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Abstract: Ensemble neural networks (ENNs) are commonly used in many engineering applications due to its better 
generalization properties compared with a single neural network (NN). As the NN architecture has a 
significant influence on the generalization ability of an NN, it is crucial to develop a proper algorithm to 
design the NN architecture. In this paper, an ENN which combines the component networks by using the 
Bayesian approach and stochastic modelling is proposed. The cross validation data set is used not only to 
stop the network training, but also to determine the weights of the component networks. The proposed ENN 
searches the best structure of each component network first and employs the Bayesian approach as an 
automating design tool to determine the best combining weights of the ENN. Peak function is used to assess 
the accuracy of the proposed ensemble approach. The results show that the proposed ENN outperforms 
ENN obtained by simple averaging and the single NN. 

1 INTRODUCTION 

The artificial neural network (NN) is a mathematical 
or computational model for information processing 
based on the biological neural networks (McCulloch 
and Pitts, 1943). The ensemble neural network 
(ENN) can be significantly improved through 
ensembling a number of NNs (Hansen and Salamon, 
1990). Since this approach behaves remarkably well, 
nowadays it has been widely applied in many 
engineering areas. 

In Bayesian data analysis, all uncertain quantities 
are quantified by probability distributions, and 
inference is performed by constructing the posterior 
conditional probabilities for the unobserved 
variables of interest, given the observed data sample 
and prior assumptions (Lampinen and Vehtari, 
2001). The application of Bayesian theory to NNs 
was started by Buntine and Weigend (1991). 
Marwala (2007) proposed a Bayesian neural 
network trained using Markov Chain Monte Carlo 
(MCMC) and genetic programming (GP) in binary 
space. Wang et al. (2010) proposed a sequential 
Bayesian learning for ENNs. This paper proposes a 
method based on a Bayesian approach and stochastic 
modelling. One simulated example is used to 
illustrate the performance of the proposed method. 

2 PROPOSED BAYESIAN 
APPROACH FOR DESIGNING 
ENN 

An ENN is a collection of a finite number of NNs 
that are trained for the same task. Usually the 
networks in the ensemble are trained independently 
and then their predictions are combined (Sollich and 
Krogh, 1996). The architecture of the ENN is shown 
in Figure 1. The two main steps to construct an ENN 
are: Step 1 - creating component networks; Step 2 - 
combining these component networks in ENN. 
 

 

Figure 1: The architecture of the ENN. 

In Step 1, Creation of the component network 
can also be divided into two steps. The first step is to 
create the training data, the test data and the cross 
validation data sets, and the second step is to create 
the component networks. For creating the training 
data, the test data and the cross validation data sets, 
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some common ratio of them will be used in the 
analyses. All training data are used for each 
component network. To avoid the overfitting of the 
component network, the cross validation data set is 
used to stop the training network. The test data set is 
used to verify the performance of the network and 
will not be used in network training. For creating 
component networks, each component network is 
created several times, but the best structure will be 
used in the ENN. The procedure to define the 
number of hidden nodes in each component network 
is similar to the method presented in Zhao et al. 
(2008). The best number of hidden nodes for a 
single NN is chosen to achieve the smallest training 
mean squared error (MSE) for sufficient training and 
smallest test MSE to avoid network overfitting. 

After a set of component networks has been 
created, the method to combine these networks has 
to be considered. The most widely used method is to 
use the equal combination weights to combine the 
members of an ensemble (Hashen, 1993). This set of 
outputs combined by a uniform weighting is referred 
to as the simple ensemble (or simple averaging 
method). 

