
A Comparison of Two Business Rules Engineering Approaches

Lex Wedemeijer
School of Computer Science, Open University, Valkenburgerweg 177, Heerlen, Netherlands

lex.wedemeijer@ou.nl

Keywords: Business Rules, Requirements Engineering, Aspect Oriented Modelling, Modelscope, Relation Algebra,
Ampersand.

Abstract: We compare two contemporary approaches under development for business rules engineering with the aim
to understand their coverage of business rules and their potentials for requirements engineering. One appro-
ach, Aspect Oriented Modeling, focuses on events, state transitions and the synchronization of transitions
between objects. The other approach, Ampersand, focuses on invariant rules that should be complied with
regardless of the business events taking place. Our comparison brings out that either method can adequately
capture some types of business rule, but not others. We conclude that a combination of the two approaches
may be a significant contribution to the methods and tools for business rules engineering currently available.

1 INTRODUCTION

All businesses operate according to rules. The rules,
whether formally acknowledged or tacitly assumed,
influence and control the behaviour of the business.
Various approaches to capture, model, implement
and enforce business rules exist (zur Mühlen and
Indulska, 2010). Still, which approach toward
requirements engineering for business rules is best
suited to what business environment is open for
debate. This paper looks at two contemporary
methods and tools under development. The first met-
hod is called Aspect Oriented Modelling, or AOM,
and it comes with a tool ModelScope (McNeile and
Roubtsova, 2010). The other method and tool is
called Ampersand (Joosten, 2007). We compare the
two by taking the leading example put forward by
proponents of one method, and redevelop that
example using the opposite method and toolset.

Our aim is to learn and understand about the
coverage of business rules and potential for require-
ments engineering, outlining major differences and
semantic issues that we encountered. Doing so may
provide useful insights to method engineers engaged
in the creation of new and improved approaches for
business rules engineering. However, our intent is
not to present a thorough evaluation of the two
approaches, that are as yet immature and lack a track
record of business engineering projects.

The outline of the paper is as follows.

Section 2 sets the stage. We introduce the notion
of Business Rule as the common ground, and we
discuss the selection of our two approaches.

Section 3 introduces the Ampersand leading
example, which is about an IT Service Desk, and we
discuss its redeveloped version using the AOM
approach and ModelScope tool. Section 4 describes
the fictitious Banking example of the AOM
approach and outline its redeveloped version using
the Ampersand approach and tool.

Lessons learned from the two translate-and-
redevelop exercises are presented in section 5.

Section 6 presents our conclusions. We advocate
as a future direction the integration of the two appro-
aches to combine their powers to capture, model,
implement and enforce business rules.

2 BUSINESS RULES IN
INFORMATION SYSTEMS

A business rule, as defined by the Business Rules
Group is "a statement that defines or constrains
some aspect of the business. It is intended to assert
business structure or to control or influence the
behavior of the business" (Hay, Kolber et al., 2003).
Rules can be classified into five broad categories:
transformation rules, integrity rules, derivation rules,
reaction rules, and production rules (Wagner, 2005).
Business rules can and will apply to people,
processes, and/or overall corporate behaviour, but in

113
Wedemeijer L.
A Comparison of Two Business Rules Engineering Approaches.
DOI: 10.5220/0004461701130121
In Proceedings of the Second International Symposium on Business Modeling and Software Design (BMSD 2012), pages 113-121
ISBN: 978-989-8565-26-6
Copyright c© 2012 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

this paper we will only consider rules explicitly cap-
tured in some information system of the business.

Business rules in an information system on the
one hand, describe and constrain the business data
(definitions and recorded data), i.e. the 'terms' and
'facts' referred to in the Business Rules Manifesto
(2003). On the other hand, the rules describe, guide
and constrain the business behaviour, i.e. the events
affecting the information in the system. It requires
that all types of event must be described, their
operations on data, and it should be clarified whether
a particular event should be prevented, discouraged
or encouraged according to the rules.

2.1 Selected Approaches

This paper is restricted to two approaches that we
selected for three reasons.

