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Abstract: In this paper, we investigate the hybridization of a swarm intelligence algorithm and an evolutionary algorithm,
namely, the Artificial Bee Colony (ABC) algorithm and Differential Evolution (DE), to solve continuous
optimization problems. This Hybrid Integration of DE and ABC (HIDEABC) technique is based on integrating
the DE algorithm with the principle of ABC to improve the neighborhood search for each particle in ABC. The
swarm intelligence of the ABC algorithm and the global information obtained by the DE population approach
facilitate balanced exploration and exploitation using the HIDEABC algorithm. All algorithms were applied
to five benchmark functions and were compared using several different metrics.

1 INTRODUCTION

Two important areas of population-based optimiza-
tion algorithms are swarm intelligence (SI) algo-
rithms and evolutionary algorithms (EA). The search
strategies used by living organisms have inspired the
development of many optimization algorithms that
are currently used by numerous engineering applica-
tions. One main concept in this approach has been
to mimic how these organisms forage for food by
using search agents to find a solution to a problem.
A recent very successful algorithm in the SI class is
the artificial bee colony algorithm (ABC) (Karaboga,
2005). ABC is simple and easy to implement, but it
sometimes fails to find the global optimum in multi-
peak or high steepness problems such as the Rastri-
gin or Rosenbrock functions. ABC searches only for
the neighborhood of each employed bee or onlooker
bee in one dimension during each iteration. Thus,
the ABC algorithm component that makes employed
bees or onlooker bees move to a new food source is
too simple and this principle cannot cover the entire
search range.

Another strategy is a natural EA known as Dif-
ferential Evolution (DE), which is a population-based
parameter optimization technique that was originally
proposed by Storn and Price (Storn and Price, 1995;
Storn and Price, 1997; Price, 1999). DE is based on
the same the principle as GA where new individuals

are generated by mutation and crossover, and the vari-
ance within the population guides the choice of new
search points. DE is very powerful, but there is very
limited theoretical understanding of how it works and
why it performs well. However, DE may fall into lo-
cal optima and have a slow convergence speed during
the last stage of iterations.

To further improve the overall performance of
ABC and DE, we propose a new hybrid strategy based
on a combination of the DE and ABC algorithms. The
aim of this work is to hybridize these two successful
algorithms at a components level to benefit from their
respective strengths. Therefore, our hybrid approach
has the merits of both DE and ABC. Section 2 briefly
introduces ABC and DE. Section 3 describes HIDE-
ABC. Section 4 evaluates the performance of HIDE-
ABC using five benchmark test functions and presents
our experimental results. Our conclusions are given in
Section 5.

2 REVIEW OF STANDARD ABC
AND DE

2.1 Formulation of the Optimization
Problem

The optimization problem is formulated in this secti-
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on. The design variable, objective function, and con-
straint condition are defined as follows:

Design variable: x= [x1, ...,xD] (1)

Objective function: f(x)→ Minimum (2)

Constrain condition: xlb ≤ x≤ xub (3)

where xlb = [xlb
1 , ...,x

lb
D ], xub = [xub

1 , ...,xub
D ], and D

denote the lower boundary condition vectors, upper
boundary condition vectors, and number of design
variable vectors, respectively.

2.2 Artificial Bee Colony Algorithm
(ABC)

ABC is a novel swarm intelligence (SI) algorithm,
which was inspired by the foraging behavior of hon-
eybees. ABC was first introduced by Karaboga in
2005 (Karaboga, 2005).

ABC is simple in concept, easy to implement,
and it uses few control parameters, and hence,
it has attracted the attention of researchers and
has been used widely for solving many numerical
(Karaboga and Basturk, 2007), (Karaboga and Bas-
turk, 2006) and practical engineering optimization
problems (Karaboga et al., 2007), (Baykasoglu and
Ozbakr, 2007).

There are two types of artificial bees:
- First, the employed bees that are currently exploit-
ing a food source.
- Second,the unemployed bees that are continually
looking for a food source.

Unemployed bees are divided into scout bees that
search around the nest and onlooker bees that wait at
the nest and establish communication with employee
bees.

