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Abstract: Electromagnetic (EM) simulation has become an important tool in the design of contemporary antenna 
structures. However, accurate simulations of realistic antenna models are expensive and therefore design 
automation by employing EM solver within an optimization loop may be prohibitive because of its high 
computational cost. Efficient EM-driven antenna design can be performed using surrogate-based 
optimization (SBO). A generic approach to construct surrogate models of antennas involves the use of 
coarse-discretization EM simulations (low-fidelity models). A proper selection of the surrogate model 
fidelity is a key factor that influences both the performance of the design optimization process and its 
computational cost. Despite its importance, this issue has not yet been investigated in the literature. Here, 
we focus on a problem of proper surrogate model management. More specifically, we carry out a numerical 
study that aims at finding a trade-off between the design cost and reliability of the SBO algorithms. Our 
considerations are illustrated using several antenna design cases. Furthermore, we demonstrate that the use 
of multiple models of different fidelity may be beneficial to reduce the design cost while maintaining the 
robustness of the optimization process. 

1 INTRODUCTION 

Design of contemporary antennas strongly relies on 
electromagnetic (EM) simulations. For many 
structures, including ultra-wideband (UWB) 
antennas of non-canonical shapes (Shantz, 2005) or 
dielectric resonator antennas (DRAs) (Petosa, 2007), 
EM-based design is the only possibility to adjust 
geometry and/or material parameters so that given 
performance specifications are met. Typically, this is 
performed through laborious parameter sweeps 
guided by engineering experience, which does not 
guarantee optimum results. 

Automation of the antenna design process by 
using numerical optimization routines is challenging 
as high-fidelity EM simulation is computationally 
expensive and conventional algorithms (e.g., 
gradient-based ones) require large number of such 
simulations. Population-based techniques 
(metaheuristics) have recently become popular in the 
solving certain antenna-design-related tasks (Haupt, 
2007); (Kerkhoff and Ling, 2007). Methods such as 
genetic algorithms (Pantoja et al., 2007), particle 
swarm optimizers (Jin and Rahmat-Samii, 2005) or 

ant colony optimization (Halehdar et al., 2009), can 
alleviate certain problems (e.g., getting stuck in a 
local optimum); however, these methods are mainly 
applicable if the objective function evaluation is 
very fast, for example, for synthesis of antenna array 
patterns (Jin and Rahmat-Samii, 2008). The use of 
such techniques for simulation-based antenna design 
is questionable due to the large number of model 
evaluations required by metaheuristics. 

In recent years, there has been a growing interest 
in surrogate-based optimization (SBO) methods 
(Bandler et al., 2004); (Koziel et al., 2006); (Koziel 
et al., 2011), where direct optimization of a CPU-
intensive full-wave EM model is replaced by 
iterative updating and re-optimization of a cheap and 
yet reasonably accurate representation of the antenna 
structure under consideration, by so-called surrogate 
model. There are many techniques exploiting both 
approximation surrogates, e.g., neural networks 
(Rayas-Sánchez, 2004; Kabir et al., 2008), support 
vector regression (Smola and Schölkopf, 2004); 
(Meng and Xia, 2007), radial-basis functions 
(Buhmann and Ablowitz, 2003), kriging (Simpson et 
al., 2001); (Forrester and Keane, 2009), as well as 
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physics-based surrogates (space mapping (Bandler et 
al., 2004); (Amari et al., 2006); (Koziel et al., 2008), 
simulation-based tuning (Swanson and Macchiarella, 
2007); (Rautio, 2008); (Cheng et al., 2010), 
manifold mapping (Echeverria and Hemker, 2005), 
shape-preserving response prediction (Koziel, 
2010a). Approximation models are fast and 
universal, however, they are associated with the high 
initial cost, which is due to sampling of the design 
space and acquiring EM simulation data, and they 
are typically not suitable for ad-hoc optimization. 
Techniques exploiting physics-based surrogates are 
particularly attractive because they are capable to 
yield a satisfactory design using a very limited 
number of expensive high-fidelity EM simulations 
(Bandler et al., 2004). 