First and foremost, each approach is selected for
being based on just a single modelling paradigm,
and consequently, each is strong in capturing one
particular category of business rule as named above.

Second, the approaches are just emerging from
the laboratory phase and the comparison may help to
improve their fitness for use.

Third, their tools are open source and can be
studied in isolation, not being part of some dedicated
ERP system, database, or service bus infrastructure.

2.2 AOM and Modelscope Approach

AOM, Aspect Oriented Modelling in full, focuses on
transformation rules and the synchronisation of state
transitions of business objects. The AOM approach
aims to capture object behaviour and synchronize
(the composition of) multiple behaviours in the early
modelling stages of engineering projects.

AOM relies on Protocol Modelling (McNeile and
Simons 2006), an event-based paradigm in which
models are composed from behavioural components
called Protocol Machines (McNeile and Roubtsova,
2008). By composing and synchronizing behaviour
of distinct Protocol Machines, the approach provides
"a basis for defining reusable fine-grained behaviou-
ral abstractions" (McNeile and Simons 2006).

The tool to support this approach is called
ModelScope.

The Modellers' Guide (ModelScope version 2.0,
2004) describes it as "a state transition diagram
interpreter which understands how events change the
state of objects, what events an object can accept
based on its state, and how events create and destroy
relationships between objects" (p.6). The idea is that
a transition of a business object is accepted only if

both its pre- and post-state comply with the rules
expressed in ModelScope. Any violation of a rule is
detected by the tool. It then either rejects the
transition immediately (behaviourtype 'essential') or
prompts the user to explicitly allow it
(behaviourtype 'allowed'). Either way, the business
behaviour is guided towards rule compliance.

ModelScope offers a default user interface to
enter data about events, and a facility to provide per-
sistent data storage. The tool also provides callback
features for specifying inferences and calculations in
java code. These callbacks are invoked whenever an
event is presented to the model.

The ModelScope tool is available for free down-
load at: www.metamaxim.com

2.3 The Ampersand Approach

Ampersand focuses on integrity rules, or more
exactly on what is called invariant rules. These rules
are characterized as "agreements on business
conduct" that users in the business should comply
with at all times. Basically, Ampersand constitutes
"a syntactically sugared version of Relation Alge-
bra" (Michels, Joosten et al., 2011). The idea is that
the state of the business should at all times comply
with the agreements that are expressed as invariant
rules in Relation Algebra. Ampersand will determine
all the violations of all the rules and report them to
the user(s). Obviously, such listings contain derived
data only, but instead of being regarded as
superfluous data, the Ampersand approach views
these violations as triggers. Each rule violation
constitutes a signal to the user that work must be
done to remedy the problem, thereby guiding the
business behaviour towards rule compliance.

Ampersand is also the name of a software tool to
compile scripts written in the Ampersand vernacular.
The tool comes with a facility to provide persistent
data storage, and a user interface can also be speci-
fied for data entry. The tool can present a diagram of
the Conceptual Model complete with its populations
and rule obeisances. Moreover, it can also produce
an extensive functional-specifications document.

The Ampersand tool is available for free down-
load via the SourceForge community at:

www.sourceforge.com/ampersand

3 AMPERSAND TO AOM

This section describes the characteristics of the
Ampersand leading example, and outlines how this
example is redeveloped according to the AOM ap-

Second International Symposium on Business Modeling and Software Design

114

proach and using the ModelScope tool. The
challenge is to translate the invariant rules from
Ampersand into corresponding events with synchro-
nized state transitions in ModelScope.

3.1 IT Service Desk in Ampersand

The leading example for Ampersand is the IT
Service Desk. The Conceptual diagram, with 5
concepts and 7 relations, is depicted in figure 1. The
example lists several business rules. There are seve-
ral multiplicity constraints that concern one relation
only. The rules marked 1, 2 and 3, involve more than
just one relation. In Ampersand, these are known as
cyclic rules because the relations involved in them
can be seen to form a cycle in the diagram.

Figure 1: Conceptual diagram for Service Desk example.