The tasks of each type of bee are as follows:
- Employed Bee: A bee that continues to forage a
food source that it visited previously is known as an
employed bee.
- Onlooker Bee:A bee that waits in the dance area to
make a decision about a food source is known as an
onlooker bee.
- Scout Bee:When a nectar food source is abandoned
by bees, it is replaced with new a food source found
by scout bees. If a position cannot be improved fur-
ther after a predetermined number of cycles, the food
source is assumed to be abandoned. The predeter-
mined number of cycles is an important control pa-
rameter for ABC, which is known as the ”limit ” be-
fore abandonment.

To better understand the basic behavioral charac-
teristics of foragers, Karaboga (Karaboga, 2005) used
figure 1. In this example, we have two discovered

Figure 1: Behavior of honeybees foraging for nectar.

food sources: A and B. At the start, a potential for-
ager is an unemployed forager. This bee will have no
knowledge of the food sources around the nest. There
are the following two possible options for this bee.
- The bee can become a scout and start searching
around the nest spontaneously for a food source ow-
ing to some internal motivation or possible external
clues (S in Figure 1).
- It can become a recruit after observing waggle
dances and start exploiting a food source (R in Fig-
ure 1).

After locating the food source, the bee memo-
rizes the location and immediately starts exploiting it.
Thus, the bee will become an employed forager. The
foraging bee collects a load of nectar from the source
and returns to the hive, before unloading the nectar in
a food store. After unloading the food, the bee has the
following three options:
- It becomes a non-committed follower after abandon-
ing the food source (UF).
- It dances and recruits nest mates before returning to
the same food source (EF1).
- It continues to forage at the food source without re-
cruiting other bees (EF2).

It is important to note that not all bees begin forag-
ing simultaneously. Experiments have confirmed that
new bees begin foraging at a rate proportional to the
difference between the eventual total number of bees
and the number that are currently foraging.

In the ABC algorithm, half of the colony consists
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of employed artificial bees while the other half
consists of onlookers. For every food source, there is
only one employed bee. In other words, the number
of employed bees is equal to the number of food
sources around the hive. An employed bee that
exhausts its food source becomes a scout.

ABC algorithm simulation for optimization: In
the ABC algorithm, the position of a food sourcei
at generationG represents a possible solution to the
optimization problemxG

i , while the nectar amount in
a food source corresponds to the quality (fitnessf it G

i )
of the associated solution.

Algorithm 1: ABC Algorithm.
Requirements: Max Cycles, Colony Size, Limit.
Begin
1: Initialize the food sources

xG=0
i, j = lb j + randj ∗ (ubj − lb j) (4)

whererandj a random number in [0,1].
2: Evaluate the food sources
3: Cycle = 1
4: while (Cycle≤ Max cycle) do
5: Produce new solutions using employed bees

vi, j = xi, j +ϕi, j ∗ (xi, j − xk, j) (5)

wherek ∈ {1,2, ..,SN} and j ∈ {1,2, ..,D} are ran-
domly selected indices. Althoughk is determined ran-
domly, it has to be different fromi. ϕi j is a random
number between[−1,1]. vi, j is the neighborhood of
xi, j in dimensionj.
6: Evaluate the new solutions and apply a greedy se-
lection process
7: Calculate the probability values using the fitness
values

pi =
f it G

i
SN

∑
n=1

f it G
n

(6)

wheref it G
i is the fitness of food sourcei at generation

G.
8: Produce new solutions using onlooker bees

vi, j = xi, j +ϕi, j ∗ (xi, j − xk, j) (7)

9: Apply a greedy selection process for onlooker bees
10: Determine the abandoned solutions and generate
new solutions randomly using scouts

xG=0
i j = lb j + randj ∗ (ubj − lb j) (8)

whererandj a random number in[0,1].
11: Memorize the best solution found so far
12: Cycle=Cycle+1
13: end while
14: return best solution
End

2.3 Differential Evolution (DE)
Algorithm

DE was proposed by Storn and Price (Storn and Price,
1995) and is a very popular EA, which delivers re-
markable performance with a wide variety of prob-
lems from diverse fields. Like other EAs, DE is a
population-based stochastic search technique. It uses
mutation, crossover, and selectionoperators at each
generation to move its population toward the global
optimum.

The DE technique combines simple arithmetic op-
erators with the classical methods of crossover, muta-
tion, and selection to evolve from a randomly gener-
ated starting population to a final solution.

