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Abstract: Inductive Logic Programming (ILP) is a powerful learning method which allows an expressive 
representation of the data and produces explicit knowledge in the form of a theory, i.e., a set of first-order 
logic rules. However, ILP systems suffer from a drawback as they return a single theory based on heuristic 
user-choices of various parameters, thus ignoring potentially relevant rules. Accordingly, we propose an 
original approach based on Formal Concept Analysis for effective interpretation of reached theories with the 
possibility of adding domain knowledge. Our approach is applied to the characterization of three-
dimensional (3D) protein-binding sites which are the protein portions on which interactions with other 
proteins take place. In this context, we define a relational and logical representation of 3D patches and 
formalize the problem as a concept learning problem using ILP. We report here the results we obtained on a 
particular category of protein-binding sites namely phosphorylation sites using ILP followed by FCA-based 
interpretation. 

1 INTRODUCTION AND 
MOTIVATION 

Relational or logical learning is currently one of the 
most promising research topics in knowledge 
discovery, especially for complex application 
domains (De Raedt, 2008). Life sciences provide a 
wide variety of such applications. In our work we 
investigate how relational learning can contribute to 
the understanding of protein-protein interactions 
which are important for most cellular processes. 
Great effort has been put on both experimental and 
computational methods to identify or predict 
protein-protein interactions. In protein docking, 
geometric and steric considerations are used to fit 
two protein structures into a bound complex (Smith 
et al., 2002). Alternative computational methods 
predict bindings between pairs of proteins based 
either on their homology with known binding pairs 
of proteins or on integrated data from a wide variety 
of sources (Aloy and Russel, 2003; Jansen et al., 
2003; Tran et al., 2005). However, despite the large 
number  of    reported  computational  methods,  the 
precise         understanding       of      protein-protein 

interactions still raises various challenges. 
On the one hand, most reported methods for 

structure-based prediction of protein-protein 
interactions work on a single data table where each 
interaction site (or interface) is described by a set of 
descriptors or attributes including diverse physico-
chemical properties aggregated on the whole 
binding site such as the residue composition, 
hydrophobicity, accessible surface area (Jones and 
Thornton, 1997; Zhu et al., 2006). However, this 
data model prevents from representing individual 
properties of the interface components (accessible 
surface of a particular residue) or spatial relations 
between components (e.g., distance between two 
residues). Hence, more expressive languages are 
necessary to represent the structural aspect of 3D 
interaction sites. Such sites are called hereafter 
Protein-Binding Sites (PBS) to make a clear 
distinction from ligand-binding sites on protein 
surface. 

On the other hand, most current methods do not 
provide explicit characterization of PBS along with 
the prediction model. For instance, methods based 
on Support Vector Machines (SVM) act as black-
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boxes returning outputs with respect to inputs 
without explanation (Zhu et al., 2006). Explicit 
characterization of PBS would obviously provide 
good insights of the underlying biological 
phenomena. In this context our aim is to exploit the 
growing set of available protein 3D structures for 
characterizing PBS and go beyond the limitations of 
the most current approaches qualified as black-box 
and single-table. To achieve this objective, we 
propose to apply an ILP (Inductive Logic 
Programming) learning method on the descriptions 
of protein 3D patches in order to induce a general 
definition of the PBS concept. Our approach 
includes a relational representation of protein 3D 
patches corresponding to positive or negative 
examples of PBS.  

Inductive Logic Programming (ILP) allows to 
learn a concept definition from observations, i.e., a 
set of positive examples (E+) and a set of negative 
examples (E-), and background knowledge (B) 
(Muggleton, 1991). Given E+, E-, and B the goal of 
ILP is to induce a set of rules or a theory T that is 
consistent (TB covers or explains each positive 
example in E+), and complete (TB does not cover 
or contradicts any negative example in E-).  

In most ILP systems both B and T are 
represented as definite clauses (or prolog programs) 
in First-Order Logic (FOL), i.e., a disjunction of 
literals with one positive literal. A rule has the form 
"head:- body" and is interpreted as: if the conditions 
in the body are true then the head is true as a logical 
consequence. The background knowledge B 
includes (i) the relational description of the 
examples using a set of relevant n-ary predicates 
and (ii) a priori domain knowledge, i.e., a set of 
rules and facts which do not refer to any example 
but express what is known about the elements 
which describe the examples. The theory T is a set 
of rules which cover as many of the positive 
examples as possible and the fewest negative 
examples. The head of each rule is the concept to 
characterize whereas the body contains the induced 
description of the concept (generalization of 
examples). The rule search is performed in a clause 
space where the clause subsumption allows building 
generalizations or specializations of the clauses 
(Muggleton and De Raedt, 1994). As the clause 
space is too large to be exhaustively explored, 
heuristic mechanisms exist to reduce its size and 
make the induction process feasible. These 
mechanisms allow the user to define which kind of 
rules(s) he wants to get. These learning biases are 
defined by setting some parameters that influence 
the search strategy and lead to different theories. 