One of the important assumptions to ensure 
efficiency of the SBO techniques exploiting physics-
based surrogates is that the underlying low-fidelity 
model is computationally cheap. The most 
prominent technique of this kind is space mapping 
(Koziel, 2010a). It is originated in the area of 
microwave filter design where this assumption is 
naturally satisfied by circuit equivalents (Bandler et 
al., 2004) serving as low-fidelity models for filters. 
In case of antennas, physics-based surrogates can be 
obtained from coarse-discretization EM simulations 
as this is the only versatile way to create lower-
fidelity antenna models. Unfortunately, such models 
may be relatively expensive. As a result, their 
evaluation cost cannot be neglected and may 
contribute considerably to the overall design 
expenses.  

Therefore, the proper choice of the surrogate 
model fidelity is of great significance. On one hand, 
using a coarser low-fidelity model allows us to 
reduce its evaluation time. On the other hand, the 
coarser models are less accurate. As a result, a large 
number of iterations of the SBO algorithm may be 
necessary to yield a satisfactory design so that the 
total cost may be about the same or even higher than 
the total cost of an optimization algorithm 
employing only the finer model. Moreover, the 
surrogate-based optimization process may simply 
fail if the underlying low-fidelity model is not 
sufficiently accurate. For finer models, the 
individual evaluation time may be higher, but this is 
not directly translated into a higher total design cost 
because a smaller number of iterations may be 
sufficient to find a good design. In general, finding a 
good trade-off between the low-fidelity model speed 
and accuracy is not obvious. 

Computational expenses of the low-fidelity 
models which are built from coarse-mesh discrete 

simulations can be alleviated to some extent on the 
algorithmic level. For example, in space mapping, 
the surrogate model parameters are repeatedly 
extracted with nonlinear regression at every iteration 
of the optimization algorithm (Koziel et al., 2006), 
which results in a large number of low-fidelity 
model evaluations and consequently in high total 
costs. Unlike space mapping, response correction 
techniques, e.g., manifold mapping (Echeverria and 
Hemker, 2005), shape-preserving response 
prediction (Koziel, 2010a), or adaptively adjusted 
design specification method (Koziel, 2010b) do not 
have these issues because no extractable parameters 
are utilized there.  

Here, we study the importance of the proper 
selection of the antenna model fidelity and its 
influence on performance of the surrogate-based 
design process in terms of the computational cost 
and design quality. We also investigate the potential 
benefits of using several models of different fidelity 
in the same optimization run. Our considerations are 
based on several antenna design cases. The 
presented results can be helpful to formulate 
recommendations regarding the surrogate model 
selection for simulation-based antenna design. 

2 LOW-FIDELITY ANTENNA 
MODELS 

In this section, we formulate the antenna design task, 
recall the generic surrogate-based optimization 
(SBO) scheme, as well as discuss the issues 
regarding the selection of the low-fidelity antenna 
model that is a key component of physics-based 
SBO methods. 

2.1 Design Problem Formulation 

The antenna design task can be formulated as a 
nonlinear minimization problem 
 

( )* arg min ( )f fU∈
x

x R x
 (1)

 

where Rf ∈ Rm denotes the response vector of a 
high-fidelity (or fine) model of the antenna of 
interest evaluated through expensive high-fidelity 
EM simulation; x ∈ Rn is a vector of designable 
variables. Typically, these are geometry and/or 
material parameters. The response Rf(x) might be, 
e.g., the modulus of the reflection coefficient |S11| 
evaluated at m different frequencies. In some cases, 
Rf may consists of several vectors representing, e.g., 
antenna reflection, gain, etc. U is a given scalar 
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merit function, e.g., a norm, or a minimax function 
with upper and lower specifications. U is formulated 
so that a better design corresponds to a smaller value 
of U. xf* is the optimal design to be determined.  

2.2 Surrogate-based Optimization 

In this work we consider surrogate-based 
optimization (SBO) techniques (Koziel et al., 2011) 
that aim at reducing the cost of EM-driven design by 
shifting the optimization burden into a cheap and yet 
reasonably accurate representation of the high-
fidelity model, a surrogate.  

