Attacking Software Knowledge Erosion with
Gamification

Jan Nonnen

University of Bonn, Computer Science 111, Bonn, Germany

Abstract. In software development, every developer gains implicit software
knowledge. This knowledge may get lost or forgotten over time. Knowledge ero-
sion, however, can be countered by learning about code and concepts. In order to
achieve this, we propose the use of game elements in a development environment.
Games have already been used successfully to motivate learners. New team mem-
bers could also benefit from the approach presented. We discuss future research
and present initial solutions.

1 Introduction

During software development, each developer gains knowledge about the source code
in form of the concepts, ideas behind the code and where specific functionality can be
found. Even in its explicit form of knowledge, it needs to be learned and remembered.
Source code knowledge may be lost due to drop out of a project member [9]. This
lost knowledge then has to be regained by other team members through learning the
concepts and getting to know the code.

Since code writing is a creative process, learning and sharing of developer knowl-
edge is a crucial part of software development and knowledgement management [14].
Most of this knowledge is only kept implicit, thus in consequence it needs to be made
explicit for preservation. Furthermore, there may be a lack of long term motivation for
developers to contribute to a project [17]. In the context of open source software, new-
comers are additionally often struggling to get enough knowledge to start contributing.
Thereby, on the one hand we may have experienced and less motivated developers. On
the other hand the new developers may be inexperienced but motivated. Both of these
groups require different techniques for motivation and learning.

In this work, we propose to use game elements in a development tool. This tool
should prevent loss of knowledge by motivating developers to explore and discuss
source code. We focus on open source software, as the initial motivation differs for
paid developers in a software company. Still, we think that the proposed concepts can
also be used in other areas of software development. This work presents an initial re-
search proposal and illustrates future research areas in the context of gamification of
software development.

Section 2 introduces the concept of gamification. Section 3, elaborates the under-
lying motivation of games and categorise motivation types of gamers. In Section 4 ex-
amples for gamified tools and techniques in the context of software development and

Nonnen J..

Attacking Software Knowledge Erosion with Gamification.

DOI: 10.5220/0004175100030010

In Proceedings of the 3rd International Workshop on Software Knowledge (SKY-2012), pages 3-10
ISBN: 978-989-8565-32-7

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

knowledge management are given. Sections 5 and 6 discuss how gamification can be
used in software development to encourage software knowledge acquisition and shar-
ing. In the end we present future research opportunities.

2 Gamification

Gamification is “the use of game design elements in non-game contexts” [4]. A tool
that uses game elements is often called gamified tool. In this work, we refer to the term
”gaming” in the meaning of ludus from Gaillois [6], which represents a rule-bound,
competitive, goal-oriented play.

For finding elements of gamification, most literature, as well as this work, use the
list of ”Ten Ingredients of Great Games” by Reeves and Read [11]: Self-representation
with avatars; three-dimensional environments; narrative context; feedback; reputations,
ranks, and levels; marketplaces and economies; competition under explicit and enforced
rules; teams; configurable parallel communication systems; time pressure.

3 Motivation in Games

Games use elements to achieve long term motivation and enjoyment. One theory that
analyses what personal motivations are, is Self-Determination Theory (3.1). Still, not
everyone is motivated by the same kind of motivation. Taxonomies provide an overview
of common motivation categories in games, so called gamer types (3.2).

3.1 Self-Determination Theory

Self-Determination Theory (SDT) is a theory of human motivation and behaviour [3].
It divides motivation into intrinsic and extrinsic motivation. Intrinsic motivation for
an activity is primarily driven from within a person. As an example, a person may
read a book out of interest and not because of an external reward. Intrinsic motivation,
thus, is driven by the reward of carrying out an activity rather than from the result. On
the contrary, extrinsically motivated behaviour is performed in order to receive some
reward, e.g. one can get a good grade or a job promotion. Even a small admiration or
an acknowledgement from others can be seen as an extrinsic motivation.

Intrinsic motivation is the main motivation for learning and gaining deeper knowl-
edge [7]. Extrinsic rewards for learning thus should trigger intrinsic motivations. As an
example, one should not reward the result of a task, but rather exploring different solu-
tion strategies. It has been observed, that too much extrinsic rewards can even reduce
intrinsic motivation [2]. A child that is rewarded for drawing a picture may spend less
time with exploring different drawing materials and their effects.

3.2 Taxonomies of Gamer Types

Bartle [1] categorized player motivation into four different types. The categories are:
achievers, explorers, socializers and killers.

