithms for efficiency
and safety, including imitation modelling and
stress testing;

 development of complex solution for organizing
multi-tenant cloud database clusters using
ordinary servers.

In the work we will focus our attention on the third
goal. The first and the second ones are supposed to
be studied in future.

4 SOLUTION REQUIREMENTS

The developed system would be intended for using
by small and medium-sized software companies,
and, therefore, should be designed to meet their
needs and capabilities. The following points are
important.

 Reliability and maximum guarantee of data
safety. The reputation is extremely important
for a cloud service provider, because his clients
have to trust him their data.

 Efficient usage of available resources, providing
maximum performance of an application.

 Similarity to traditional DBMS with minimal
possible corrections for the cloud application
specifics.

 Maximum horizontal scalability. The horizontal
scalability is preferred to vertical, as it is
cheaper and potentially allows infinitely
increase the performance of the system.

 Ease and automation of administration as the
manual administration of a very large and
complex infrastructure could lead to

Second International Symposium on Business Modeling and Software Design

146

management chaos and system unmaintain-
ability.

Let us list the main characteristics of multi-tenant
databases for cloud applications, which should be
taken into account when designing a cluster
management system.

First of all, it is the huge aggregate size of stored
data. As the provider must serve dozens and
hundreds of thousands of clients, the total amount of
data, which it is responsible for, is huge and
constantly growing with an unpredictable speed. But
the size of data of an average client is small. Since
we are talking about multi-tenant solutions, this
solution is likely to aim at small and medium-sized
companies (so called «Long Tail» (Chong and
Carraro, 2006a)), and therefore the number of users
and the size of data of an average tenant are not
large.

Another common point is the presence of shared
data. Usually any cloud application has some set of
data, which is shared among all tenants of the
provider. The size of that data is usually relatively
large, and modifications are very rare.

Since cloud solutions have centralized
architecture and a service provider is responsible for
the large amount of client’s data, it needs good
facilities for data backup and replication. Like in
traditional DBMS, data replication is used to balance
the load of database servers. The distinction is that
often the replication in cloud solutions is partial, i.e.
only data of one or some tenants are replicated. The
above mentioned shared data are also replicated.

Based on these requirements and features, we
present the proposed project of the cloud cluster
management system.

5 THE ARCHITECTURE OF
MULTI-TENANT DATABASE
CLUSTER MANAGEMENT
SYSTEM

The main idea of the proposed solution is to add a
new layer of abstraction between application and
database servers, functions of which are listed
below.

 Routing of queries from an application server to
an appropriate database server by the tenant
identifier.

 Management of tenant data distribution among
database servers, dynamic data redistribution
according to an average load of servers and

characteristics of different tenants activity in
time.

 Management of data replication between
database servers in the cluster.

 Management of data backuping.
 Providing a fault tolerance in the case of failure

of one or some of the cluster databases.
 Analysis of resource usage and system

diagnostics.
The system should be implemented as a set of
interconnected services, using its own database to
support a map of the cluster and collect statistics on
the system usage by tenants and characteristics of
the load. Shared process approach is going to be
used for tenants data separation at the level of a
single database. The choice of this approach is
explained by the fact that the system must be
sufficiently general and will not have in advance the
knowledge about a data structure required for an
application. Because one of the requirements of the
shared table approach is to add a service column to
every table in the database, it assumes much closer
familiarity with application data structure, and thus,
its usage is difficult for the generic system.
Moreover, the usage of a shared table approach
requires very good query optimization skills, and
thus does not hide the underlying structure of the
cluster from the developer. The general architecture
of the proposed system is shown in Figure 1.

We proceed to a more detailed consideration of
the above-mentioned functions of the system. The
proposed solution assumes an appearance of a new
element in a chain of interaction between application
and database servers. This new element is a
dedicated server which, transparently for application
servers, routes their queries to an appropriate
database server, basing on a tenant identifier
provided with a query, characteristics of the query
and statistics of the current system load. This is the
component application developers will deal with. In
fact, this component of the system is just a kind of a
proxy server which hides the details of the cluster
structure, and whose main purpose is to find as fast
as possible an executor for a query and route the
query to him. It makes a decision basing on a map of
a cluster.

It is important to note that a query routing server
has a small choice of executors for each query. If the
query implies data modification, there are no
alternative than to route it to the master database for
the tenant, because only there data modification is
permitted. If the query is read-only, it also could be
routed to a slave server, but in a general case there
would be just one or two slaves for a given master,
so even in this case the choice is very limited.

Multi-tenant Database Clusters for SaaS

147

Figure 1: Multi-tenant database cluster architecture.

Besides, it is important to mention that the
discussed component of the system can not use
expensive load balancing algorithms, because it
must operate in real-time. All it can use is its own
statistics on the number of queries sent to a specific
database server of a cluster, the execution of which
has not yet been completed. Basing on this runtime
data, it must make a decision on where to send the
next query.

