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Abstract: The co-evolution of species with their genomic parasites (transposons) is thought to be one of the primary 
ways of rewiring gene regulatory networks (GRNs). In this communication, we computationally explore 
some of the essential co-evolution aspects of hosts (GRNs) with their transposons. We implemented an 
evolutionary search of an appropriate GRN model design on the example of the Drosophila gap-gene 
network. Simple artificial transposons capable of spreading and transposition were implemented. With the 
model, we explored the hypothesis that targeting destruction of some of the regulatory connections in the 
GRN via the action of transposons can produce negative selection pressure. Functionally external genes can 
be recruited (co-opted) into the GRN under this selection pressure following transposon rewiring of the 
GRN. Over evolutionary time, transposition events are able to disrupt these new regulatory connections, 
leading to repeated cycles of recruitment, rewiring and optimization. This process can produce increasingly 
large GRNs with the same basic functions. 

1 INTRODUCTION 

The extensive area of modern evolutionary 
computation (EC) was inspired by ideas from 
biological evolution. Contemporary biological 
evolution theories inspire computer science fields to 
work out and implement novel evolutionary 
algorithms. In turn, biology, especially in the area of 
systems biology, has been and is currently 
influenced by contemporary EC ideas and 
approaches. One product from the cross-
dissemination of ideas between systems biology and 
EC (in particular, genetic algorithms, GA) is a set of 
modern techniques to design real genetic network 
models, termed the evolution in silico approach.  

The evolutionary design of GRNs in nature 
involves the establishment of gene-gene connectivity 
(wiring) and tuning of the connection strengths, 
followed by multiple rounds of rewiring and 
retuning to optimize the GRN for a particular 
function. These wiring and rewiring events involve 
specific molecular mechanisms. One such 
mechanism is the co-evolution of gene networks and 
their parasites, termed transposons. Co-evolution is 

proposed to be one of the key mechanisms of gene 
network evolution. The co-evolutionary 
relationships of the hosts (gene networks) and 
parasites (transposons) can be roughly subdivided as 
competitive or mutualistic. The ‘arms race’ nature of 
competitive relationships can lead to high levels of 
complexity, a manifestation of which is gene 
network outgrowth. 

Gene Network outgrowth by Recruitment of 
Novel Members: In early metazoan evolution, gene 
networks specifying developmental events in 
embryos may have consisted of no more than two or 
three interacting genes. Over time, new genes were 
incorporated into the primitive networks (Wilkins, 
2002). While an initial hypothesis might be that new 
functions require novel genes, whole genome 
sequencing has shown that the apparent increases in 
developmental complexity do not correlate with 
increasing total numbers of genes. Therefore, the 
evolution of developmental pathways may most 
commonly proceed by recruiting pre-existing 
external genes into pre-existing networks to create 
novel functions (True and Carroll, 2002). 
Developmental  evolution  may  act  primarily  at the 
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level of genetic regulation (Carroll et al., 2001).  
The invertebrate segmentation network is among 

the best studied gene ensembles, with a wealth of 
diverse experimental data providing a unique 
opportunity for investigating known and 
hypothetical evolutionary scenarios in detail. In 
particular, the level of understanding of the 
segmentation gene network for the fruit fly 
(Drosophila melanogaster) has made it, for many 
years, extremely popular for functional and 
evolutionary computer simulations (Reinitz and 
Sharp, 1995; Jaeger et al., 2004; Sánchez and 
Thieffry, 2001; Manu et al., 2009ab). Modelling this 
gene ensemble has become a benchmark test in 
modern systems biology (e.g. Azevedo et al., 2006; 
Umulis et al., 2008; Bieler et al., 2011; Gursky et al., 
2011). This network has also been used in the 
development of evolution in silico approaches 
(François et al., 2007; Spirov and Holloway, 2009; 
2010; 2012).  