A generic SBO algorithm produced a series of 
approximate solutions to (1), x(i), i = 0, 1, …, as 
follows (Koziel, et al., 2011): 
 

( 1) ( )arg min ( ( ))i i
sU+ =

x
x R x

 (2)
 

where Rs(i) is the surrogate model at iteration i; x(0) 
is the initial design Typically, the surrogate model is 
updated after each iteration using the high-fidelity 
model data accumulated during the optimization 
process. Normally, the high-fidelity model is 
referred to rarely, in many cases only once per 
iteration, at a newly found design vector x(i+1). For 
a well working algorithm, the number of iterations 
necessary to find a satisfactory design is rather low. 
This, in conjunction with the assumption of the 
surrogate model being fast, allows us to significantly 
reduce the computational cost of the design process 
when compared with direct solving of the original 
problem (1). 

There are many ways of constructing surrogate 
models that can be roughly split into approximation-
based and physics-based ones. Approximation 
models are obtained by approximating sampled 
high-fidelity model data using, e.g., neural networks 
(Rayas-Sánchez, 2004)), kriging (Forrester and 
Keane, 2009), or support-vector regression (Smola 
and Schölkopf, 2004). This type of models are fast 
and generic, and, therefore, easily transferrable from 
one problem to another. There are several strategies 
of allocating new samples and updating the model 
and the one mentioned above (evaluating Rf at the 
surrogate model optimum) is just one of them, 
commonly used in local search. These, so-called 
infill criteria (Forrester and Keane, 2009); 
(Couckuyt et al., 2010), may be either focused on 
exploration of the design space (aiming at improving 
global accuracy of the model) or exploitation (local 
search). Approximation model have one significant 
disadvantage though: the initial cost of setting up the 
surrogate is typically high because a large number of 
samples may be necessary to ensure decent model 

accuracy. This cost may not be justifiable for a one-
time design optimization of a given antenna 
structure.  

Here, we focus on physics-based surrogates 
created from an underlying low-fidelity model Rc, 
faster and yet reasonably representation of Rf. The 
surrogate Rs(i) is obtained by aligning Rc with Rf at 
the current design x(i) using Rf data accumulated in 
previous iterations. Because the low-fidelity model 
embeds some “knowledge” about the structure under 
consideration, only a limited amount of high-fidelity 
model data is necessary to correct Rc and the 
generalization capability of the physics-based 
surrogates (i.e., the ability to represent the high-
fidelity model outside the training set) is also much 
better than for the approximation models. 

2.3 Low-Fidelity Antenna Models 

The only universal way of creating physics-based 
low-fidelity antenna models is through coarse-
discretization EM simulation. This is particularly the 
case for wideband and ultra-wideband (UWB) 
antennas (Schantz, 2005), as well as dielectric 
resonator antennas (DRAs) (Petosa, 2007) to name 
just a few. In this paper, we assume that the low-
fidelity model Rc is evaluated with the same EM 
solver as the high-fidelity model. The low-fidelity 
model can be created by reducing the mesh density 
compared to the high-fidelity one as illustrated with 
Fig. 1. Other options of the low-fidelity model may 
include, among others: using smaller computational 
domain with the finite-volume methods, using low 
order basis functions with the finite-element and 
moment methods, applying simple absorbing 
boundaries, modelling metals with the perfect 
electric conductor, neglecting metallization 
thickness of traces, strips, and patches, ignoring 
dielectric losses and dispersion. 

Because of the possible simplifications, the low-
fidelity model Rc is (typically 10 to 50 times) faster 
than Rf but not as accurate. Therefore, it cannot 
substitute the high-fidelity model in design 
optimization. Obviously, making the low-fidelity 
model mesh coarser (and, perhaps, introducing other 
simplifications) results in loss of accuracy but also 
in a shorter computational time. Figure 2 shows the 
plots illustrating the high- and low-fidelity model 
responses at a specific design for the antenna 
structure in Fig. 1, as well as the relationship 
between the mesh coarseness and the simulation 
time. 