Consequently, albeit ILP systems have important 
properties that make them good candidates for 
knowledge discovery tasks in complex domains, 
they have a major shortcoming which may impede 
their usability: a single theory based on heuristics is 
returned, thus ignoring many clauses that may be 
relevant for the domain expert (Page and Srinivasan 
2003). This may partly explain the low impact of 
logical learning noticed by King (2011). 
Consequently, we propose in this paper an original 
approach to complement the ILP-based knowledge 
discovery thanks to classification-based 
interpretation of different theories. A binary table is 
built according to the covering relation between 
examples and rules. Formal Concept Analysis 
(FCA, Ganter and Wille, 1999) is used to identify in 
the table formal concepts grouping examples 
covered by the same rules.  

For a first validation of our approach, we chose 
a specific group of PBS, the phosphorylation sites. 
Indeed, phosphorylation is an important biological 
process and phosphorylation sites are exhaustively 
listed in a unique data source (Diella et al., 2008). 
The rest of the paper is organized as follows. 
Section 2 introduces the knowledge discovery 
problem and the ILP program we used along with 
the different experimental settings. Section 3 
describes our proposal for theory interpretation 
using FCA and domain knowledge. Section 4 
summarizes the results obtained with our 
application on PBS. We discuss our results and 
describe related work in Section 5. 

2 ILP FOR CHARACTERISING 
3D PROTEIN-BINDING SITES 

2.1 The Data Representation 
Language 

Protein 3D Patch Definition: Protein surface 
patches were first introduced by Jones and Thornton 
(1997) who defined a surface patch as a central 
surface accessible residue (amino acid) along with 
the nearest surface accessible neighbours. For our 
part, we define a protein 3D patch as a spherical 
fragment of a protein 3D structure centred on a 
residue of the protein, the central core residue 
(Guharoy and Chakrabarti, 2005). A 3D patch has a 
radius r corresponding to the sphere radius and the 
residues composing the patch are those having an 
atom whose distance to the central residue does not 
exceed r. The RCSB PDB database (www.pdb.org) 
stores   the   resolved   3D   structures   of    proteins 
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(Berman et al., 2000).  
Protein 3D Patch descriptors: We propose to 

describe a 3D patch at two levels: (i) the patch is 
characterized as a whole by a set of global 
descriptors such as patch solvent accessible surface 
area (ASA), the number of carbon atoms occurring 
in the patch, and the number of residues in the 
patch; (ii) the patch composition and structure are 
characterized by a set of descriptors describing 
secondary and tertiary structure information on the 
patch residues. At the latter level, each residue of 
the patch is described by its name and its relative 
position in the primary sequence of the protein with 
respect to the central residue of the patch. The ASA 
value of each residue is used as a local descriptor of 
the residue in the patch. Two descriptors indicate if 
a given residue is on a helix, respectively on a 
sheet. Finally, one descriptor represents the spatial 
distance between each patch residue and the central 
residue. This distance information may play an 
important role in the interaction building. Figure 1 
shows an example of a protein 3D patch. The 
variety of relationships between the elements of a 
patch clearly requires a relational or logical 
representation language as a feature-based language 
could only represent the global descriptors of the 
patches. 

 

Figure 1: Visualization of a protein (PDB ID: 1opk) 3D 
patch using the VMD program (Humphrey et al., 1996). 
The central residue of the patch is represented in red. The 
patch surface accessible to the solvent is represented in 
blue. 