The basic Ampersand script for this example
contains some 60 lines of code. This example was
translated into a ModelScope script of 500 lines of
code, plus 20 components with callbacks of some 25
lines of java code each. These counts are slightly
unfair though, because the Ampersand script lacks
the user interface specifications that had to be added
to the ModelScope script.

3.2 Translating to the AOM Approach

Findings from our translation effort are explained in
this section. The main point is that we find AOM to
be not very well suited to capture the invariant rules
which are of prime importance in Ampersand.

In redeveloping the above example as a Model-
Scope model, we decided to translate each concept,
and also each relation as a distinct object. The
argument for not capturing the Ampersand relations
as ModelScope relations will be explained below.

3.2.1 Integrity Rules

A major difference between Ampersand and AOM
was immediately encountered. The Relational
paradigm presumes two basic rules: Entity integrity
and Referential integrity. Entity integrity dictates
that every customer has a name that is unique among
all customers. To contrast, the Object-Oriented para-
digm does not assume such a rule, and ModelScope
does permit different customers to have identical
names. There is a demand that "the combination of
the OID and machine-type properties of a machine
must be unique in a system" (McNeile and Simons
2006) but as the system itself (i.e. ModelScope)
creates and controls the OID's, the demand is trivial
for the system, but not for the users. We had to make
explicit provisions in the ModelScope model to
capture the integrity rules:
− Entity Integrity is captured by rules that prohibit

the insertion of an object instance whenever its
name is either blank, or already present in that
concept. Moreover, we also made sure to pre-
vent duplicate tuples, i.e. we prohibit insertion
of any tuple already present in the relation.

− Referential Integrity is safeguarded by enfor-
cing certain events, not rules. In the user
interface, we ensure that the user can insert a
tuple only by selecting one instance of the sour-
ce object and one instance of the target object.
In addition, we provided Cascading Delete
events to supersede the default Delete events
that the user interface provides.

3.2.2 Lifecycle Support

Another difference between AOM and Ampersand is
in their dealing with object life cycles, specifically in
dealing with the end of the object life cycle. In
Ampersand, a tuple or atom that no longer records
relevant data about the real world is deleted from the
data store. But in ModelScope, object data is never
removed from storage; a tool feature that is
deliberately incorporated to keep track of the state
and the dynamics of any object instance at all times.

The designer however may introduce an object
state 'deleted' and ensure that instances in this state
will accept no events. Like integrity, this subtle
difference also requires considerable attention when
translating from Ampersand to AOM.

3.2.3 Multiplicity Rules

Multiplicity rules are not hard to implement in
ModelScope. Two distinct behaviours, named "Uni-
valent" and "Total", are included in the specification

A Comparison of Two Business Rules Engineering Approaches

115

of the designated relations. For ease of use, and for
consistency with Ampersand, we assigned both
behaviours the 'allowed' behaviourtype, i.e. Model-
Scope will signal any transition attempting to violate
univalence or totality, but the user can override the
signal and allow the transition.

Univalence can be handled per tuple of the rela-
tion. This behavioural component produces a signal
whenever a tuple is inserted but the tuple's source
object instance happens to be already represented in
another tuple of the same relation.

Total is slightly harder to deal with. A violation
of the Total multiplicity cannot be handled per tuple
of the relation, but the entire extension of the source
object has to be inspected. Even more: the insertion
of a new instance of the source object must be
allowed even though it means violating the
cardinality rule on all relations specified as Total.
This is because prohibiting the insertion of source
data would effectively halt all data processing.

The Ampersand example happens to have no
relations with injective or surjective cardinalities,
but these might have been provided for in much the
same way. Homogeneous-relation properties such as
reflexive, symmetric or transitive, may also be
provided for without much ado.

3.2.4 Why not Capture Relations as
Relations

We indicated how we translated Ampersand
relations to ModelScope objects, not relations. Our
reason for doing so is that in ModelScope, the notion
of 'relation' is restricted to functional relations only,
in keeping with Object-Oriented approaches (Booch,
Jacobson et al., 1997). That is, the tool enforces uni-
valence but not referential integrity for its relations.
In Ampersand however referential integrity holds
rigidly for all relations, but univalence is an option.
Turning the Ampersand relations into ModelScope
objects allowed us to safeguard the rules that
Ampersand had imposed on the various relations.