Comparisons of segmentation networks between 
primitive and higher insects indicate that evolution 
proceeds in the direction of network 
complexification (Patel, 1994; Sommer and Tautz, 
1993). The transition from grasshoppers to flies, 
with an (at least) doubling of the number of genes in 
the network, appears to have been solved by 
evolution over a short geological time span. Increase 
in the segmentation network size often involved 
recruitment of genes from other networks. 

Transposons, Genomic Parasites: A universal 
property of life is that all successful systems attract 
parasites. Parasites are so common that hosts 
eventually co-evolve immunity. The parasites then 
co-evolve strategies to circumvent the new 
immunity. And the hosts respond by co-evolving 
defences to repel the parasites again.  

Transposons are a unique type of parasite 
residing in the host genome. Co-evolution of 
transposons and host genomes are thought to 
produce arms races within the DNA of organisms.  
Transposons jump between different parts of a 
genome to propagate themselves, and these events 
are usually to the detriment of the host (Makalowski, 
1995). Many transposons have a unique DNA 
sequence that acts as a forwarding address and 
directs the transposon to a complementary DNA 
sequence in the host genome (Makalowski, 1995). 

Transposons are a major source of genetic 
change (Lozovskaya et al., 1995; King, 1992). It has 
been estimated that 80% of spontaneous mutations 
are caused by transposons (Makalowski, 1995). 
Transposons have co-evolved with their hosts 
through selection. The activities of transposons are 

likely to participate in the rewiring of pre-
established regulatory networks (for example, 
Wallace et al., 1991; Girard and Freeling, 1999). 

While the problem of growth and 
complexification of GRNs has received much 
attention in recent years, the mechanism remains 
unknown. How does recruitment happen? What 
exactly forces the GRNs to co-opt genes? Some 
studies assume that recruitment occurs by chance (at 
a very low level) and is then subject to evolution. 
Other researchers believe that there are special 
evolutionary mechanisms to perform this task. These 
could involve complicated systems to re-arrange the 
genetic material. Transposons might participate in 
evolutionary events at this level. Even assuming that 
transposons can drive complexification of GRNs, it 
is unknown exactly how this could occur. An initial 
hypothesis might be that transposons force GRNs 
towards more complexity by forced evolution 
(negative selection). In this communication, we 
computationally explore some of the essential co-
evolutionary aspects of hosts (GRNs) and 
transposons in regard to the problem of GRN 
evolutionary growth. We show that particular 
transposon-GRN interactions are capable of 
producing GRN enlargement. 

2 METHODS AND APPROACHES 

The idea of implementing artificial transposons to 
facilitate the evolutionary search in EC has been of 
great interest since the mid-1990s (Spirov, 1996; 
Spirov and Samsonova, 1997; Spirov and Kadyrov, 
1998; Spirov and Kazansky, 2002ab; Spirov et al., 
2009). This approach has been developed by several 
teams (Nawaz Ripon et al., 2007; Tang et al., 2008; 
Chan et al., 2008; Simões and Costa, 1999ab; 2000; 
2001; Liu et al., 2009). Our main interest in this area 
is to use artificial transposons to facilitate gene 
network model design. 

2.1 Modelling the Segmentation 
Network 

We use an in silico approach to simulate evolution 
of the gap gene network which is central to fly 
segmentation. Our model for the gap gene network 
(adapted from Reinitz and Sharp, 1995; Manu et al., 
2009a) is a system of differential equations 
describing the regulatory interactions of 4 gap genes 
(giant, gt; hunchback, hb; Krüppel, Kr; knirps, kni) 
under the control of a maternal Bicoid (Bcd) protein 
gradient. Real spatial patterns of gene expression 
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were used to fit the model (see Spirov and 
Holloway, 2009, Fig. 1A-C). The model parameters 
for the gene interaction strengths are varied, and the 
solutions are selected by GA (details below) based 
on how well they fit the gap gene data. This 
selection produces networks that describe the 
particular interactions (and quantitative strengths) 
between the component genes (e.g., Spirov and 
Holloway, 2009, Fig. 1D). In this way, we can use a 
model of our current understanding of fly 
segmentation to study the evolutionary dynamics of 
how the segmentation network may have arisen and 
how this might reflect on its current characteristics. 