Characterization of 3D PBS as a relational 
learning problem: Our objective is to learn with 
ILP a definition of the Protein-Binding Site concept 
given   relational    descriptions    of   positive    and 

negative examples of this concept.  
We define a set of first-order predicates relevant 

for the ILP problem (Table 1). The unary predicate 
"pbs" is the concept to characterize and has a 3D 
patch identifier as argument. Several binary 
predicates represent the global descriptors of the 
patch such as the predicates "p_asa" and "p_c" 
which correspond respectively to the ASA value of 
a patch and the number of carbon atoms. A set of 
ternary and 4-ary predicates represent the structural 
descriptors of the 3D patches. One 4-ary predicate 
is "p_r_distance" which represents the distance 
value of a patch residue from the central residue. 
One ternary predicate is "p_r_helix" which 
expresses that a patch residue belongs to a helix. A 
supplementary ternary predicate is "p_r_surface" 
which is derived from the "p_r_asa" predicate. 
Finally, a prolog rule allows to infer that a residue is 
on the patch surface if its ASA value is greater than 
the threshold 10Å²: 

p_r_surface  (pid,res,pos)  :‐    p_r_asa  (pid,res,pos,v), 
greater_than(v, 10). 

As mentioned before, ILP allows to use domain 
knowledge during the induction process. In our 
case, there is a consensus to classify the different 
residues in several classes reflecting shared 
physico-chemical properties which may play a role 
in protein-protein interfaces (Jones and Thornton, 
1997). Hence, we choose to use two classifications 
as a priori domain knowledge (Table 2). 
Consequently, we define a unary predicate for each 
residue class (e.g., acidic, basic) whose 
interpretation is defined according to the class 
membership (e.g., acidic(asp), basic(arg)).  

Table 1: First order-logic predicates to describe protein 
3D patches. 

Predicate Interpretation 

pbs (pid) 
The patch identified by pid is a protein-
binding site 

p_asa (pid,v) 
v is the solvent accessible surface value 
of the pid patch 

p_c (pid,n), p_o (pid,n),  

p_n (pid,n), p_s (pid,n) 

n is the number of 
carbon/oxygen/nitrogen/sulphur atoms in 
the pid patch 

p_r (pid,res,pos) 
res is the name of the residue at relative 
position pos in the pid patch 

p_r_asa (pid,res,pos,v) 

v is the ASA value of the residue named 
res at the relative position pos (in the 
primary sequence) in the pid patch 

p_r_distance 

(pid,res,pos,v) 

v is the spatial distance between the 
residue (res, pos) and the central residue 
in the pid patch  

p_r_helix (pid,res,pos), 

p_r_sheet (pid,res,pos) 

the residue (res, pos) is on a helix/sheet in 
the pid patch  
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Table 2: Physico-chemical classes of residues defined in 
(Yu et al., 2006) and (Dubchak et al., 1999). 

Class Name Residues in the Class 

acidic asp, glu 

basic arg., hais, lys 

aromatic phe, trp, yr 

amide asn, gln 

small hydroxyl ser, thr 

sulphur containing cys, met 

aliphatic1 ala, gly, pro 

aliphatic2 ile, leu, val 

aliphatic ala, gly, pro, ile, leu, val 

small gly,ala,ser,cys,thr,pro,asp 

medium asn, val, glu, gln, ile, leu 

large met, his, lys, phe, arg, tyr, trp 

low polarizability gly, ala, ser, asp, thr 

medium polarizability cys, pro, asn, val, glu, gln, ile, leu  

high polarizability lys, met, his, phe, arg, tyr, trp 

hydrophobic  cys, val, leu, ile, met, phe, trp 

To sum up, the global and structural descriptors are 
computed for a set of 3D patches and represented 
with respect to the defined FOL predicates, forming 
a learning set. A ILP program can then be used to 
learn FOL rules characterizing or covering subsets 
of positive patches. 

2.2 The ILP Program and Its 
Parameters 

The experiments reported in this paper were 
conducted with the Aleph program whose basic 
algorithm is described in four steps (Srinivasan, 
2007): 

1. Select one positive example to be generalized, 
called seed example. If none exists, stop. 

2. Construct the most specific clause that entails 
the example selected, and is compliant with the 
language restrictions provided. This is usually a 
definite clause with many literals, and is called the 
"bottom clause". 

3. Find a clause more general than the bottom 
clause. This is done by searching for some subset of 
the literals in the bottom clause that has the best 
evaluation score. 

4. The clause with the best score is added as a 
rule to the current theory, and all examples made 
redundant are removed. Return to Step 1. 