Achievers prefer to gain points, levels and other rewards in a game. In multiplayer
games, achievers want to show off their accomplishments to others, in single player they
usually want to achieve a 100% completion rating. Explorers play a game at their own
pace and enjoy to discover hidden areas or easter eggs. Many players as well play solely
for the social aspect and use games to meet other people. These socializers tend to form
friendships fast and try to help others. Competition with other players is preferred by
the so called killers. For most, they see a game as a kind of sport. Some killers also are
active in social or economic parts of multiplayer games.

Further research in player motivations was performed by Yee [16] and Radoff [10].
Yee suggested that taxonomies for player motivation should also consider quantitative
measures. This critique was incorporated into the recent taxonomy proposed by Radoff
[10]. The taxonomy is illustrated in Figure 1. The horizontal axis represents the number
of involved players and the vertical the reward types. Achievement and Cooperation
quadrants are equal to Bartle’s Achiever and Socializer. Immersion players want to
play a role, to explore a complex system or to feel a sense of connectedness to the
game world. Competing with other players, either directly or in form of high scores
is the focus of the Competition category. In the following we will use the taxonomy
presented by Radoff.

Qualitative
(Immersion] [Cooperationq
Few ; Many
Players (Players
[Achievement] { Competition]

Quantitative

Fig. 1. The gamer types presented by Radoff and their alignment.

4 Examples of Gamified Tools and Techniques

In the following section we present examples for gamified tools or techniques in the
area of software development. Table 1 categorises the below discussed examples and
their used game elements and supported gamer types. One can see, that most tools use
reputations, ranks or levels. None of these has an "in-tool” economy and only one uses
a narrative context.

4.1 Hudson Game Plugin

Hudson is a popular continous integration tool for software projects. It is open source
and extensible through plugins. The "Game Plugin?! represents a game where the com-
mitters get points for improving the builds and negative points for breaking the build. A
leader board shows all committers of a project and their respective score. It can utilize
static code analyses like Checkstyle? to award or punish a committer for removing or

! http:/iwiki.hudson-ci.org/display/HUDSON/The+Continuous+Integration+Game+plugin
2 http://checkstyle.sourceforge.net/

Table 1. Gamer types of gamified tools and techniques and the used game elements.

Competition, Leaderboard
Communication System

Avatars

3D Environment
Narrative Context
Feedback
Economies
Teams

Time Pressure
Immersion
Achievement
Cooperation
Competition

= |Reputation,Ranks,Levels

Clean Coder
Planning Poker
Hudson Game
TDGotchi
Teamfeed X
Stackoverflow X

<
x
x | x
H
<
<

x| x

X X X X
X X X X

x |x |x |x

adding design issues. This leader board provides a competition between developers by
visualizing who is on on top and who received the latest points. The tool further shows
the score of other builds/projects, thereby representing a competition aspect between
teams on the same server.

4.2 TDGotchi

TDGotchi® is a plugin for Eclipse. It represents a pet, which needs to be fed and cared
for. The pet feeds on green unit tests and refactorings. Unremedied and failing tests
make the pet hungry. If well fed, the pet evolves over different levels. The visualiza-
tion and game rules allow for a immersion of the developer with the pet. The different
maturity levels have different visualizations and provide a feeling of achievement and
feedback.

4.3 Clean Coder

The idea of clean code is based on the book by Robert C. Martin [8]. The clean code
developer wants to use the ideas presented in the book rigorously and to learn writing
clean code. In the clean coder community there are different grades for a learner?, simi-
lar to a martial arts degree. Every grade has a color and can be worn as a bracelet by the
developer. Explicit rules and durations are given for gaining or losing a degree. Every
evening a clean code developer should reflect upon, whether or not she has violated the
rules. The bracelet is worn during work to visualize for others and oneself, the degree
one has obtained.

4.4 Agile Planning Poker

Agile Planning Poker is a technique for estimating the effort of user stories in Agile

® http://www.happyprog.com/tdgotchi/
* http://www.clean-code-developer.com/

software development. It was first described by James Grenning in 2002. The moderator
gives information of a user story and can be asked questions. Every developer has an
identical set of cards with numbers. The numbers represent the estimates for the user
story. All players turn their chosen cards over simultaneously. A discussion is held
to resolve differences. This gives every player direct feedback on their estimate. The
process is repeated until a consensus is reached.

In Agile software development, educational games, e.g. the XP-Game® are widely
used as a way to familiarize the players with the development process. In contrast to
this, planning poker is used to gain knowledge about the user stories and the software.