The implementation of this component should
give a significant benefit in performance and ease of
cluster administration.

The second component of the system is the
replication and backup management server. Its
functions are clear from the title, but it is important
to note, that, unlike the traditional databases, in
multi-tenant solutions replication is almost always
partial, i.e. only a part of data is replicated. For
example, data from the first tenant schema could be
replicated to one database, from the second tenant
schema — to another, and the third tenant schema
itself could be a replica of a part of another database
from a cluster. Once again we recall that the data
change request can only be executed by the master
database of the tenant, and this consideration should
be taken into account during the distribution of
tenant data among servers to avoid hot spots.

The third component of the system will be a set
of agent-services placed at the same machines as
database servers. These small programs-daemons
should collect statistics about the load of the server
and monitor server state in a case of failure. All the
information collected would be sent to a central
server for processing and analysing and would be
used as an input data for the load balancing
algorithm.

The last and most important and complicated
component of the system is the data distribution and
load balancing server. Its main functions are:

 initial distribution of tenants data among servers
of a cluster during the system deployment or
addition of new servers or tenants;

 collecting the statistics about the system usage
by different tenants and their users;

 analyzing the load on the cluster, generation of
management reports;

 management of tenant data distribution, based
on the collected statistics, including the creation
of additional data copies and moving data to
other server;

 diagnosis of the system for the need of adding
new computing nodes and storage devices;

 managing the replication server.
This component of the system has the highest value,
since the performance of an application depends on
the success of its work. There are several key
indicators that can be used to evaluate its
effectiveness. First of all, it is the average response
time of a service i.e. an average time between the
arrival of a request and receiving a response to it. In
second, it is an availability of a service, i.e. what
percent of requests from the total number has been
executed successfully, which failed to meet a time
limit or other parameters, and which is not executed
at all. Both previous criterions are affected by the
average load of database servers. The cluster
management system must provide conditions, when
servers are relatively equally loaded, and there are
no idling servers when others fail to serve all
requests.

The core of load balancing system should
become an algorithm of cluster load analysis and
need for data redistribution. There are several
considerations that this algorithm should take into
account when making its decision about data
redistribution. First of all, it is a performance of
cluster servers. If the system is not homogenous,
proportions of its parts should be taken into account.
In second, it is free resources available. If the system
has free resources in its disposal, it makes sense to
use them by creating additional copies of tenant data
to increase the performance and the reliability of an
application. However, if the number of tenants
begins to grow, created redundant copies should be
removed. Some data distribution strategies can also
take into account the history of the individual tenant
activity. If users of tenant A actively use an
application, and users of tenant B don't, it makes
sense to move the data of tenant B to a busier server
and create fewer copies of them, since they unlikely
will cause problems for the service. The algorithm

Second International Symposium on Business Modeling and Software Design

148

should also prevent the creation of hot spots on
writing the data in a context of organization of
replication. The system should distribute master
servers for all tenants in an appropriate way, taking
into account the history of tenant activity.

6 CONCLUSIONS AND FUTURE
WORK

Thus, in this paper we presented some principles of
the architectural design of a multi-tenant database
cluster. The implementation of the proposed
architectural solutions should provide the framework
the usage of which will simplify the development of
applications according to the SaaS paradigm. Also,
the proposed approach should facilitate the
administration and maintenance of the cluster.

The above discussed algorithms for query
routing and tenant data distribution can be based on
a variety of strategies, and currently it is not clear
which of them should be preferred. From this it
follows that the most reasonable solution would be
to implement several variants of the algorithms and
choose the best in a general case according to the
results of imitation modelling and stress testing. It is
very likely that such versions will not be found and a
final implementation of the system will contain
several modifications of them, which showed
themselves as the best ones under some external
conditions. In this case a choice of an appropriate
version of algorithms would become a task of a
cluster management system administrator.

There are also some questions for a future work:

 the study of fault-tolerance of clusters in case of
failure of one or more servers;

 the study of customization complexity issues on
the side of application developers to satisfy
specific needs of clients;

 the study of effective strategies of data
replication.

REFERENCES

Chong, F., Carraro, G. (2006a). Architecture Strategies for
Catching the Long Tail. Microsoft Corp. Website.

Chong, F., Carraro, G., Wolter, R. (2006b). Multi-Tenant
Data Architecture. Microsoft Corp. Website.

Candan, K.S., Li, W., Phan, T., Zhou, M. (2009).
Frontiers in Information and Software as Services. in
Proc. ICDE, pages 1761-1768.

Jacobs, D., Aulbach, S. (2007). Ruminations on Multi-
Tenant Databases. In Proc. of BTW Conf., pages 514–
521.

Schiller, O., Schiller, B., Brodt, A., Mitschang, B. (2011).
Native Support of Multi-tenancy in RDBMS for
Software as a Service. Proceedings of the 14th
International Conference on Extending Database
Technology EDBT '11.

Multi-tenant Database Clusters for SaaS

149