Many parameters can be set for tuning some 
aspect of the theory construction with Aleph. For 
instance, the rule evaluation function can be chosen 
and the default one is based on the difference 
between the number of covered positive examples 
and the number of covered negative examples. The 
noise parameter is the maximum negative examples 
that an acceptable rule may cover (default value is 

0). This parameter can be set to higher values in 
case of noisy data (in our study, one is never sure 
that a negative PBS is a true one unless 
experimental evidence is provided). The min-pos 
parameter is the minimal number of positive 
examples that a rule must cover (default value is 1). 
Aleph also requires other learning biases to be 
defined as (i) a set of determinations defines the 
predicate to learn and the predicates which can 
appear in the rules; (ii) a set of modes defines the 
types of predicate arguments and the way they can 
be chained in a rule.  

As the above algorithm suggests, Aleph iterates 
on the positive examples of the learning set for 
building the most specific clause of a chosen seed 
example which is compliant with the defined bias 
and covers the maximum number of positive 
examples and the minimum number of negative 
ones. When finding the best rule, the examples 
covered by the best rule may be removed or not 
from the seed set and/or from the learning set (used 
for the rule evaluation). Hence with regard to this 
removal step, a induce-type parameter defines three 
ways of theory construction, (i) induce (covered 
examples are removed from both the seed set and 
the learning set), (ii) induce-cover (covered 
examples are removed from the seed set and not 
from the learning set), and (iii) induce-max 
(covered examples are removed neither from the 
seed set nor the learning set). Consequently, both 
induce and induce-cover are sensitive to the order in 
which the seed examples are presented contrasting 
with induce-max (each example is generalized). 
Both induce-cover and induce-max produce rules 
with more overlap than induce. 

3 FCA-BASED 
INTERPRETATION OF A 
THEORY  

Different theories are reached by the ILP program 
depending on the values of the program parameters 
set by the user in a heuristic way. It is then 
important to allow the domain expert to explore 
each theory. Each theory is globally characterized 
by the learning set coverage, i.e., the proportion of 
positive examples that are covered by at least one 
rule of the theory (theory coverage). Another global 
criterion is the coverage of the best rule. 
Furthermore, we propose a FCA-based analysis of 
the ILP learning results including or not domain 
knowledge to help the expert in the interpretation 
task.   This   can   possibly   lead   to   one  or   more 
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preferred theories. 

3.1 Formal Concept Analysis (FCA) 

The framework of FCA is fully detailed in (Ganter 
and Wille, 1999). FCA starts with a formal context 
(G,M,I) where G denotes a set of objects, M a set of 
attributes, and I  G X M a binary relation between 
G and M. The statement (g,m)  I is interpreted as 
"the object g has attribute m" (also noted gIm). Two 
operators (.)' define a Galois connection between 
the powersets (2G, ) and (2M, ), with A  G and 
B  M: 

A' = {m  M |  g  A : gIm} and  
B' = {g  G |   m  B : gIm} 

For A  G, B  M, a pair (A,B), such that A' = B 
and B' = A, is called a formal concept. In (A,B), the 
set A is called the extent and the set B the intent of 
the concept (A,B). Formal concepts are partially 
ordered by the concept subsumption:  
(A1, B1)  ≤  (A2,B2)   A1  A2    B2   B1. 
With respect to this partial order, the set of all 
formal concepts forms a full lattice called the 
concept lattice of (G,M,I). The FCA 
implementation used in our experiments was the 
one of the Coron data mining platform (Szathmary, 
2006) 

3.2 FCA-based Analysis of an ILP 
Theory 

A first interpretation of a theory is defined on the 
concept lattice issued from FCA applied on the 
binary patch-rule matrix describing the coverage of 
positive examples by the rules (only the body part 
of the rules is necessary since the head is the same 
for all rules). Table 3 shows an example of a formal 
context with 8 patches and 3 rules. In our case, a 
formal concept gathers a subgroup of 3D patches 
which are covered by the same set of rules. Figure 2 
shows the concept lattice obtained from the context 
presented in Table 3. The concept lattice forms a 
good artefact for browsing the ILP results allowing 
the expert to move from a set of patches covered by 
one rule to more specific concepts containing 
subsets of the patches covered by two rules, three 
rules and so on. Indeed, it is relevant to count for 
each theory, the number of concepts of more than 
two rules (multiple-rule concepts) and having a 
significant extent size (number of patches). 
Furthermore, multiple-rule concepts can be 
examined by the domain expert to check whether 
any concept intent (rule conjunction) provides a 

relevant description of the corresponding patch 
subgroup.  

