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Electromagnetic (EM) simulation has become an important tool in the design of contemporary antenna
structures. However, accurate simulations of realistic antenna models are expensive and therefore design
automation by employing EM solver within an optimization loop may be prohibitive because of its high
computational cost. Efficient EM-driven antenna design can be performed using surrogate-based
optimization (SBO). A generic approach to construct surrogate models of antennas involves the use of
coarse-discretization EM simulations (low-fidelity models). A proper selection of the surrogate model
fidelity is a key factor that influences both the performance of the design optimization process and its
computational cost. Despite its importance, this issue has not yet been investigated in the literature. Here,
we focus on a problem of proper surrogate model management. More specifically, we carry out a numerical
study that aims at finding a trade-off between the design cost and reliability of the SBO algorithms. Our
considerations are illustrated using several antenna design cases. Furthermore, we demonstrate that the use
of multiple models of different fidelity may be beneficial to reduce the design cost while maintaining the

robustness of the optimization process.

1 INTRODUCTION

Design of contemporary antennas strongly relies on
electromagnetic (EM) simulations. For many
structures, including  ultra-wideband (UWB)
antennas of non-canonical shapes (Shantz, 2005) or
dielectric resonator antennas (DRAs) (Petosa, 2007),
EM-based design is the only possibility to adjust
geometry and/or material parameters so that given
performance specifications are met. Typically, this is
performed through laborious parameter sweeps
guided by engineering experience, which does not
guarantee optimum results.

Automation of the antenna design process by
using numerical optimization routines is challenging
as high-fidelity EM simulation is computationally
expensive and conventional algorithms (e.g.,
gradient-based ones) require large number of such
simulations. Population-based techniques
(metaheuristics) have recently become popular in the
solving certain antenna-design-related tasks (Haupt,
2007); (Kerkhoff and Ling, 2007). Methods such as
genetic algorithms (Pantoja et al., 2007), particle
swarm optimizers (Jin and Rahmat-Samii, 2005) or
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ant colony optimization (Halehdar et al., 2009), can
alleviate certain problems (e.g., getting stuck in a
local optimum); however, these methods are mainly
applicable if the objective function evaluation is
very fast, for example, for synthesis of antenna array
patterns (Jin and Rahmat-Samii, 2008). The use of
such techniques for simulation-based antenna design
is questionable due to the large number of model
evaluations required by metaheuristics.

In recent years, there has been a growing interest
in surrogate-based optimization (SBO) methods
(Bandler et al., 2004); (Koziel et al., 2006); (Koziel
et al., 2011), where direct optimization of a CPU-
intensive full-wave EM model is replaced by
iterative updating and re-optimization of a cheap and
yet reasonably accurate representation of the antenna
structure under consideration, by so-called surrogate
model. There are many techniques exploiting both
approximation surrogates, e.g., neural networks
(Rayas-Sanchez, 2004; Kabir et al., 2008), support
vector regression (Smola and Schélkopf, 2004);
(Meng and Xia, 2007), radial-basis functions
(Buhmann and Ablowitz, 2003), kriging (Simpson et
al., 2001); (Forrester and Keane, 2009), as well as
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physics-based surrogates (space mapping (Bandler et
al., 2004); (Amari et al., 2006); (Koziel et al., 2008),
simulation-based tuning (Swanson and Macchiarella,
2007); (Rautio, 2008); (Cheng et al.,, 2010),
manifold mapping (Echeverria and Hemker, 2005),
shape-preserving response prediction (Koziel,
2010a). Approximation models are fast and
universal, however, they are associated with the high
initial cost, which is due to sampling of the design
space and acquiring EM simulation data, and they
are typically not suitable for ad-hoc optimization.
Techniques exploiting physics-based surrogates are
particularly attractive because they are capable to
yield a satisfactory design using a very limited
number of expensive high-fidelity EM simulations
(Bandler et al., 2004).