3.2.5 Rules Involving more than One
Relation

Three rules in the Ampersand leading example
involve more than one relation. Basically, all three
rules are inclusion assertions. The first one is just a
basic set inclusion (remember that by definition, a
relation is a special kind of set). The two other rules
use the relational composition operator, perhaps
better known as natural join (Codd 1970).

To translate these rules from Ampersand to
ModelScope, they must be written as rules for state

transition of business objects, and we must ensure
their proper synchronisation. We therefore need to
consider all state transitions that might violate the
rule; and also those that undo an existing violation.

We decided to create in ModelScope one
behavioural component (object type) for each rule.
In order to understand the impact of various
behaviourtypes for this object, we went so far as to
implement separate versions with distinct behaviour-
types for each rule. In doing this, we in fact merged
a Business Data Model and an uncoupled Business
Rules Model into a single ModelScope script.

For rule number 1, two transitions may produce a
violation: the addition of an accepted_by tuple, and
deletion of a told_to tuple. Likewise, a violation can
be remedied in two ways: by adding a tuple in the
former relation, or deleting one from the latter.

Whenever a composition of relations is involved,
the number of state transitions that potentially cause
or remedy a violation is multiplied. More
complicated rules for relations will require ever
more complex callback code to assess the effects of
a single event or state transition being presented to
the model. Indeed, the java callback code becomes
prohibitively complex even for invariant rules of
moderate size.

3.2.6 Once a Violation has been Allowed

The focus of Ampersand on invariant rules means
that it reports on the rule violations that it detects in
the persistent data. However, there is no notion of
persistent violations in AOM, and the ModelScope
tool does not provide any options to assess the stored
data for static violations. Still, a report of rule
violations in ModelScope similar to Ampersand can
be produced, but it takes some tinkering. This is
because rule violations are in fact derived data
instances, and the ModelScope tool is not well suited
to deal with this kind of derived data.

4 AOM TO AMPERSAND

The previous section described the translation of a
leading Ampersand example into a working example
for AOM. In this section we attempt the opposite
direction: we take a fictitious Banking example that
is leading for the AOM approach, and we outline
how it may be redeveloped using the Ampersand
approach and tool. The challenge is to translate the
events and synchronized state transitions from
ModelScope into a corresponding set of rules in
Ampersand.

Second International Symposium on Business Modeling and Software Design

116

4.1 Banking Example

A leading example for AOM is called Banking. A
diagram of behavioural components is depicted in
figure 2, leaving out some components such as Ad-
dress, Savings-Account and Transfer. The example
covers various events to be synchronized, such as
opening or closing a bank account, making deposits
or withdrawals, guarding against overdrawing an
account, and temporarily freezing an account in
order to prevent withdrawals.

The example consists of a ModelScope script of
about 100 lines of code, plus a dozen callback com-
ponents with between 5 and 25 lines of java code.
The Ampersand script after translation has 50 lines
of code. Again, the count is unfair because Amper-
sand proved inadequate to capture all the rules, and
we omitted details of the user interface specification.

Figure 2: Diagram for Banking example.

4.2 Translating to Ampersand

The main issues encountered in the translation are
explained in this section. We find the invariant rules
of Ampersand to be excellently suited to capture
several of the state transition rules in the example.
However, various other rules embedded in the state
transitions failed to be captured by Ampersand.

4.2.1 Determining Concepts and Relations

The diagram above is compliant with the AOM
approach, but not with the Relational paradigm that

Ampersand is based on. To create a working Am-
persand script, several adjustments had to be made.
For one, we omitted various derived attributes, states
and behaviours from the AOM model. Furthermore:
− regular attributes such as the customers' address,

and even the attributes that act as user-supplied
identifying names (Accountnumber, Full-name),
became concepts in their own right,

− as each behaviour-state is recorded by way of an
attribute with a pre-assigned (hard-coded) range
of possible values, we translated all STATES
attributes into distinct concepts, except for those
behaviours that have only a single state,

− three events in the AOM model carry an
important data item: the amount of the cash
deposits and withdrawals. This data must be re-
corded in the Ampersand model, and we added
the appropriate concepts and relations.