A second interpretation of a theory is defined on 
the results of FCA applied to the patch-rule 
covering matrix enriched with supplementary 
domain properties of the examples that were not 
used in the learning process. This allows the expert 
to analyze how the theory rules are related to known 
properties of the examples. More precisely, 
interesting concepts to look at are concepts whose 
intent includes specific properties along with rules 
and whose extent has a significant size. These 
formal concepts gather 3D patches sharing domain 
property(ies) and being covered by the same rule(s). 
Involved rule(s) will be said to be associated with 
the domain property(ies). 

4 RESULTS 

As a first validation, we apply our approach to a 
particular category of protein-binding sites, i.e., 
phosphorylation sites. We first present the learning 
set we established (Section 4.1) and the results of 
the FCA-based interpretation of 18 theories we have 
achieved using the Aleph program (Section 4.2). 

4.1 The Learning Dataset of the Case 
Study 

Phosphorylation is a reversible post-translation 
modification of a protein due to a kinase adding a 
phosphate group to a serine, threonine, or a tyrosine 
residue (so called phosphorylated residue). A set of 
experimentally verified eukaryotic Phosphorylation 
Sites (PS) is available in the Phospho.ELM 
database (Diella et al., 2008). In this study, we build 
a learning set including all known phosphorylation 
sites irrespective of the phosphorylating kinase and 
the phosphorylated residue. This contrasts with the 
systems which perform the prediction of residue-
specific or kinase-specific phosphorylation sites 
(Wong et al., 2007; Durek et al., 2009). The PS 
concern about 5 976 distinct proteins among which 
only 286 have exploitable 3D structures. The PS 
relative to those proteins divide into 231 serine 
sites, 90 threonine sites, and 193 tyrosine sites. For 
each PS we extract one positive 3D patch from the 
PDB best-resolution 3D structure of the 
corresponding protein. This patch is centered on the 
phosphorylated residue (serine, threonine, or 
tyrosine). As for negative examples, given a protein 
structure for which PS are known, biologists are 
able to identify with reasonable confidence 3D 
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patches corresponding to negative PS. Thus, a 
negative 3D patch is built for each 
serine/threonine/tyrosine residue which is not 
known as a phosphorylable residue and whose 
minimal spatial distance to a phosphorylable 
residue is reasonably high (greater than 10Å in our 
experiments). The total number of found negative 
examples is 687 representing 57% of the learning 
dataset. The proposed descriptors for protein 
patches are computed on the basis of the 3D 
coordinates of the patch atoms extracted from the 
PDB structures. The numeric descriptor values were 
discretized by equal-frequency binning. 

Table 3: Formal context example 

 rule_1 rule_2 rule_3 
patch_1 x  x 
patch_2    
patch_3 x x  
patch_4 x x x 
patch_5  x  
patch_6 x  x 
patch_7  x x 
patch_8    

Our objective is the 3D PBS characterization 
instead of their prediction especially as there exist 
for the phosphorylation case sequence-based 
prediction programs which exhibit good 
performances (Wong et al., 2007). Besides, the 
amount of available protein 3D structures is fairly 
smaller than the available protein sequences making 
it difficult to reach the prediction accuracy of those 

programs. Nevertheless, the prediction accuracy of 
a ILP theory (defined as the number of true 
positives plus true negatives over the total number 
of examples) is interesting to consider for building 
the learning set and comparing different theories. 
Hence theory prediction accuracy was computed by 
a tenfold cross-validation test for variable negative 
example percentages in the learning set (induce type 
and min-pos are set to induce-cover and 13). The 
results are given in Table 4 and confirm that the 
prediction accuracy continuously increases with the 
percentage of negative example. It is thus relevant 
to use the whole set of found negative 3D patches 
(i.e., 57% negative examples versus 43% positive 
examples).  

4.2 FCA-based Interpretation of ILP 
Theories 

In our experiments, we consider three parameters 
which alter the way the rule search is seeded and 
the rules are selected in the Aleph program: induce-
type (induce, induce-cover, induce-max), min-pos 
(from 8 to 12), and noise (0 or 1). The rest of the 
parameters were set to the default value. In order to 
reduce the number of theories to interpret, we used 
as theory ranking criterion the prediction accuracy 
value (tenfold cross validated). We selected the 18 
theories having a prediction value greater than 60%. 
Actually the accuracy values vary from 54 to 63%. 