One of the important assumptions to ensure
efficiency of the SBO techniques exploiting physics-
based surrogates is that the underlying low-fidelity
model is computationally cheap. The most
prominent technique of this kind is space mapping
(Koziel, 2010a). It is originated in the area of
microwave filter design where this assumption is
naturally satisfied by circuit equivalents (Bandler et
al., 2004) serving as low-fidelity models for filters.
In case of antennas, physics-based surrogates can be
obtained from coarse-discretization EM simulations
as this is the only versatile way to create lower-
fidelity antenna models. Unfortunately, such models
may be relatively expensive. As a result, their
evaluation cost cannot be neglected and may
contribute considerably to the overall design
expenses.

Therefore, the proper choice of the surrogate
model fidelity is of great significance. On one hand,
using a coarser low-fidelity model allows us to
reduce its evaluation time. On the other hand, the
coarser models are less accurate. As a result, a large
number of iterations of the SBO algorithm may be
necessary to yield a satisfactory design so that the
total cost may be about the same or even higher than
the total cost of an optimization algorithm
employing only the finer model. Moreover, the
surrogate-based optimization process may simply
fail if the underlying low-fidelity model is not
sufficiently accurate. For finer models, the
individual evaluation time may be higher, but this is
not directly translated into a higher total design cost
because a smaller number of iterations may be
sufficient to find a good design. In general, finding a
good trade-off between the low-fidelity model speed
and accuracy is not obvious.

Computational expenses of the low-fidelity
models which are built from coarse-mesh discrete
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simulations can be alleviated to some extent on the
algorithmic level. For example, in space mapping,
the surrogate model parameters are repeatedly
extracted with nonlinear regression at every iteration
of the optimization algorithm (Koziel et al., 2006),
which results in a large number of low-fidelity
model evaluations and consequently in high total
costs. Unlike space mapping, response correction
techniques, e.g., manifold mapping (Echeverria and
Hemker, 2005), shape-preserving  response
prediction (Koziel, 2010a), or adaptively adjusted
design specification method (Koziel, 2010b) do not
have these issues because no extractable parameters
are utilized there.

Here, we study the importance of the proper
selection of the antenna model fidelity and its
influence on performance of the surrogate-based
design process in terms of the computational cost
and design quality. We also investigate the potential
benefits of using several models of different fidelity
in the same optimization run. Our considerations are
based on several antenna design cases. The
presented results can be helpful to formulate
recommendations regarding the surrogate model
selection for simulation-based antenna design.

2 LOW-FIDELITY ANTENNA
MODELS

In this section, we formulate the antenna design task,
recall the generic surrogate-based optimization
(SBO) scheme, as well as discuss the issues
regarding the selection of the low-fidelity antenna
model that is a key component of physics-based
SBO methods.

2.1 Design Problem Formulation

The antenna design task can be formulated as a
nonlinear minimization problem

x; eargmxinU(R/ (x)) (D

where Rf € Rm denotes the response vector of a
high-fidelity (or fine) model of the antenna of
interest evaluated through expensive high-fidelity
EM simulation; x € Rn is a vector of designable
variables. Typically, these are geometry and/or
material parameters. The response Rf(x) might be,
e.g., the modulus of the reflection coefficient |S11|
evaluated at m different frequencies. In some cases,
Rf may consists of several vectors representing, e.g.,
antenna reflection, gain, etc. U is a given scalar
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merit function, e.g., a norm, or a minimax function
with upper and lower specifications. U is formulated
so that a better design corresponds to a smaller value
of U. xf* is the optimal design to be determined.

2.2 Surrogate-based Optimization

In this work we consider surrogate-based
optimization (SBO) techniques (Koziel et al., 2011)
that aim at reducing the cost of EM-driven design by
shifting the optimization burden into a cheap and yet
reasonably accurate representation of the high-
fidelity model, a surrogate.

A generic SBO algorithm produced a series of

approximate solutions to (1), x(i), 1 =0, 1, ..., as
follows (Koziel, et al., 2011):
x"Y = argminU(R" (x)) ©)

where Rs(1) is the surrogate model at iteration i; x(0)
is the initial design Typically, the surrogate model is
updated after each iteration using the high-fidelity
model data accumulated during the optimization
process. Normally, the high-fidelity model is
referred to rarely, in many cases only once per
iteration, at a newly found design vector x(i+1). For
a well working algorithm, the number of iterations
necessary to find a satisfactory design is rather low.
This, in conjunction with the assumption of the
surrogate model being fast, allows us to significantly
reduce the computational cost of the design process
when compared with direct solving of the original
problem (1).