45 Teamfeed

Singer and Schneider [13] created a web based newsfeed of version control commits.
The tool additionally shows a score board for every project. This allows developers in
a team to compete against each other. The tool was used in the software engineering
education process. One of the other goals was to improve the knowledge of software
development and to motivate the students. In the future, Singer and Schneider plan to
use this tool for teaching best coding practices.

4.6 Stack Overflow

Stack Overflow® is online community tailored for programmers. It supports asking and
answering questions about source code development. Every user can give feedback for
an answer or question by promoting or demoting it. Achievements are awarded for
contributing to the community and are then shown in user profiles. A scoreboard of the
most and least earned achievements can also be seen.

5 Motivation in Software Development

We argue that gamification elements can be used in software development to prevent the
loss of knowledge by motivating developers to gain new knowledge. Although these ele-
ments could possibly be used in proprietary software, we focus on open source software
in this work. In this context, four different grades of knowledge and acknowledgement
of developers can be identified: joiner, newcomer, expert and master.

A successful joining process in an open source project is mostly motivated by "use”
or "need” of the project [12]. For newcomers, adhering to a project specific ”joining
script” was observed to be useful. Still, those conventions may be only implicitly avail-
able.

In the study by Von Krogh [15], newcomers usually started by offering code for bug
fixes or other small tasks. Furthermore, he observed the phenomenon that newcomers
were expected to find tasks on their own. Nevertheless, selecting appropriate tasks and
estimating the task complexity already requires a significant level of project knowledge.
Newcomers usually lack in knowledge to be able to do these.

® http://www.xp.be/xpgame.html/
® http://stackoverflow.com/

In contrast to the initial motivation, long term commitment and involvement in an
open source project is motivated by enjoyment [12] and social identity recognition [5].
Zhou and Mockus [17] observed that the motivation decreased in the long term. They
argued, that the most influential factor for learning is motivation. Finally they con-
cluded, that it is necessary to attain a high motivation and enjoyment even for long term
contributors.

6 Research Question

Maintaining active knowledge in a development team is supported by providing indi-
vidual learning opportunities. We need to think of ways to support a developer with her
individual project experience and development skill. Therefore, we propose to use game
elements to provide a long term motivation for developers in open source software. This
would also provide a knowledge management and documentation of knowledge areas
within the team. The research questions are: Does gamification provide desired long-
term benefits and is an integration of game elements into a development environment
accepted by the developers. During design of gamified development tools, we addition-
ally need to appeal to the different gamer types presented above.

A similar approach by Microsoft, which adds achievements to Visual Studio’, was
recently released. In contrast to this, our approach focusses on preventing and coun-
tering loss of knowledge in a software project. Furthermore, the game elements we
propose are not only achievements.

In the following we present some game elements that we plan to integrate into a
development environment.

6.1 Achievements and Scoreboards

Achievements are a kind of virtual trophy and usually represent a type of extrinsic
motivation. As learning is often motivated by intrinsic motivation, achievements need
to be carefully selected to encourage exploration or social aspects.

In video games often the concept of a mentor is used. Experienced gamer can de-
clare themselves as mentors for fellow gamers. In order to reward the mentor for her
commitment, she receives a percentage of the rewards gained by the student. In gen-
eral, this scholarship ends after a specific time period or after the student reaches a
specific level. Public rewards for the tutor and the student act as social achievements or
as badges. We want to use this concept of scholarship to give an additional motivation
for experienced developers to assist a newcomer. Hence, this search for a mentor could
be included in a "joining script”. Expert or master developers could declare their will-
ingness to act as a mentor. The management and information on the scholarship should
be included in a development environment.

The Google Summer of Code® already represents this kind of scholarship for open
source development. Projects create tasks that can be solved over the summer. Students
are assisted by a tutor while working in a project.

" http://channel9.msdn.com/achievements
8 http://code.google.com/soc/

Furthermore, some tasks, e.g. improving readability or source comments, are often
only unwillingly done. We plan to research in how far achievements can be used to
increase the developer’s motivation to do these tasks and improve the quality.

6.2 Reputation, Levels and Rewards

The transition in open source projects from joiner to newcomer usually has some form
of benefits. For example commit rights may be restricted to a set of people and may
be given after reaching newcomer status. Experts and master may further gain decision
rights for the overall development direction and release planning.

Zhou and Mockus [17] stated that recognition and the reasons for gaining these
reward were not always transparent and clear to the involved developers.

In games, a common reward is to give the gamer experience points for their actions
and achievements. By gaining enough experience points the gamer reaches a new “expe-
rience level”. This technique could be used also with the above presented achievements
and scoreboards. Every development interaction within the software project could be
rewarded with experience points. This would reflect the implicit learning effect.