Gene-gene regulatory matrix W: The gap gene 
proteins (Kr, Gt, Kni and Hb) are variables in the 
model, with the rates of their concentration changes 

dt
dva

i  (for each gene product a  in each nucleus i), 

defining a system of number of proteins times 
number of nuclei ODEs given by  

 
(1) 

 

where 
aR  

represents protein synthesis, aD  

represents diffusion, and a  
represents decay.

 ag u  is a sigmoid regulation-expression function.  

 

Figure 1: The gene-gene interaction matrix, a core element 
of modelling GRNs. Each gene (horizontal arrow) is 
regulated by the products of other genes via upstream 
enhancer elements (boxes). The strength and direction of 
regulation (depicted as differently coloured saturation 
levels) are a function of both the regulatory element and 
the abundance of its corresponding gene product. The left-
most column Wa0 corresponds to the regulatory elements 
for the action of the spatially-graded morphogen, M = 
Bicoid (external factor for the GRN). The genotype is 
represented as the matrix, W, of the regulatory 
interactions, and the phenotype is the vector, Ŝ, of the 
gene product levels at equilibrium. Modified from Siegal 
and Bergman (2002). 

au  is given by  
b

aBcd
i

ab
i

aba hvWvWu 0 . 

Parameters  abW  constitute a gene interconnectivity 

matrix, Bcd
iv  represents the concentration of Bcd in 

nucleus i, which is constant in time. 0aW describes 
the regulatory input of Bcd to each gene. Bcd is a 
general activator for all four considered gap genes. 

ah  represents the regulatory input from ubiquitous 
factors. 

The gene interconnectivity matrix, abW , is 
the key component for describing the GRN. Fig. 1 

depicts this matrix in detail. The  elements 
represent the activation of gene a  by the product of 

gene b  (with concentration b
iv ) if positive, 

repression if negative, and no interaction if close to 
zero. 

2.2 Evolution in Silico to Design the 
Gene Network Model 

We simulate population dynamics by repeated 
cycles of mutation, selection and reproduction (the 
general GA approach). The program generates a 
population of double string chromosomes (described 
in more detail in 2.3). The genome of each host 
consists of N chromosomes represented in the Wab 
matrix (Fig. 1). The main chromosome string 
consists of N+1 floating-point values (Fig. 1). 

The initial floating-point strings of the 
chromosomes are generated at random. All of the 
chromosome sets are consecutively evaluated 
(according to their fit to the data, see eqn. 2), an 
average score is calculated and the winners’ 
offspring substitutes for the losers in the process of 
reproduction. Next, a predetermined proportion of 
the chromosome population undergoes mutation 
(small changes are made to selected chromosomes’ 
coefficients). The cycle is then repeated for each 
generation.  

The set of ODEs (1) was solved numerically by 
Euler’s method (Press et al., 1988). We minimized 

the cost function, E, by adjusting parameters abW  
in equation (1): 

 
(2) 

The remaining parameters were found in preliminary 
runs and then used as fixed parameters. 

We extended this standard scheme with our own 
procedures to simulate the interaction between hosts 
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and transposons. 

2.2.1 Introduction and Withdrawal of New 
Genes 

We used a Gene Introduction operator to add a new 
gene to the network (at a rate of 5 – 10% per 
generation, depending on the computation). 
Specifically, this added a new row and column to the 

abW matrix, which could be then be operated on by 
mutation and crossover (discussed below). For 
simplicity, new rows are always added above 
existing rows (cf. Fig. 1). To evaluate the 
importance of this one-way process in forcing 
networks to recruit new genes, we also introduced a 
Gene Withdrawal operator which removes a row and 

column from the abW  matrix (at a rate of 2 - 10% 
per generation, depending on computation). Gene 
Withdrawal does not operate if the network is 
minimal (N = 4 genes). 