 

Figure 2: The concept lattice obtained by FCA from Table 3. Each numbered concept has an intent (I) and an extent (E). 
The edges correspond to subsumption relationships. 
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As mentioned before the relatively weak values of 
prediction accuracy can be explained by the small 
size of the training set due to the small number of 
currently available 3D structures and its 
heterogeneity with respect to the phosphorylated 
residue and the phosphorylating kinase. The global 
criteria and the quantitative results of the FCA-based 
interpretation of the 18 selected theories are reported 
in Table 5. We notice that, the parameters have a 
combined effect on the theory size, the theory 
coverage and the best rule coverage as well as on the 
concept lattice composition. The most obvious trend 
is the continuous decrease of theory size, theory 
coverage and the number of multiple-rule concepts 
when increasing min-pos for a given induce-type 
and noise value. This makes the choice of an optimal 
configuration difficult because some trade-off must 
be found between these criteria. For instance, a 
small size is expected for a valuable theory but this 
should not be at the expense of its coverage.  

Table 4: Prediction accuracy values (tenfold cross 
validated) obtained when varying the negative example 
percentage in the learning set. 

Percentage of 
negative examples 

Noise 
parameter 

Prediction accuracy 

35 0 52 
35 1 54 
40 0 54 
40 1 55 
45 0 54 
45 1 55 
50 0 55 
50 1 57 
55 0 58 
55 1 58 
57 0 59 
57 1 61 

Table 5: Quantitative results of the FCA applied on the 
patch-rule covering matrices for the 18 selected theories. 

Theory 
parameters 

(induce-type/ 
min-pos) 

Theory size 
/ best rule 
coverage 

Theory 
coverage (%) 

# multiple-rule 
concepts/ best 
concept extent 

size 
noise=0 
induce-cover/9 64/ 15 56 106/ 9 
induce-cover/10 37/ 16 39 71/ 14 
induce- max /9 64/ 15 56 106/ 9 
induce-max/10 39/ 16 39 88/ 14 
noise=1 
induce/8 26/ 17 48 8/ 3 
induce/9 19/ 17 39 5/ 3 
induce /10 14/ 16 32 3/ 3 
induce /11 10/ 15 24 0/0 
induce-cover/10 85/ 18 73 215/ 13 
induce-cover/11 58/ 18 61 144/ 16 
induce-cover/12 38/ 18 48 91/ 13 
induce-cover/13 20/ 18 30 50/ 13 
induce-cover/14 15/ 18 23 31/ 16 
induce-max/10 101/ 18 73 386/ 16 
induce-max/11 69/ 18 61 254/ 16 
induce-max/12 43/ 18 48 136/ 16 
induce-max/13 24/ 18 30 80/ 16 
induce-max/14 15/ 18 23 31/ 16 

To illustrate the effect of the induce-type 
parameter on the clause search, the theory reached 
with the induce/10/1 configuration is provided 
(Appendix). One rule found in a different 
configuration (induce-max/10/1) and missing in the 
previous theory is the following: 

pbs(A)  :‐  p_r_helix(A,B,3),  high_polarizability(B), 
p_r(A,pro,1). 

This rule covers 17 positive examples but is not 
retrieved when switching the induce-type parameter 
from induce-max to induce. 

To illustrate the browsing process in the concept 
lattice, we examined multiple-rule concepts from the 
18 lattices. For instance, the theory with induce-
max/12/1 produces a formal concept of 14 patches 
sharing the two following rules: 

pbs(A) :‐ p_r_surface(A,B,0), p_r_helix(A,C,21), 
p_r_helix(A,D,28). 

pbs(A) :‐ p_r_surface(A,B,0), p_r_helix(A,C,17), 
p_r_helix(A,D,28). 

When browsing up the lattice, we find a subgroup 
composed of 11 patches which share the two 
previous rules besides the following third one: 

pbs(A) :‐ p_r_surface(A,B,0), p_r_helix(A,C,20), 
p_r_helix(A,D,28). 

Hence, this subgroup of 11 patches is better 
characterized by the conjunction of the three rule 
bodies (after variable renaming and removal of 
redundant literals): 

p_r_surface(A,B,0), p_r_helix(A,C,21), p_r_helix(A,D,28), 
p_r_helix(A,E,17), p_r_helix(A,F,20). 

In more general terms, selecting formal concepts 
with multiple rules constitutes an interesting way to 
achieve longer rules than in the theory issued by 
Aleph. Indeed, the compression heuristic used 
during the clause search leads most ILP programs to 
favor shorter clauses to longer ones. Finn et al., 
(1998) proposed a solution to this drawback suitable 
to the pharmacophore search case. 