An overview of accumulated experience points, e.g. in form of levels, would help
to counter the issues that Zhou and Mockus [17] identified. An scoreboard of all de-
velopers and their levels additionally could ease the identification of active and experi-
enced developers. This overview also represents a competitive aspect. Additionally, an
in-depth list of accomplished achievements provides an idea of each developer’s knowl-
edge. A developer who has obtained many different and challenging achievements in
the area of testing is a good reference for developers with testing issues.

6.3 Dynamic Quests

In a previous work [9], we analysed potential divergence and erosion of software knowl-
edge during development. This analysis and other code quality analyses can be used for
generating tasks and experience rewards, so called ”quests” in games. These quests
could involve everything from improving the code, getting familiar with it or fixing
bugs. These quests could be categorized either automatically or by the developers re-
garding their complexity and knowledge demand. This could be used to provide new-
comers an easier task selection by restricting quests to their experience level and focus.
These quests would tackle the knowledge erosion in specific parts of the software by
rewarding developers to explore and work on areas with a low team knowledge.

7 Conclusions and Future Research

In this work, we introduced gamification and its connection to motivation theory. Fur-
thermore, we proposed to use game elements for software development and prevent
knowledge loss by motivating developers to explore the code and gain or regain knowl-
edge. In the future we plan to research on how far this loss can be reduced with the
help of game elements in a development environment. A challenge in this area is the

10

identification of suitable rewards for code exploration, learning and social engagement
to support all gamer types.

This work presents a possible solution on how to counter the knowledge issues pre-

sented in [9]. We plan to use this information to generate rewards to actively regain
knowledge and to distribute code knowledge. User studies should be conducted, to pro-
vide insights whether or not game elements provide a long term motivation in software
development.

References

10.
11.

12.

13.

14.

15.

16.

17.

Richard Bartle. Hearts, clubs, diamonds, spades: Players who suit MUDs. Journal of MUD
research, 1(1):19, 1996.

Edward L. Deci. Effects of Externally Mediated Rewards on Intrinsic Motivation. Journal
of Personality and Social Psychology, 18:105-115, 1971.

Edward L. Deci and Richard M. Ryan. Intrinsic Motivation and Self-Determination in Hu-
man Behavior. Plenum., New York, 1985.

Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From Game Design
Elements to Gamefulness: Defining ”Gamification”. In Proceedings of the 15th Interna-
tional Academic MindTrek Conference Envisioning Future Media Environments, pages 9—
15, 2011.

Yulin Fang and Derrick J. Neufeld. Understanding Sustained Participation in Open Source
Software Projects. Journal of Management Information Systems, 25(4):9-50, 2009.

Roger Gaillois. Man, Play, and Games. University of Illinois Press, 2001.

Thomas W. Malone and Mark R. Lepper. Making learning fun: A taxonomy of intrinsic
motivations for learning. Aptitude, Learning, and Instruction, 3(3):223-253, 1987.

Robert C. Martin. Clean Code - a Handbook of Agile Software Craftsmanship. Prentice
Hall, 2009.

Jan Nonnen and Paul Imhoff. Identifying Knowledge Divergence by Vocabulary Monitoring
in Software Projects. In Proceedings of the 16th European Conference on Software Mainte-
nance and Reengineering, 2012.

Jon Radoff. Game On: Energize Your Business with Social Media Games. Wiley, 2011.

B. Reeves and J.L. Read. Total Engagement: Using Games and Virtual Worlds to Change
the Way People Work and Businesses Compete. Harvard Business School Press, 2009.
Sonali K. Shah. Motivation, Governance, and the Viability of Hybrid Forms in Open Source
Software Development. Management Science, 52(7):1000-1014, 2006.

Leif Singer and Kurt Schneider. It was a Bit of a Race: Gamification of Version Control. In
Proc. of the 2nd International Workshop on Games and Software Engineering (GAS), 2012.
Eric Von Hippel and Georg Von Krogh. Open Source Software and the ”Private-Collective”
Innovation Model: Issues for Organization Science. Organization science, 2:209-223, 2003.
Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Community, Joining, and
Specialization in Open Source Software Innovation: A Case Study. Research Policy,
32(7):1217-1241, 2003.

Nick Yee. Motivations for Play in Online Games. Journal of CyberPsychology and Behavior,
9:772-775, 2007.

Minghui Zhou and Audris Mockus. Growth of newcomer competence: challenges of glob-
alization. In Gruia-Catalin Roman and Kevin J. Sullivan, editors, FOSER, pages 443-448.
ACM, 2010.