There are many ways of constructing surrogate
models that can be roughly split into approximation-
based and physics-based ones. Approximation
models are obtained by approximating sampled
high-fidelity model data using, e.g., neural networks
(Rayas-Sanchez, 2004)), kriging (Forrester and
Keane, 2009), or support-vector regression (Smola
and Scholkopf, 2004). This type of models are fast
and generic, and, therefore, easily transferrable from
one problem to another. There are several strategies
of allocating new samples and updating the model
and the one mentioned above (evaluating Rf at the
surrogate model optimum) is just one of them,
commonly used in local search. These, so-called
infill criteria (Forrester and Keane, 2009);
(Couckuyt et al., 2010), may be either focused on
exploration of the design space (aiming at improving
global accuracy of the model) or exploitation (local
search). Approximation model have one significant
disadvantage though: the initial cost of setting up the
surrogate is typically high because a large number of
samples may be necessary to ensure decent model

accuracy. This cost may not be justifiable for a one-
time design optimization of a given antenna
structure.

Here, we focus on physics-based surrogates
created from an underlying low-fidelity model Rc,
faster and yet reasonably representation of Rf. The
surrogate Rs(i) is obtained by aligning Rc with Rf at
the current design x(i) using Rf data accumulated in
previous iterations. Because the low-fidelity model
embeds some “knowledge” about the structure under
consideration, only a limited amount of high-fidelity
model data is necessary to correct Rc and the
generalization capability of the physics-based
surrogates (i.e., the ability to represent the high-
fidelity model outside the training set) is also much
better than for the approximation models.

2.3 Low-Fidelity Antenna Models

The only universal way of creating physics-based
low-fidelity antenna models is through coarse-
discretization EM simulation. This is particularly the
case for wideband and ultra-wideband (UWB)
antennas (Schantz, 2005), as well as dielectric
resonator antennas (DRAs) (Petosa, 2007) to name
just a few. In this paper, we assume that the low-
fidelity model Rc is evaluated with the same EM
solver as the high-fidelity model. The low-fidelity
model can be created by reducing the mesh density
compared to the high-fidelity one as illustrated with
Fig. 1. Other options of the low-fidelity model may
include, among others: using smaller computational
domain with the finite-volume methods, using low
order basis functions with the finite-element and

moment methods, applying simple absorbing
boundaries, modelling metals with the perfect
electric ~ conductor, neglecting  metallization

thickness of traces, strips, and patches, ignoring
dielectric losses and dispersion.

Because of the possible simplifications, the low-
fidelity model Rc is (typically 10 to 50 times) faster
than Rf but not as accurate. Therefore, it cannot
substitute the high-fidelity model in design
optimization. Obviously, making the low-fidelity
model mesh coarser (and, perhaps, introducing other
simplifications) results in loss of accuracy but also
in a shorter computational time. Figure 2 shows the
plots illustrating the high- and low-fidelity model
responses at a specific design for the antenna
structure in Fig. 1, as well as the relationship
between the mesh coarseness and the simulation
time.

The selection of the low-fidelity model
coarseness is important for the computational cost
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and performance of the design optimization process.
Coarser models are faster, which translates into
lower cost of per design iteration. However, coarser
models are also less accurate, which may results in a
larger number of iterations necessary to yield a
satisfactory design. Also, there is an increased risk
that the optimization algorithm will fail to find a
good design. Finer models, on the other hand, are
more expensive but they are more likely to produce
a useful design in a smaller number of iteration.

As mentioned in the introduction, the main focus
of this paper is to investigate the relationship
between the performance of the surrogate-based
antenna design process and the underlying coarse
model fidelity.

N
v
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2

Figure 1: A microstrip antenna (Chen, 2008): (a) a high-
fidelity EM model with a fine tetrahedral mesh; and (b) a
low-fidelity EM model with a coarse tetrahedral mesh.