Figure 3 is the translated Conceptual diagram.

Figure 3: Conceptual diagram for Banking, translated.

4.2.2 Determining the Rules

Rules in the AOM example are expressed as
constraints on state transitions, with the aim to
guarantee that the data captured in the model cannot
enter states that have no counterpart in reality.

We expected that all of the state transition rules
in the AOM example would translate into non-cyclic
rules on relations in Ampersand. In general, non-
cyclic rules are expressed by way of one composite
relation and specific (named) states of concepts,
such as 'opened' or 'active', their most common type
being multiplicity constraints. Our expectation
proved to be correct, with just a few exceptions.

4.2.3 Implicit Capture of Cyclic Rule

When transferring money between accounts, the

A Comparison of Two Business Rules Engineering Approaches

117

withdrawn amount is assumed to be exactly equal to
the deposited amount. This requirement is imple-
mented implicitly, by having only one "amount"
attribute in the "Transfer" event, to be used in both
the Cash withdrawal and Cash deposit. We think that
equality ought to be made explicit as a business rule.

Likewise, when money is transferred, the two
accounts are assumed to be different. However, we
found that the ModelScope script did not intercept
transfers into the same account. The event was
accepted, but resulted in an unexplained error.

4.2.4 State Transitions Capture Invariant
Rule

The "Customer" object comes with three possible
states: 'registered', 'pending leave', and 'left'. The
Modellers Guide explains that before a customer
leaves the Bank, all of the accounts must be closed.
While the procedure to close the accounts is running,
the customer's state is labelled as 'pending leave'.

So the general idea is that a left Customer has no
open accounts. This is a splendid example of an
invariant rule. However, ModelScope does not cap-
ture this rule. Instead, it implements constraints on
state transitions simulating the process of a customer
leaving. But: once a customer has left, ModelScope
still accepts certain events for that customer, such as
(un)freezing the status, or even depositing cash into
his accounts that suddenly re-open. We attribute this
imperfection to complexity: the number of state
transitions to be accounted for rapidly rises as the
number of objects, behaviours and events increases.

4.2.5 Immutable Property

For some attributes or object states, no transition is
specified, e.g. the customer's Full Name, or a
customer who has status 'left'. By implication, the
attribute value or state will be for ever immutable. A
corresponding immutability-rule might be specified,
but we did not do so because Ampersand does not
support temporal rules nor pre- and post-states.

5 LESSONS TO BE LEARNED

Lessons to be learned from these two translate-and-
redevelop exercises are presented in this section. We
point out basic differences between the approaches,
and some weaknesses in the current tool support for
each approach are pointed out.

5.1 Paradigm Mismatches

Both approaches support business rule engineering,
but using fundamentally different paradigms.

5.1.1 Object-orientation vs Relation Algebra

A prime difference is the modelling paradigm
underlying each approach: OO versus Relation
Algebra. As a result, basic issues such as identity,
entity and referential integrity are treated widely
different as was discussed above.

5.1.2 Instance- vs Set-oriented Rules

A fundamental difference between AOM and the
Ampersand approach is that AOM is designed for
synchronization of events and state transitions on
individual object instances, i.e. it implements trans-
ition rules. Such rules are expressed and evaluated
on the basis of single instances following a fine-
grained behavioural analysis.

Ampersand however is geared towards invariant
rules expressed by assertions on entire relations.
This is a very compact and powerful way to specify
requirements on a large-scale, structural level. The
downside is that, if a rule involves many relations,
the details are lost of how a single state transition
may incur one or multiple rule violations.

5.1.3 Dealing with a Rule Violation

Both AOM and Ampersand acknowledge that in a
working business environment, a rule sometimes
needs to be violated. But here again, the approaches
are fundamental different.