The stochastic system based framework for 
Bayesian model updating presented in Beck and 
Katafygiotis (1998) and part of the methodology 
presented in Cheung and Beck (2010, 2012) are used 
as a basis for the proposed method presented here. 
For the proposed ENN, the weight of each best 
component network will be calculated using the 
cross validation data set or by the training data set 
for comparison purpose. Without loss of generality, 
for illustration, only the case where the output 
variable is a scalar is considered here. The output 
y(x) of the ENN is modelled as a stochastic process 
in continuous input variables x given as follows:  

( ) ( ) ( )Ty x f x w xe= +  (1)
 

where f(x) is a vector with components given by the 
output of the component networks corresponding to 
the input variables x; the error term ߝሺݔሻ	is modelled 
as a stochastic process in x which is chosen to be 
Gaussian here with mean zero and covariance 
function cov(ߝሺݔሺ௜ሻሻ, ;ሺ௝ሻሻݔሺߝ ,ߪ ݈) which is a 
function of x(i) and x(j) with parameters ߪ and ݈. The 
weight of the component network ݓ together with ߪ 
and ݈ are treated as uncertain parameters. Given the 
measured input X=[x(1)... x(N)]T and output data 
 T, the probabilistic information about[y1...yN]=ݕ

these parameters is encapsulated in the posterior 
probability density distribution (PDF) given as 
follows by Bayes’ Theorem: 
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where ( , , )p w ls is the prior PDF taken as uniform 

here; F=[
(1)( )f x ...

( )( )Nf x ]T is a matrix with 

entries given by the output or the predictor of the 
component networks corresponding to the measured 
inputs given in X; the (i,j) element of the covariance 
matrix ( , )lså =cov(ߝሺݔሺ௜ሻሻ, ;ሺ௝ሻሻݔሺߝ ,ߪ ݈). In the 

globally identifiable case (Beck and Katafygiotis, 
1998) where there is only one optimal solution θ* 
(called the most probable solution) maximizing the 
posterior PDF of the uncertain parameters θ, it can 
be shown that given a sufficient amount of data, the 
posterior PDF can be well approximated by a 
Gaussian distribution with mean equal to θ* and 
covariance matrix given by the inverse of the 
Hessian matrix of the negative natural logarithm of 
the posterior PDF evaluated at θ = θ*.  

For the important special case where 
cov(ߝሺݔሺ௜ሻሻ, ;ሺ௝ሻሻݔሺߝ ,ߪ ݈) = σ2g(x(i), x(j);	݈), ( , )lså = 

σ2R(l) where the (i,j) element of the matrix R(l) = 
g(x(i), x(j); l) and g(x(i), x(j);	݈) takes the form such that 
R(l) approaches an identity matrix if l approaches a 
zero vector. For this case, θ* = [w*T σ2* l*T ]T can be 
determined by using the proposed iterative algorithm 

as shown in Figure 2. The objective function J  of 
the sub-optimization problem as shown in the figure 
is given by the negative natural logarithm of

( , , | , )p w l X ys as follows: 
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The solution of this optimization problem can be 
obtained using Newton’s method because analytical 
expression for the gradient and Hessian matrix of the 
objective function can be derived. The algorithm can 
be modified easily to tackle other forms of 
covariance function. It is worth noting that when l 
approaches a zero vector, ߝሺݔሻ becomes a Gaussian 
white noise implying there is no probabilistic 
dependence between the outputs corresponding to 
different inputs for given w and ߪ. 
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Figure 2: Iterative algorithm for determining the most 
probable uncertain parameters. 

Thus using the proposed method, the optimal 
combined weights of component networks, ߪ and ݈ 
are given by the most probable solution and the 
uncertainty in these parameters is quantified by the 
corresponding posterior PDF.  

3 COMPUTATIONAL 
EXPERIMENTS 

To verify the performance of the Bayesian based 
ENN proposed in this paper, peak function is carried 
out by an ENN program written in MATLAB. The 
peak function, which is shown in Figure 3, is a 
function of two variables and obtained by translating 
and scaling Gaussian distributions. It is a typical 
complex two-dimensional function as follows: 

3/)5/(10)1(3 ))1(()(53))1((2 222222 yxyxyx eeyxxexZ   (4)
 

The peak function contaminated by additive 
Gaussian white noise with mean 0 and variance 0.05 
is used to generate the training data, the cross 
validation data and the test data. First, 1111 
evenly distributed data along both the x-axis and the 
y-axis are selected from the domain [-3, 3] as the 
training data for the simulation. Two other 1010 
evenly distributed points from the same domain are 
used as the cross validation data and the test data. 
 