2.3 Artificial Transposons for GA 

We define an artificial transposon as a marked block 
of the host’s code. This mark is transmissible from 
host to host. We use double-string chromosomes: the 
main string (floating-point) is used for the host code 
and a second string (binary) is used for the 
transposon marks. Secondary string values are 1 for 
a mark and 0 otherwise. Chromosomes are therefore 
in the following format: 

the mark string: 1  0  0  … 0 
the main string: α1 α2 α3 … αn 

where the αk are floating-point values (only the α1 

element is transposon-marked in this example). 
(Each element αk is the value of Wab, Fig. 1.) 

Artificial Transposons as Mutators: As with 
biological transposition, action of an artificial 
transposon is deleterious to the host in our model. 
For an example of how this is implemented within 
the Wb←a gene interaction matrix, consider a 
transposon infection in the upper left element, 
WA←M

 (highlighted): 

 
The transposon’s deleterious action is then 

implemented by decreasing the value of the infected 
host element Wb←a. Specifically, we halve the Wb←a

 

value in each generation. This quickly drops the 
element value to near zero. In this manner, the 
transposon effectively cuts the b←a regulatory 
connection. 

Spread of Artificial Transposons: Transposons 
tend to form clusters in host chromosomes. We 
simulated this feature by spreading transposon 
infection by at most one element per generation. In 
this operation a transposon can mark the Wb←a

 

element above it as a new transposon. The following 
represents transposon infection spreading from the 
2nd row (1st column) to the 1st row: 

 

 

Transmission of Transposons: We used fixed 
transposon coordinates to transmit transposons from 
host to host. (Whole transposons were never moved 
along the chromosomes.) The two-place 
transmission operator was implemented as follows: 
First, a pair of hosts was chosen at random; then a 
chromosome from either host was scanned for 
transposon marks. If a transposon was found, it was 
replicated in the partner chromosome, regardless of 
the original string character in the target 
chromosome. Copying only occurred if the 
secondary strings had transposon marks. 

3 RESULTS AND DISCUSSION 

In all of the computational experiments described, 
we begin from a four-gene ensemble of obligate 
gene founders (the initial network). We fit this 4-
gene ensemble to experimental data for expression 
of four Drosophila gap genes (section 2.1; for 
further details see Spirov and Holloway, 2009). The 
spatial patterns of these four genes are the only 
selection criteria in the evolutionary computations; 
they are a stabilizing selection. Starting from the 
initial 4-member GRN (GRNini = GRN4), up to 3 
extra   genes   can   be   recruited   to   the    network. 
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Transposons invade all hosts of the initial 
population. Transposon length can vary from 1 to 4 
elements (TEini = TE1-4). 

For typical runs, the size of the host (and 
transposon) population is 4000 chromosomes; the 
mutation rate is 15% per generation; the 15% of 
individuals with the highest scores are marked for 
reproduction (truncation strategy); the rate of 
transposon horizontal transmission is 25% per 
generation; the rate of new gene recruitment is 25% 
per generation; the transposon action occurs to 25% 
of the infected elements per generation; and the rate 
of transposon spread is 25% per generation.  

We also ran computations for evolutionary 
growth of the host’s GRN with lower transposition 
pressure: with a mutation rate of 1.5% per 
generation; 1.5% of the highest scoring individuals 
marked for reproduction; a rate of transposon 
horizontal transmission of 5.0% per generation; rate 
of new gene recruitment 5.0% per generation; rate of 
transposon action 5.0% per generation; and rate of 
transposon spread 5.0% per generation. 

3.1 GRN Outgrowth 

Our computational experiments demonstrate that 
artificial transposons, as defined above, are able to 
force their host’s evolution towards greater GRN 
complexity. This complexification is due to 
recruitment of novel genes into the GRN to escape 
the selection pressure of the transposons. Analysis of 
the computational solutions shows that a substantial 
proportion of the recruited genes participate 
significantly in a network’s activity. 