The AOM approach focuses on state transitions,
and rules are maintained by permitting or forbidding
object transitions depending on pre- and post-states
of the objects involved in the event. If ModelScope
determines that some state transition rule is violated,
the event is either rejected offhand, or it is presented
to the user for acceptance (behaviourtype 'allowed').
But once accepted, the data is stored. Thus, violation
is regarded a dynamic, temporary phenomenon.

The Ampersand tool does not deal with transiti-
ons or pre- and post-states. It inspects the stored data
and calculates the (static) violations of the rules.
These are reported to the user, leaving it to the user
to assess the errors in the data and make amends.
The tool is not concerned with the particular events,
or chain of events, that may have caused the
violations.

Second International Symposium on Business Modeling and Software Design

118

5.2 Unresolved Issues

Apart from the fundamental mismatches mentioned
above, we also noticed several issues that need
attention in both approaches.

5.2.1 Workflow Support

It is a matter of opinion (Hofstede, van der Aalst, et
al., 2003) whether workflow specifications consti-
tute business rules, or whether they are just a way to
implement the underlying, more fundamental busi-
ness rules.

ModelScope takes a somewhat ambivalent posi-
tion by providing a behaviourtype 'desired'. It is
expressed only in the user interface, where it indi-
cates to the user which next step (event or transition)
is desired for an object instance, when that instance
happens to be on display. The engineer may apply
this behaviourtype, but the tool provides no proper
guidance or control. There is no link to some
encompassing workflow; nor is it clear how to go
about if different workflows desire conflicting state
transitions for a particular behaviour.

Ampersand takes the position that a workflow is
merely an implementation, one possible chain of ac-
tions that a user may undertake to remedy violations
and comply with all the invariant rules. Therefore,
Ampersand supports the user in remedying
violations, but it offers no features to support
detailed workflow design.

5.2.2 Derived Data

In practice, there is lots of derived data about, either
stored as persistent data or used on the fly in the
software code. Rules to control such data are
sometimes called 'projector' rules (Dietz, 2008). It is
a rule of thumb that derived data ought to be
eliminated from data models, but we encountered
several types of derived data in the examples.

One subtype of derived data is derived attribute
value, such as the balance of a bank account.
ModelScope can handle this kind of data very well
by way of java callback routines. Ampersand
however, relying on Relation Algebra only, does not
deal very well with derived values.

However, another subtype is derived existence
(or demise) of some instance of a concept or
relation. In particular, we may consider every rule
violation to be just such a derived instance. Here, the
situation is reversed: Ampersand is well suited to
handle such instances, but ModelScope can hardly
deal with derived object instances or life cycles.

5.3 Shortcomings of the Tools

Both the Ampersand and ModelScope approaches,
and their tools, are under development. Our
translation efforts brought out various points of
lacking user functionality, frustrating our goal of
comparising the two approaches. Such shortcomings
can well be mended in upcoming tool releases.

5.3.1 ModelScope Tool

The ModelScope interface offers a NAME attribute
for the user to identify objects. However, the tool
ignores these identifiers and uses internal object-
identifiers instead. This is a cause of confusion
whenever the user makes a mistake with identifiers,
such as accidentally entering the same identifying
name twice, which is accepted by the tool without
signalling the duplicate.

Another issue that needs attention is derived data
and code redundancy. It was mentioned how a
compound business rule will involve more than one
relation. Hence, every transition on any of those
relations has to assess the same rule. The implication
is that either the program code for that rule has to be
duplicated for each transition (with a certain risk of
becoming inconsistent if the code is edited), or some
derived data object must be designed in order to
encapsulate the code. ModelScope provides little
support for either solution.

Regrettably, the current tool version does not
generate diagrams or specifications for end users or
engineers to ease their understanding, or to help in
reviewing of the set of objects and events after
completion. Such documentation would be helpful
particularly if models grow in size and the numbers
of events that must be synchronized increase.