The selection of the low-fidelity model 
coarseness is important for the computational cost 
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respective model), guarantees convergence of {x(i)} 
to a local optimum of Rf assuming that (3) is 
enhanced by the trust region mechanism (Conn et 
al., 2000) and the functions involved are sufficiently 
smooth. 

In this paper, we only consider a basic response 
correction, i.e.,  
 

( ) ( )( ( )) ( ) [ ( ) ( )]i i
c c f c= + −C R x R x R x R x (4)

 

This type of correction ensures a zero-order 
consistency, i.e., Rs(i)(x(i)) = Rf(x(i)).  

Another type of basic technique for surrogate 
model construction considered here is a frequency 
scaling. It is useful because, in many cases, the 
major discrepancy between the high- and low-
fidelity model responses is a frequency shift, which 
can be easily reduced by means of simple scaling 
functions parameterized by just a few coefficients. 
Here, we consider an affine scaling defined as F(ω) 
= f0 + f1ω (Koziel et al., 2006), where f0 and f1 are 
unknown parameters to be determined. Assuming 
that the model responses correspond to evaluation of 
the figures of inteters (e.g., S-parameters) at a set of 
frequencies, i.e., Rc(x) = [Rc(x,ω1), …, 
Rc(x,ωm)]T. The frequency scaled model is then 
defined as  
 

. 1( ) [ ( , ( )),..., ( , ( ))]T
c F c c mR F R Fω ω=R x x x (5)

 

where the scaling parameters obtained by 
minimizing the matching error 
 

( ) ( ) 2
0 11

[ ( , ) ( , )]m i i
f k c kk

R R f fω ω
=

− +∑ x x (6)
 

It should be noted that the frequency scaling 
parameters can be obtained without referring to an 
EM simulation because all the necessary responses 
Rc(x(i),f0 + f1ωk) can be obtained by interpolating/ 
extrapolating the know values Rc(x(i),ωk), k = 1, 
…, m. 

3 CASE STUDY I: SELECTING 
MODEL FIDELITY 

We consider two antenna design cases with the 
optimized designs found using an SBO algorithm of 
the type (2). For each case, we consider three low-
fidelity EM models of different mesh density. We 
investigate the performance of the SBO algorithm 
working with these models in terms of the 
computational cost and the quality of the final 
design. 

3.1 Design of Broadband Slot Antenna 

Consider a CPW-fed slot antenna shown in Fig. 3(a) 
(Jiao et al., 2007). The design variables are x = [ax 
ay a b s1]T; w0 = 4 mm, s0 = 0.3 mm. The substrate, 
0.813 mm Rogers RO4003C (ε1 = 3.38 at 10 GHz), 
and the ground plane are of infinite lateral extends. 
The initial design is x(0) = [40 25 10 20 2]T mm. The 
design specifications are |S11| ≤ –12 dB for 2.3-to-
7.6 GHz. The high-fidelity model Rf  is evaluated 
with the CST MWS transient solver (CST, 2011) 
(3,556,224 mesh cells, simulated in 60 min). We 
consider three coarse models (all evaluated in CST 
MWS): Rc1 (110,208 mesh cells, 1.5 min), Rc2 
(438,850, 5 min), and Rc3 (1,113,840, 8 min). 

Figure 3(b) shows the responses of Rf and Rc1 
through Rc3 at the initial design. Because of mostly 
the vertical shift between the low- and the high-
fidelity model responses, the surrogate model for the 
algorithm (1) is created using output space mapping 
(OSM) (Bandler et al., 2004) so that Rs(i)(x) = 
Rck(x) + [Rf(x(i)) – Rck(x(i))] (k is an index of a 
respective low-fidelity model), cf. (4). Table 1 and 
Fig. 3(c) show the optimization results. All the low-
fidelity models are relatively reliable here and the 
qualities of the final designs are comparable. The 
design cost is the smallest for the SBO algorithm 
working with Rc1 even though five design iterations 
are necessary. The algorithm working with Rc2 and 
Rc3 require only 3 and 2 iterations, respectively, but 
they are relatively expensive compared to Rf. Thus, 
in this case, using the coarsest model is the most 
advantageous. 