Our simulations show that this effect of 
transposons on gene recruitment is robust over a 
wide range of parameter values (at least a ten-fold 
variation). It is a sustainable and robust 
characteristic of the host-transposon system. 

In earlier experiments, we observed gene 
recruitment and GRN outgrowth in the absence of 
transposon operators (Spirov and Holloway, 2009). 
Genes can become co-opted simply by chance; the 
co-option of genes into existing GRNs is a very 
general feature of the evolution of regulatory 
networks. However, GRN outgrowth by random 
recruitment can be very slow. With transposon 
operators, selective pressure is greatly increased, 
speeding up recruitment and GRN outgrowth.  In 
addition, as implemented here, the transposon 
pressure results in very specific GRN architectures.  

3.2 Co-evolution of GRNs and 
Transposons 

The GRNs in this study rely on a spatial gradient of 
a morphogen, M (external to GRN feedback), to 
establish appropriate spatial expression patterns. In 
Drosophila segmentation, M corresponds to the 
maternally supplied Bcd protein gradient. In our 
simulations, we have focused on transposon 
infections in the 1st column of the W matrix, 
representing the effects of M on the network genes. 
Infections in this column isolate the GRN from its 
external input (M is the only activator of the network 
genes; see Fig. 1). 

Consider a transposon infection on the initial 
GRN (of length, say, TE4) at the element of the first 
gene (A) representing activation by M (Fig. 2). Once  

     

Figure 2: Transposon infection affecting M activation of 
the GRN. A) Representation of the gene interactions in the 
network. B) Infection in the W column representing M 
activation.  

placed, the transposon systematically reduces the 
strength of the element. In this way, the transposon 
interferes with the reading of the M gradient by the 
GRN. Because reading the spatial gradient is critical 
to the function of the GRN, the transposon 
drastically reduces the fitness score of the “infected” 
GRN. 

As evolutionary time continues, a novel gene, 
e.g. R1, can be recruited to the GRN. If R1 becomes 
activated by M, and gene A acquires the ability to be 
activated by R1, the newly expanded GRN (R1-
GRN) can again appropriately form spatial pattern. 
R1-GRN requires both a rewiring of connections and 
retuning of parameter values from GRNini. R1-GRN 
can achieve a good score and is insensitive to the 
initial length TE4. R1-GRN quickly becomes 
abundant (even dominant) in the population. 

However, as time proceeds, the transposon will 
spread upwards in the matrix: the original TE4 will 
become TE5 and infect the M element of R1 (Fig. 3). 

With additional evolutionary time, this process 
can reoccur with recruitment of a new gene, R2. I.e., 
R2 can become a target of the M gradient and be 
recruited   as   an  activator for A, R1 or other genes. 
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Figure 3: Infection of a recruited gene, R1. A) 
Representation of the network; B) matrix representation.  

The new R2-GRN then escapes the transposon 
pressure and becomes abundant in the population. 
These co-evolutionary cycles can occur repeatedly, 
in the process forming increasingly large GRNs, but 
all with the same basic function of creating the 
appropriate spatial gene expression patterns. 

4 CONCLUSIONS 

1) Targeted destruction of key regulatory 
connections in a GRN by transposons can produce 
negative selection pressure on the GRN. 

2) Initially non-functional genes can be co-opted 
into the GRN to respond to this selective pressure. 
Co-opted genes substitute the regulatory connections 
under transposon attack (i.e., they rewire the GRN). 

3) We have focused on the co-option of genes to 
restore disrupted connections to external morphogen 
signalling. This is relevant to the maintenance of 
gradient-reading GRNs (critical in biological 
development) despite transposon attacks. 

4) For gradient-reading GRNs, we have observed 
outgrowth and complexification of the networks 
under the selection pressure of targeted transposon 
activity. 
5) The co-option of novel genes by gradient-reading 
GRNs to overcome transposon effects can repeat 
over many cycles of co-evolution between the GRN 
and the transposon. The increasingly large GRNs 
solve the same basic function of gradient reading. 
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