An additional way to explore the concept lattices 
is to count how many multiple-rule concepts are 
enriched in specific patches with respect to the 
phosphorylated residue (serine or threonine versus 
tyrosine). Over the 18 analysed lattices we observed 
that more than 75% of the multiple-rule concepts are 
either tyrosine specific or serine-or-threonine 
specific. This provides the expert with relevant 
descriptions for each type of phosphorylation sites as 
well as descriptions common to both types. 
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4.3 FCA-based Interpretation of ILP 
Theories including Domain 
Knowledge  

We applied FCA on the patch-rule table enriched 
with supplementary domain properties of the 
examples not used in the learning process, namely 
the phosphorylating kinase and the functional 
domain on which the 3D patch is located (Punta et 
al., 2012). ILP produces a set of rules covering 3D 
patches and the interpretation procedure we propose 
here helps the expert to analyze how the rules are 
related to known properties of the examples. About 
50 kinases phosphorylate more than 2 patches of the 
learning set whereas 40 Pfam domains are associated 
to more than 2 patches. The patch-rule table is thus 
updated with those kinases and functional domains 
as supplementary properties of the patches. Some 
formal concepts of the resulting lattice include at 
least one rule along with a kinase (respectively a 
Pfam domain) and whose extent contains more than 
1/3 of the patches associated to the kinase 
(respectively the Pfam domain). The rules involved 
in such concepts can be examined by the expert in 
order to check their consistency with previous 
knowledge and whether they reveal novel relevant 
knowledge units regarding the kinase (respectively 
Pfam domain) concerned. For example the following 
rule was found associated with PKB kinases in 
concepts grouping the majority of 3D patches 
phosphorylated by this type of kinases: 

pbs(A) :‐   p_r_helix(A,B,‐4), p_r_helix(A,arg,‐3), 
p_r_helix(A,ser,0). 

In this rule the expert recognizes in particular the 
fact that an arginine residue is present at position -3 
which is a well established observation for PKB 
kinases (Obata et al., 2000). More precisely the 
second literal expresses that the arginine residue at -
3 position should be on a helix, which reveals to be 
interesting for characterizing those 3D patches. 

Quantitative analysis of domain-knowledge FCA 
was performed in order to help the expert assessing 
the relative relevance of a theory with respect to 
another one. To this aim, the number of kinases 
(respectively Pfam domains) appearing at least once 
in a concept with an extent containing at least 1/3 of 
the concerned patches was computed for each of the 
18 theories selected in this study. The results are 
presented in Table 6. Interestingly, it appears that, in 
particular with induce-max, the number of kinases 
does not continuously decrease with increasing 
values of the min-pos parameter. This contrasts with 
the continuous decrease of the theory coverage and 

size (Table 5). Thus even at low coverage values, the 
theory rules still exhibit descriptive ability correlated 
with domain knowledge. One can notice that such 
low-coverage theories would be discarded if the 
objective was prediction instead of characterization. 

Table 6: Number of kinases (respectively Pfam domains) 
appearing in concepts whose extent contains more than 1/3 
of the patches associated to the kinase (respectively Pfam 
domain).  

Theory parameters (induce-
type/ min-pos) 

Kinase 
number 

Pfam domain 
number  

noise=0
induce-cover/9 10 10 
induce-cover/10 6 8 
induce-max /9 10 9 
induce-max/10 6 10 
noise=1 
induce/8 8 8 
induce/9 9 9 
induce /10 8 8 
induce /11 4 6 
induce-cover/10 12 11 
induce-cover/11 7 10 
induce-cover/12 7 7 
induce-cover/13 8 4 
induce-cover/14 8 2 
induce-max/10 12 11 
induce-max/11 11 7 
induce-max/12 7 7 
induce-max/13 8 4 
induce-max/14 10 3 

5 DISCUSSION 

ILP has been successfully applied to various areas 
including bioinformatics (Page and Craven, 2003). 
Turcotte et al. (2001) used ILP for predicting protein 
3D structures. Each protein domain is described by 
global features (e.g., length, number of helices), 
adjacency relationships between two consecutive 2D 
structure elements, and some local properties of the 
2D structure elements (e.g., length, presence of some 
residue). Another ILP application aimed at 
pharmacophore design for virtual screening purposes 
(Finn et al., 1998). A pharmacophore is defined as 
an abstract 3D structure of a molecule that interacts 
with a protein target. In this case, pairwise distances 
between atoms or atom groups (e.g., hydrogen 
donors) of a set of interacting (respectively not 
interacting) molecules with a specific target are 
considered for learning. More recently, 3D 
information on molecules was exploited for 
searching structurally diverse molecules (drugs) 
which share a biological activity (Tsunoyama et al., 
2008). The considered 3D descriptors are the spatial 
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distances between the atoms composing each active 
(respectively inactive) molecule of the learning set. 
Finally, ILP was applied on genomic annotations of 
proteins coming from public databases (e.g., Pfam, 
InterPro, PROSITE) in order to predict protein-
protein interactions for one specific species (Tran et 
al., 2005). 