5.3.2 Ampersand Tool

The current implementation of Ampersand cannot
deal with rules that involve numeric calculations or
comparisons, nor timestamps and date intervals. As
a result, important business rules defy to be
implemented, such as the basic rule that the balance
of a bank account equals the sum of deposits minus
the sum of withdrawals, or the rule that the negative
balance of a Current account shall never be lower
than the limit set for it.

A further drawback of the current Ampersand
version is that it currently lacks a proper user
interface for entering and editing data.

A Comparison of Two Business Rules Engineering Approaches

119

6 CONCLUSIONS

We conducted a detailed comparison of two
emerging approaches and tools for modelling
business rules. The first one is called Aspect
Oriented Modelling (AOM) and comes with a tool
named ModelScope. The other approach and tool is
called Ampersand. By comparing these two, we
aimed to learn and understand about the impact and
consequences brought about by the choice of model-
ling approach underlying each method.

6.1 Conflicting Approaches

The two approaches were selected for focusing on
one particular category of rules. The AOM approach
is strong in transformation rules, and Ampersand is
strong in integrity (invariant) rules.

Our comparison efforts show the negative
consequences of this: AOM is weak in dealing with
invariant rules, especially compound ones. And
Ampersand provides poor support for state transition
rules. Moreover, our translate-and-redevelop exerci-
ses disclose semantic issues about each method that
were not previously noticed. The two approaches are
conflicting in important aspects:
− in the modelling paradigm, relational or object-

oriented, causing engineers to produce funda-
mentally different models,

− in the instance- or set-oriented perspective to be
taken for rules, and

− in how a violation is dealt with.
The implication is that prior to conducting an

actual analysis of business rules, a business engineer
must decide which approach is most suited to the
case at hand. If the case at hand is primarily concer-
ned with the proper processing of events, and
synchronization of dynamic state transitions for
multiple objects, then the AOM-approach is at an
advantage. A point of concern then is the size of the
model, and the number of state transitions to be
accounted for. If the focus is more on the static
states of large data collections, and compliance to
invariant rules, then the Ampersand approach seems
to be more appropriate.

In our view, the two approaches provide as yet
inadequate support for requirements engineering.
This may be no surprise as both approaches, and
their support tools, are still under development. The
current state of affairs is that both approaches have
serious drawbacks, and one approach is not superior
to the other. At present, neither supports all needs of
developers engaged in business rules engineering.

6.2 Limitations of the Comparison

In our comparison, we looked at only two small
examples of business context. A thorough evaluation
of the approaches would require a comparison of
quality, flexibility, maintainability and other features
of the delivered systems designs. But as the approa-
ches and their ways of working are just emerging
from the laboratory phase, no realistic operational
models and implementations were available to be
scrutinized and compared in our comparison.

Moreover, we selected the approaches for being
based on just a single modelling paradigm. We
found little support in either approach for the other
categories of business rules: workflow (reaction and
production rules), and derivation rules. From this, it
may be speculated that other approaches that target a
single modelling paradigm and a single category of
business rules, will also fall short in providing
adequate support for rule engineers in operational
business environments.

6.3 Direction for Development

We stipulate that approaches may well be combined
to augment one another. This is because system
engineering efforts generally involve aspects of
large-scale structural requirement analysis as well as
fine-grained behavioural analysis.

Ampersand enables to express invariant rules
that are attractively simple, yet have a wide impact,
as a single rule can encompass multiple relations
each with extensive populations. These features are
needed in early stages of requirements engineering,
when overall structure and consistency is the issue,
not detail.

The AOM approach is strong in the modelling of
events and synchronization of multiple behaviours,
important features in later stages of engineering,
when precise details are at stake.

An engineering approach and companion tool
combining the expressive power of invariant rules of
Ampersand with the detailed capabilities of control-
ling state transitions of AOM, would significantly
contribute to the field of business rules engineering.
It would permit to capture the invariant rules having
a large scope in the early stages of engineering,
whereas fine-grained rules for state transitions and
workflow rules could be added later on. We expect
that it is possible to reduce the size of the overall
models and to keep the number of state transitions
moderate. Combining the capabilities would reduce
the drawbacks of either approach, and provide a
more complete coverage of the engineering needs,

Second International Symposium on Business Modeling and Software Design

120

which in turn would result in a higher quality of
deliverables. Work to bring event synchronization
capabilities to the Ampersand metamodel has begun,
but it has not resolved all the fundamental
differences that must be overcome in the conflicting
approaches (Roubtsova, Joosten et al, 2010).