At each generationG, DE creates a mutant vector
vG

i = (vG
i,1,v

G
i,2, ...,v

G
i,D) for each individualxG

i (known
as a target vector) in the current population. The five
widely used DE mutation scheme operators are as fol-
lows (Wang, 2011).
DE/rand/1 scheme:

vG+1
i, j = xG

r1, j +F(xG
r2, j − xG

r3, j) (9)

DE /best /1 scheme:

vG+1
i, j = xG

best, j +F(xG
r1, j − xG

r2, j) (10)

DE/target-to-best/1 scheme:

vG+1
i, j = xG

i, j +F((xG
best, j − xG

i, j)+ (xG
r1, j − xG

r2, j)) (11)

DE/best/2 scheme:

vG+1
i, j = xG

best, j +F((xG
r1, j − xG

r2, j)+ (xG
r3, j − xG

r4, j))
(12)

DE/rand/2 scheme:

vG+1
i, j = xG

r1, j +F((xG
r2, j −xG

r3, j)+(xG
r4, j −xG

r5, j)) (13)

In the above equations,r1, r2, r3, r4, andr5 are distinct
integers, which have been selected randomly from the
range[1,2, ...,NP] and they are also different fromi.
The parameterF is called the scaling factor, which
amplifies the difference vectors.xG

best is the best indi-
vidual in the current population.

After mutation, DE performs a binomial crossover
operator onxG

i and vG
i to generate a trial vector

uG
i = (uG

i,1,u
G
i,2, ...,u

G
i,D)

uG
i, j =

{

vG
i, j if randj(0,1)≤CRor j = jrand

xG
i, j otherwise

(14)
where i = 1,2, ...,NP, j = 1,2, ...,D, jrand is a ran-
domly chosen integer from[1,D], randj(0, 1) is a
uniformly distributed random number between 0 and
1 that is generated for eachj, andCR∈ [0,1] is the
crossover control parameter. Because of the use of
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Figure 2: Example of a two-dimensional cost function
showing its contour lines and the process of generating mu-
tations of DE/rand/1.

Figure 3: Illustration of the crossover process withD = 7.

jrand, the trial vectoruG
i differs from its target vector

xG
i .

A selection operation is performed to choose whether
the target vectorxG

i or the trial vectoruG
i should enter

the next generation.

xG+1
i =

{

uG
i if f (uG

i )≤ f (xG
i )

xG
i otherwise

(15)

The DE control parameters comprise the population
size NP, the scaling factorF , and the crossover
control parameterCR. Storn and Price (Storn and
Price, 1995) argued that it is not difficult to set these
three control parameters to obtain good performance.
They suggested thatNP should lie between 5D and
10D; a good initial choice forF is 0.5, whereas a
value ofF lower than 0.4 or higher than 1.0 will lead
to performance degradation, andCRcan be set to 0.1
or 0.9.

(Ronkkonen et al., 2005) suggested thatNP
should lie between 2D and 4D; F should be selected
from the range [0.4, 0.95], withF = 0.9 being
a good trade-off between convergence speed and
robustness; andCR should lie between 0.0 and 0.2

for separable functions, and between 0.9 and 1.0 for
multimodal and non-separable functions. Clearly,
these researchers agreed thatF should be in the range
of [0.4, 1.0], and thatCR should be close to 1.0 or
0.0, depending on the characteristics of problems.

Algorithm 2: DE Algorithm.
Requirements: Max Cycles, number of particlesNP,
crossover constantCR, and scaling factorF .
Begin
1: Initialize the population

xG=0
i j = lb j + randj ∗ (ubj − lb j) (16)

whererandj a random number in [0,1].
2: Evaluate the population
3: Cycle = 1
4: while (Cycle≤ Max cycle) for each individualxG

i
do
5: Mutation: DE creates a mutation vectorvG

i us-
ing equations (9) to (13), depending on the mutation
scheme
6: Crossover: DE creates a trial vectoruG

i using equa-
tion (14)
7: Greedy selection: To decide whether it should be-
come a member of generation G + 1 (next generation),
the trial vectoruG

i is compared to the target vectorxG
i

(15)
8: Memorize the best solution found thus far
9: Cycle=Cycle+1
10: end while
11: return best solution
End

3 HYBRID INTEGRATED DE AND
ABC ALGORITHM (HIDEABC)

(Talbi, 2002) presented several hybridization methods
for heuristic algorithms. According to (Talbi, 2002),
two algorithms can be hybridized at a high level or
low level using relay or co-evolutionary methods,
which may be homogeneous or heterogeneous.