To the best of our knowledge, our study is one of 
the firsts which characterize 3D protein-binding sites 
using ILP. This forms a natural follow-up of 
previous applications of ILP focusing on the 
prediction of protein 3D structure, as nowadays 
protein 3D structures become increasingly available.  

As for post-ILP analysis, our approach is 
innovative and represents a step forward in the 
interpretation of ILP results in the frame of a 
knowledge discovery process. Indeed, it offers the 
expert an effective assistance when exploring the 
learning results including confrontation with domain 
knowledge. By facilitating theory interpretation, our 
approach puts the tricky problem of heuristic 
parameters selection into perspective. It allows to 
take benefit from more than one theory. Otherwise, 
upstream investigation into the effect of numerous 
parameters on discriminative selection criteria is 
required as reported in (Turcotte et al., 2001). 

We are convinced that our approach can be 
adapted to other learning problems. Using FCA 
makes it possible to discover higher-level 
knowledge units by extracting from the formal 
concepts first-order logic association rules between 
the ILP rule bodies (Pasquier et al., 1999). Another 
perspective of this study concerns the scaling up of 
ILP programs. Theories can be produced on distinct 
descriptors subsets corresponding to distinct views 
on the examples. FCA-based joint interpretation of 
the resulting theories can then enable the discovery 
of rules involving descriptors from the distinct 
subsets. 
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APPENDIX 

Rule bodies of the theory induce/10/1. Number of 
covered positive/negative examples are given 
between square brackets. 

p_o(A,29‐inf), p_r_distance(A,B,‐2,6‐8), 
p_r_distance(A,C,‐1,0‐6), aliphatic(C). [16,1] 

p_r_surface(A,B,0), p_r_helix(A,C,21), 
high_polarizability(C). [16,1] 

p_r_surface(A,ser,0), p_r(A,pro,1), p_r_distance(A,B,‐2,0‐
6),  p_r_distance(A,C,2,0‐6).[15,1] 

p_r_helix(A,B,4), p_r_distance(A,C,6,8‐10), p_c(A,105‐inf). 
[15,0] 

p_r_helix(A,ser,0), p_r(A,r,‐3), p_r_distance(A,B,1,0‐6), 
medium_polarizability(B). [15,0] 

p_r(A,pro,1), p_r_distance(A,B,‐3,8‐10), 
p_r_distance(A,C,‐1,0‐6), medium_polarizability(C). 
[15,1] 

p_r_helix(A,B,‐2), p_r_distance(A,C,7,10‐11), aliphatic(C). 
[14,1] 

p_n(A,22‐26), p_c(A,63‐75). [14,1] 

p_r(A,val,‐1), p_r_distance(A,B,‐4,0‐6), 
p_r_distance(A,C,8,0‐6). [14,1] 

p_r_distance(A,B,‐3,10‐11), p_res(A,46‐inf). [13,1] 

p_r_helix(A,B,13), small(B), p_r_helix(A,C,17). [13,1] 

p_r(A,arg,‐2), p_r_distance(A,B,‐1,0‐6), basic(B). [13,1] 

p_r_distance(A,B,2,6‐8), p_r_distance(A,t,1,0‐6). [13,1] 

p_r(A,arg,‐3), p_r_distance(A,B,3,8‐10), 
medium_polarizability(B). [13,1] 

p_n(A,26‐inf), p_r_sheet(A,B,‐4), p_res(A,46‐inf). [12,0] 

p_r_helix(A,B,27), p_r_distance(A,C,9,13‐inf). [12,1] 

p_r_surface(A,B,0), p_r_helix(A,ser,‐6), 
p_r_distance(A,C,2,0‐6). [12,1] 

p_r_distance(A,B,‐10,8‐10), high_polarizability(B), 
p_r_sheet(A,B,‐10). [11,1] 
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