Evaluation time [sec]

(b) The number of mesh cells

Figure 2: An antenna of Fig. 1 evaluated with the CST
MWS transient solver (CST, 2011) at a selected design:
(a) the reflection response with different discretization
density, 19,866 cells (===), 40,068 cells (- — -), 266,396
cells (— -), 413,946 cells (), 740,740 cells (—), and
1,588,608 cells (==); and (b) the antenna evaluation time
versus the number of mesh cells.
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Our considerations will be based on numerical
study; however, it should be stressed that, at the
present stage or research, visual inspection of the
model responses and the relationship between the
high- and low-fidelity models is an important step in
the model selection process. In particular, it is
essential that the low-fidelity model captures all
important features present in the high-fidelity one.

Going back to Fig. 2, one can observe that the
two “finest” coarse-discretization models (with
~400,000 and ~740,000 cells) are properly
representing the high-fidelity model response
(shown as a thick solid line). The model with
~270,000 cells can be considered as a borderline
one. The two remaining models could be considered
as too coarse, particularly the one with ~20,000
cells; its response is substantially deviated from that
of the high-fidelity model.

2.4 Surrogate Model Construction

There are many techniques  for constructing = the
surrogate from a physics-based low-fidelity model,
however, we are interested here in those where the
surrogate model parameters can be obtained without
involving multiple evaluations of the low-fidelity
one. The reason is that we aim at minimizing both
the number of high- and low-fidelity model
evaluations during the design process. There are
several more or less involved techniques of this
kind, such as manifold mapping (Echeverria and
Hemker, 2005), adaptive response correction (Koziel
et al., 2009), or shape-preserving response prediction
(Koziel, 2010a). However, here, we focus on the two
basic methods which are sufficient for our
considerations, response correction and frequency
scaling.

The response correction technique assumes that
the surrogate model is constructed by composing the
low-fidelity model response with a suitable
correction function as follows:

R (x) = C(R.(x)) 3)

where C:Rm — Rm is a response correction
function. Here, the surrogate model at iteration i of
the optimization process (2) is defined as Rs(i)(x) =
C(i)(Re(x)), where C(i) is the correction function at
iteration i. For surrogates constructed using response
correction, we typically request that at least zero-
order consistency between the surrogate and the fine
model is satisfied, i.e., Rs(i)(x(i)) = Rf(x(i)). It can
be shown (Alexandrov et al., 1998) that satisfaction
of first-order consistency, i.e., J[Rs(i)(x(1))] =
J[Rf(x(1))] (here, J[] denotes the Jacobian of the
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respective model), guarantees convergence of {x(i)}
to a local optimum of Rf assuming that (3) is
enhanced by the trust region mechanism (Conn et
al., 2000) and the functions involved are sufficiently
smooth.

In this paper, we only consider a basic response
correction, i.e.,

C(R.(x))=R.(x)+[R,(x") R (x")] “4)

This type of correction ensures a zero-order
consistency, i.e., Rs(1)(x(1)) = Rf(x(1)).

Another type of basic technique for surrogate
model construction considered here is a frequency
scaling. It is useful because, in many cases, the
major discrepancy between the high- and low-
fidelity model responses is a frequency shift, which
can be easily reduced by means of simple scaling
functions parameterized by just a few coefficients.
Here, we consider an affine scaling defined as F(®)
= f0 + flo (Koziel et al., 2006), where {0 and f1 are
unknown parameters to be determined. Assuming
that the model responses correspond to evaluation of
the figures of inteters (e.g., S-parameters) at a set of
frequencies, i.e., Rex)= [Re(x,ml), ...,
Re(x,0m)]T. The frequency scaled model is then
defined as

R . (x)=[R.(x,F(®)),...R.(x,F(w,))] (5)

where the scaling parameters
minimizing the matching error

>R (x, @)~ R(x", £y + fa)T 6)

It should be noted that the frequency scaling
parameters can be obtained without referring to an
EM simulation because all the necessary responses
Re(x(1),f0 + flwk) can be obtained by interpolating/
extrapolating the know values Rec(x(i),ok), k = 1,
i

obtained by

3 CASE STUDY I: SELECTING
MODEL FIDELITY

We consider two antenna design cases with the
optimized designs found using an SBO algorithm of
the type (2). For each case, we consider three low-
fidelity EM models of different mesh density. We
investigate the performance of the SBO algorithm
working with these models in terms of the
computational cost and the quality of the final
design.