 

Figure 3: Peak function. 

5 cases of ENNs will be investigated later. All 
ENNs have the same input and output layers: the 
number of the input nodes is 2 and the number of the 
output nodes is 1. There are 3 component networks, 
and the numbers of hidden nodes in the component 
networks are 11, 14 and 17, respectively. Each 
component network is trained 3 times randomly to 
find the best weight configuration within the 
network. The ENNs will then combine the 
component networks with the best weight 
configuration within each component network. For 
the simple averaging ENN, the output of the ENNs 
is combined with the simple averaging method 
(denoted by Ave-ENN). The proposed Bayesian 
based ENN constructed using the training data and 
the error covariance function 
cov(ߝሺݔሺ௜ሻሻ, ;ሺ௝ሻሻݔሺߝ ,ߪ ݈) = σ2δ(x(i)- x(j)) is denoted by 
Btr-ENN and the one using the cross validation data 
with the same error covariance function is denoted 
by Bcv-ENN. Btrdp_ENN and Bcvdp-ENN are the 
same as Btr-ENN and Bcv-ENN, respectively except 
that the error covariance function 
cov(ߝሺݔሺ௜ሻሻ, ;ሺ௝ሻሻݔሺߝ ,ߪ ݈) = σ2exp[-(x(i)-x(j))T(x(i)- 
x(j))/l2]. For a fair comparison, the results using 
single NNs which are used as the component 
networks in the ENN are also obtained. 

The statistical results on the test data set for 20 
runs are shown in Table 1, in which Single 11, 14 
and 17 denote the single NNs with 11, 14 and 17 
hidden nodes, respectively. It can be observed that 
ENNs have better accuracy than the single NNs. For 
the single networks, the network with higher number 
of the hidden nodes has the better performance. 
When these 3 component networks combined, the 
performance of ENNs becomes better than any of 
the single one. Among the ENNs, Bcvdp-ENN has 
the smallest mean and standard deviation (S.D.) of 
MSEs for the test data, indicating the best 
generalization capability and the most stable 
performance. From the mean and S.D. of MSEs for 
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the test data, it can be seen that the proposed 
Bayesian ENN outperforms both the single NNs and 
the simple averaging ENN. 

Table 1: Test MSE of twenty runs on peak function with 
three component networks. 

MSE Minimum Mean S.D. 

single 11 0.3418 0.5617 0.1361 

single 14 0.2485 0.3683 0.1089 

single 17 0.1989 0.3013 0.1049 

Ave-ENN 0.2114 0.2726 0.0419 

Btr-ENN 0.1756 0.2400 0.0484 

Btrdp-ENN 0.1756 0.2397 0.0484 

Bcv-ENN 0.1768 0.2331 0.0431 

Bcvdp-ENN 0.1766 0.2323 0.0415 

4 CONCLUSIONS 

This paper improves the existing ENN by the 
following ways: 1) instead of using component NN 
directly, a preliminary selecting process is used to 
get the best component NN; 2) the stochastic system 
based Bayesian is adopted to construct a 
methodology to determine the weights of the 
component networks by using the cross validation 
data set in the ENN with error term being modelled 
as a stochastic process in network input variables. 

Peak function is used to verify the performance 
of the proposed ENN. The results show that the 
proposed Bayesian based ENN outperforms the 
single NNs and the simple averaging ENN. These 
results also show the potential of the proposed ENN 
can be applied to other kinds of problems. 
Moreover, comparison with other ensemble 
methodologies is currently under investigation and 
experiments with additional data sets will be carried 
out. Further improvements to the proposed method 
by considering the dependence of measured output 
with predicted output, multiple optimal models, 
improving the stochastic modelling, using advanced 
stochastic simulation algorithms and coupling the 
construction and combination of component 
networks for prediction improvement are currently 
under investigation. 
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