The final word has yet to be said for the best
approach and tool, depending on the kind of
business environment, to supporting business rules
and requirements engineering.

ACKNOWLEDGEMENTS

We wish to thank the organizers and reviewers of
the symposium on Business Modeling and Software
Design for their helpful comments on an earlier
version of this work. We also thank dr. Roubtsova
and prof. Joosten for their assistance with the
Modelscope and Ampersand toolsets.

REFERENCES

Booch G, Jacobson I, Rumbaugh J. Unified Modeling
Language, Rational Software Corporation, version 1.0,
(1997)

Business Rules Manifesto (2003). At: www.business
rulesgroup.org/brmanifesto.htm. Version 2.0. Edited
R.G. Ross. Last accessed 24 march 2012

Codd EF. (1970). A relational model of data for large
shared data banks. In: Communications of the ACM
13(6): 377-387.

Dietz JLG. (2008). On the Nature of Business Rules. In:
Advances in Enterprise Engineering eds. Dietz, Albani
and Barjis, Springer Berlin Heidelberg. 10: 1-15.

Hay JD, Kolber A, Anderson Healy K. (2003) Defining
Business Rules - what are they really. Final report.
BusinessRulesGroup. At: www.businessrulesgroup
.org/first_paper/BRG-whatisBR_3ed.pdf. Last
accessed 24 march 2012

Hofstede A ter, Aalst W van der, et al. (2003). Business
Process Management: A Survey. In: Business Process
Management. M. Weske, Springer Berlin / Heidelberg.
2678: 1019-1019.

Joosten S. (2007) Deriving Functional Specification from
Business Requirements with Ampersand. At: icommas
.ou.nl/wikiowi/images/e/e0/ampersand_
draft_2007nov.pdf. Last accessed 24 march 2012

McNeile A, Simons N. (2006) Protocol modelling: A
modelling approach that supports reusable behavioural
abstractions. In: Software and Systems Modeling 5(1):
91-107.

McNeile A, Roubtsova E. (2008). CSP parallel composi-
tion of aspect models. In: Proceedings of the 2008
AOSD workshop on Aspect-oriented modeling.
Brussels, Belgium, ACM: 13-18.

McNeile A, Roubtsova E. (2010). Aspect-Oriented
Development Using Protocol Modeling. In:
Transactions on Aspect-Oriented Software
Development VII. S. Katz, M. Mezini and J. Kienzle,
Springer Berlin / Heidelberg. 6210: 115-150.

Michels G, Joosten Se, van der Woude J, Joosten S.
(2011). Ampersand, Applying Relation Algebra in
Practice. In: RAMICS 2011, Relational and Algebraic
Methods in Computer Science. Rotterdam, The
Netherlands, May 30-June 3. H. de Swart, Springer
Berlin / Heidelberg. LNCS 6663: 280-293.

ModelScope Version 2.0 (2004), Modellers' Guide
Version 15. At: www.metamaxim.com. Last accessed
24 march 2012

Roubtsova E, Joosten S, Wedemeijer L. (2010) Behaviou-
ral model for a business rules based approach to model
services. June 2010. In: BM-FA '10: Proceedings of
the Second International Workshop on Behaviour
Modelling: Foundation and Applications.

Wagner G. (2005). Rule Modeling and Markup. In:
Reasoning Web. eds. N. Eisinger and J. Maluszynski,
Springer Berlin / Heidelberg 3564: 96-96.

zur Mühlen M, Indulska M. (2010). Modeling languages
for business processes and business rules: A represen-
tational analysis. In: Information Systems 35(4): 379-
390.

A Comparison of Two Business Rules Engineering Approaches

121