3.1 Design of Broadband Slot Antenna

Consider a CPW-fed slot antenna shown in Fig. 3(a)
(Jiao et al., 2007). The design variables are x = [ax
ay ab sl]T; w0 =4 mm, sO = 0.3 mm. The substrate,
0.813 mm Rogers RO4003C (g1 = 3.38 at 10 GHz),
and the ground plane are of infinite lateral extends.
The initial design is x = [40 25 10 20 2]" mm. The
design specifications are |S11| < —12 dB for 2.3-to-
7.6 GHz. The high-fidelity model Rf is evaluated
with the CST MWS transient solver (CST, 2011)
(3,556,224 mesh cells, simulated in 60 min). We
consider three coarse models (all evaluated in CST
MWS): Rcl (110,208 mesh cells, 1.5 min), Rc2
(438,850, 5 min), and Rc3 (1,113,840, 8 min).

Figure 3(b) shows the responses of Rf and Rcl
through Rc3 at the initial design. Because of mostly
the vertical shift between the low- and the high-
fidelity model responses, the surrogate model for the
algorithm (1) is created using output space mapping
(OSM) (Bandler et al.,, 2004) so that Rs(i)(x) =
Rck(x) + [Rf(x(i)) — Rek(x(i))] (k is-an index of a
respective low-fidelity model), cf. (4). Table 1 and
Fig. 3(c) show the optimization results. All the low-
fidelity models are relatively reliable here and the
qualities of the final designs are comparable. The
design cost is the smallest for the SBO algorithm
working with Rc1 even though five design iterations
are necessary. The algorithm working with Rc2 and
Rc3 require only 3 and 2 iterations, respectively, but
they are relatively expensive compared to Rf. Thus,
in this case, using the coarsest model is the most
advantageous.

3.2 Design of Microstrip Antenna

Consider a coax-fed microstrip antenna shown in
Figs. 4(a) and 4(b) (Wi et al., 2007). Design
variables are x =[a b ¢ d ¢ 10 a0 bO]T. The antenna
is on 3.81 mm thick Rogers TMM4 (gl = 4.5 at 10
GHz); Ix= ly= 6.75 mm. The ground plane is of
infinite extends. The feed probe diameter is 0.8 mm.
The connector’s inner conductor is 1.27 mm in
diameter. Design specifications are [S11| < —10 dB
for 5 GHz to 6 GHz. The high-fidelity model Rf is
evaluated with CST MWS transient solver (CST,
2011) (704,165 mesh cells, evaluation time 60 min).
We consider three coarse models: Rcl (41,496, 1
min), Re2 (96,096, 3 min), and Rc3 (180,480, 6
min). The initial design is x(0)=[6 12151111 -
4]T mm. Figure 4(c) shows the responses of all the
models at the approximate optimum of Rcl. The
major misalignment between the responses is due to
the frequency shift so that the surrogate is created

461



SIMULTECH 2012 - 2nd International Conference on Simulation and Modeling Methodologies, Technologies and

Applications

here using frequency scaling (5), (6) (Koziel et al.,
2006) as well as output SM (4) (Bandler et al.,
2004). The results, Table 2 and Fig. 4(d), indicate
that the model Rcl is too inaccurate and the SBO
design process using it fails to find a satisfactory
design. The designs found with models Rc2 and Re3
satisfy the specifications and the cost of the SBO
process using Rc2 is slightly lower than while using
Re3.

0 | | | | |

| | |
| | | | | |

— SN\t TT T

as] | | | | |
o, | | | | | |
1‘10 | | | | | i
= s \/\ /\/\ |
| l I | | |
2 l ‘ , , l |
4 5 6 7 8

(©) Frequency [GHz]

Figure 3: CPW-fed broadband slot antenna: (a) geometry
(Jiao et al., 2007), (b) model responses at the initial
design, Rel (-), Re2 (---), Re3 (- - -), and Rf (—), (c)
high-fidelity model response at the final design found
using the low-fidelity model Rc3.