3.2 Design of Microstrip Antenna 

Consider a coax-fed microstrip antenna shown in 
Figs. 4(a) and 4(b) (Wi et al., 2007). Design 
variables are x = [a b c d e l0 a0 b0]T. The antenna 
is on 3.81 mm thick Rogers TMM4 (ε1 = 4.5 at 10 
GHz); lx= ly= 6.75 mm. The ground plane is of 
infinite extends. The feed probe diameter is 0.8 mm. 
The connector’s inner conductor is 1.27 mm in 
diameter. Design specifications are |S11| ≤ –10 dB 
for 5 GHz to 6 GHz. The high-fidelity model Rf is 
evaluated with CST MWS transient solver (CST, 
2011) (704,165 mesh cells, evaluation time 60 min). 
We consider three coarse models: Rc1 (41,496, 1 
min), Rc2 (96,096, 3 min), and Rc3 (180,480, 6 
min). The initial design is x(0) = [6 12 15 1 1 1 1 –
4]T mm. Figure 4(c) shows the responses of all the 
models at the approximate optimum of Rc1. The 
major misalignment between the responses is due to 
the frequency shift so that the surrogate is created 
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5 DISCUSSION 

Our results allow us to draw some conclusions 
regarding the selection of the model fidelity for 
surrogate-based antenna optimization. Using the 
cheaper (and less accurate) model may translate into 
lower design cost; however, it also increases the risk 
of failure. Using the higher-fidelity model may 
increase the cost but it definitely improves the 
robustness of the SBO design process and reduces 
the number of iterations necessary to find a 
satisfactory design. Visual inspection of the low- 
and high-fidelity model responses remains—so far—
the most important way of accessing the model 
quality, which may also give a hint which type of 
model correction should be applied while creating 
the surrogate. 

The following rules of thumb can be formulated 
in order to facilitate the model selection process: 
• An initial parametric study of low-fidelity model 
fidelity should be performed at the initial design in 
order to find the “coarsest” model that still 
adequately represents all the important features of 
the high-fidelity model response. The assessment 
should be done by visual inspection of the model 
responses having in mind that the critical factor is 
not the absolute model discrepancy but the similarity 
of the response shape (e.g., even relatively large 
frequency shift can be easily reduced by a proper 
frequency scaling). 
• When in doubt, it is safer to use a slightly finer 
low-fidelity model rather than a coarser one so that 
potential cost reduction is not lost due to a possible 
algorithm failure to find a satisfactory design. 
• The type of misalignment between the low- and 
high-fidelity models should be observed in order to 
properly select the type of low-fidelity model 
correction while constructing the surrogate. The two 
methods considered in this paper (additive response 
correction and frequency scaling) can be considered 
as safe choices for most situations. 
It should be emphasized that for some antenna 
structures, such as some narrow-band antennas or 
wideband travelling wave antennas, it is possible to 
obtain quite good ratio between the simulation times 
of the high- and low-fidelity models (e.g., up to 50), 
which is because even for relatively coarse mesh, the 
low-fidelity model may still be a good representation 
of the high-fidelity one. For some structures (e.g., 
multi-resonant antennas), only much lower ratios 
(e.g., 5 to 10) may be possible, which would 
translate into lower design cost savings while using 
the surrogate-based optimization techniques. 

6 CONCLUSIONS 

A problem EM simulation model management for 
surrogate-based optimization of antennas has been 
addressed. We have discussed a trade-off between 
the computational complexity and accuracy of the 
low-fidelity EM antenna models and their effects on 
the performance of the surrogate-based optimization 
process. Our considerations are illustrated using 
several antenna design cases. Recommendations 
regarding low-fidelity model selection are also 
formulated. We also demonstrate that by proper 
management of the models involved in the design 
process one can lower the overall optimization cost 
without compromising the final design quality. 
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