Table 1: CPW-fed slot antenna — design results.

4 CASE STUDY II: MODEL
MANAGEMENT DRA DESIGN

In this section, we again consider the use of low-
fidelity models of various mesh density for
surrogate-based design optimization of the dielectric
resonator antenna. We also investigate potential
benefits of using two models of different fidelity
within a single optimization run.

(d)
Figure 4: Coax-fed microstrip antenna (Wi et al., 2007):
(a) 3D view; (b) top view, (c) model responses at the
initial design, Rel (-+), Re2 (----), Re3 (- - -), and Rf (—),
(d) high-fidelity model response at the final design found
using the low-fidelity model Rc3.

Table 2: Coax-fed microstrip antenna — design results.

Low- | Design Cost: Number of | Relative | max|S11| for 2
Fidelity Model Evaluations! Design | GHz to 8 GHz
Model Rc Rf Cost2 | at Final Design
Rel 287 5 122 -12.1dB
Rc2 159 3 16.2 —12.0 dB
Re3 107 2 16.3 -12.3dB

Low- | Design Cost: Number of | Relative | max|S11| for 2
Fidelity Model Evaluations1 Design | GHz to 8 GHz
Model Re Rf Cost2 | at Final Design
Rel 385 6 12.4 -8.0dB
Rc2 185 3 12.3 -10.0 dB
Rc3 121 2 14.1 -10.7dB

1 Number of Rf evaluations is equal to the number of SBO
iterations in (2).
2 Equivalent number of Rf evaluations.
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1 Number of Rf evaluations is equal to the number of SBO
iterations in (2).
2 Equivalent number of Rf evaluations.

Consider a hybrid DRA shown in Fig. 5. The
DRA is fed by a 50 ohm microstrip terminated with
an open ended section. Microstrip substrate is 0.787
mm thick Rogers RT5880. The design variables are
x = [hO r1 h1 u 11 r2]T. Other dimensions are fixed:
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r0=0.635, h2=2, d=1, r3= 6, all in mm. Permittivity
of the DRA core is 36, and the loss tangent is 10-4,
both at 10 GHz. The DRA support material is Teflon
(e2=2.1), and the radome is of polycarbonate
(€3 =2.7 and tand = 0.01). The radius of the ground
plane opening, shown in Fig. 5(b), is 2 mm.

The high-fidelity antenna model Rf(x) is
evaluated using the time-domain solver of CST
Microwave Studio (CST, 2011) (~1,400,000 meshes,
evaluation time 60 minutes). The goal is to adjust
geometry parameters so that the following
specifications are met: |S11| < —12 dB for 5.15 GHz
to 5.8 GHz. The initial design is x(0) =[7.0 7.0 5.0
2.02.02.0]T mm.

We consider two auxiliary models of different
fidelity, Rel (~45,000 meshes, evaluation time 1
min), and Rc2 (~300,000 meshes, evaluation time 3
min). We investigate the algorithm (2) using either
one of these models or both (Rcl at the initial state
and Re2 in the later stages). The surrogate model is
constructed using both output SM (4) and the
frequency scaling (5), (6). Figure 6(a) shows the
importance of the frequency scaling, which, due to
the shape similarity of the high- and low-fidelity
model responses allows substantial reduction of the
misalignment between them.

The DRA design optimization has been
performed three times: (i) the surrogate constructed
using Rel — cheaper but less accurate (Case 1), (ii)
the surrogate constructed using Rc2 — more
expensive but also more accurate (Case 2), and (iii)
the surrogate constructed with Rcl at the first
iteration and with Rc2 for subsequent iterations
(Case 3). The last option allows us to faster locate
the approximate high-fidelity model optimum and
then refine it using the more accurate model. The
number of surrogate model evaluations was limited
to 100 (which involves the largest design change) in
the first iteration and to 50 in the subsequent
iterations  (smaller design modifications are
required).

Table 3 shows the optimization results for all
three cases. Figure 6(b) shows the high-fidelity
model response at the final design obtained using the
SBO algorithm working with low-fidelity model
Rc2. The quality of the final designs found in all
cases is the same. However, the SBO algorithm
using the low-fidelity model Rcl (Case 1) requires
more iterations than the algorithm using the model
Rc2 (Case 3), which is because the latter is more
accurate. In this particular case, the overall
computational cost of the design process is still
lower for Rcl than for Rc2. On the other hand, the
cheapest approach is Case 2 when the model Rel is

utilized in the first iteration that requires the largest
number of EM analyses, whereas the algorithm
switches to Rc2 in the second iteration, which allows
us to both reduce the number of iterations and
number of evaluations of Rc2 at the same time. The
total design cost is the lowest overall.

r3 !

3 4y Fo—ed
‘ I’
7 L d
hy Al & L—& |,
GND hy
3 & ¢
u
@) h

(b)

s, | [dB]

I |
1 1
| |
4 45 s 55 6 65 7
F

(b) requen(;y [GHz]

Figure 6: Hybrid DRA: (a) high- (—) and low-fidelity
model Rc2 response at certain design before (----) and after
(- - -) applying the frequency scaling, (b) high-fidelity
model response at the initial design (- - -) and at the final
design obtained using the SBO algorithm using with the
low-fidelity model Rc2 (—).

Table 3: Hybrid DRA design results.

Number of Model Total max|S11| for
Number of | _ Evaluations] % 1515GHzt05.8
Case Iterations Design GHz at Final
Rcl | Re2 | Rf | Cost2 R
Design
1 4 250 0 4 8.2 —12.6 dB
2 2 0 | 150 | 2 9.5 -12.6 dB
3 2 100 | 50 2 6.2 -12.6 dB

1 Number of Rf evaluations is equal to the number of SBO
iterations in (1).
2 Equivalent number of Rf evaluations.
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S DISCUSSION

Our results allow us to draw some conclusions
regarding the selection of the model fidelity for
surrogate-based antenna optimization. Using the
cheaper (and less accurate) model may translate into
lower design cost; however, it also increases the risk
of failure. Using the higher-fidelity model may
increase the cost but it definitely improves the
robustness of the SBO design process and reduces
the number of iterations necessary to find a
satisfactory design. Visual inspection of the low-
and high-fidelity model responses remains—so far—
the most important way of accessing the model
quality, which may also give a hint which type of
model correction should be applied while creating
the surrogate.

The following rules of thumb can be formulated
in order to facilitate the model selection process:
e An initial parametric study of low-fidelity model
fidelity should be performed at the initial design in
order to find the “coarsest” model that still
adequately represents all the important features of
the high-fidelity model response. The assessment
should be done by visual inspection of the model
responses having in mind that the critical factor is
not the absolute model discrepancy but the similarity
of the response shape (e.g., even relatively large
frequency shift can be easily reduced by a proper
frequency scaling).
e When in doubt, it is safer to use a slightly finer
low-fidelity model rather than a coarser one so that
potential cost reduction is not lost due to a possible
algorithm failure to find a satisfactory design.
e The type of misalignment between the low- and
high-fidelity models should be observed in order to
properly select the type of low-fidelity model
correction while constructing the surrogate. The two
methods considered in this paper (additive response
correction and frequency scaling) can be considered
as safe choices for most situations.
It should be emphasized that for some antenna
structures, such as some narrow-band antennas or
wideband travelling wave antennas, it is possible to
obtain quite good ratio between the simulation times
of the high- and low-fidelity models (e.g., up to 50),
which is because even for relatively coarse mesh, the
low-fidelity model may still be a good representation
of the high-fidelity one. For some structures (e.g.,
multi-resonant antennas), only much lower ratios
(e.g., 5 to 10) may be possible, which would
translate into lower design cost savings while using
the surrogate-based optimization techniques.

464

6 CONCLUSIONS

A problem EM simulation model management for
surrogate-based optimization of antennas has been
addressed. We have discussed a trade-off between
the computational complexity and accuracy of the
low-fidelity EM antenna models and their effects on
the performance of the surrogate-based optimization
process. Our considerations are illustrated using
several antenna design cases. Recommendations
regarding low-fidelity model selection are also
formulated. We also demonstrate that by proper
management of the models involved in the design
process one can lower the overall optimization cost
without compromising the final design quality.
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