In this study, we hybridized ABC with DE
using a low-level co-evolutionary heterogeneous
hybrid approach. The hybrid is low-level because
we combined the functionality of both algorithms.
It is co-evolutionary because we did not use both
algorithms in series, i.e., they run in parallel. Finally,
it is heterogeneous because two different algorithms
are used to produce the final results.

DE has many advantages, but it still has scope
for improvement. In our test, we readily found that
the DE did not always reach the best solution for a
problem, because the algorithm sometimes reached
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a local optimum. To solve this problem, we propose
a hybrid DE based on the ABC algorithm. In our
proposed hybrid, we use the crossover and mutation
principles of EA to enhance the neighborhood search
of ABC.

The major difference between DE and ABC
is how new individuals are generated. The new
individuals generated during each generation are
known as offsprings. The basic idea of HIDEABC
is to combine the SI capacity of ABC with the local
search capability of DE. In order to combine these
algorithms, HIDEABC is proposed as follows. To
generate new individuals in ABC, we use equations
(9) to (13), depending on the mutation scheme, while
equation (18) is used for DE crossover to enhance the
neighborhood search of employed bees and onlooker
bees.

The main steps of the HIDEABC algorithm are as fol-
low:

• Step 1: In the first step, HIDEABC generates a
randomly distributed initial population P(G = 0)
of SNsolutions (food source positions), whereSN
denotes the size of the food source. Each so-
lution (food source)xi (i = 1,2, ...,SN) is a D-
dimensional vector, whereD is the number of op-
timization parameters.

• Step 2:Send theemployed beeto the food sources
and calculate their nectar amounts, before a new
food source is found.
In this process, the modification strategy uses the
classical mutation and crossover components of
the DE algorithm. This operation also improves
the convergence speed and increases the diver-
sity of the ABC population. We useequations (9)
to (13), depending on the mutation method, with
eq(14) for crossover.

• Step 3: An onlooker beechooses a food source
depending on the probability value associated
with that food source,pi : equation (7)

• Step 4: Send theonlooker beesto the food
sources and determine their nectar amounts. Each
onlooker evaluates the nectar information from all
employed bees and selects a food source depend-
ing on the nectar amount available at the sources.
The employed bee modifies the source position in
her memory and checks its nectar amount. Pro-
vided that the nectar level is higher than that of
the previous level, the bee memorizes the new po-
sition and forgets the old position.
Useequations (9) to (13), depending on the muta-
tion method with equation (14) for crossover.

• Step 5: A food source that is abandoned by bees

is replaced with a new food source by the scouts.
If a position cannot be improved further during a
predetermined number of cycleslimit, then that
food source is assumed to be abandoned.

• Step 6: Send the scouts to the search area ran-
domly to discover new food sources using equa-
tion (17).

• Step 7: Memorize the best food source found so
far in the global best memory.

• Repeat: Steps 2 to 7 until the terminal require-
ments are met.

Algorithm 3: HIDEABC Algorithm.
Requirements: Max Cycles, number of particles NP,
limit, crossover constant CR, and scaling factor F.
Begin
1: Initialize the food source positions

xG=0
i j = lb j + randj ∗ (ubj − lb j) (17)

whererandj is a random number in [0,1].
2: Evaluate the food sources
3: Cycle = 1
4: while (Cycle≤ Max cycle) do
5: Produce new solutions using employed bees
Mutation process: Use equations (9) to (13), depend-
ing on the mutation scheme, to generatevG

i
Crossover process:

uG
i, j =











vG
i, j if randj(0,1)≤CRor j = jrand

xG
i, j otherwise

xG
i, j +ϕi, j ∗ (xG

i, j − xG
k, j) if j = para2change

(18)
where i = 1,2, ...,NP, j = 1,2, ...,D, jrand and
para2change are randomly chosen integers from
[1,D], randj(0, 1) is a uniformly distributed random
number between 0 and 1 generated for eachj, and
CR∈ [0,1] is the crossover control parameter. Be-
cause of the use ofjrand, the trial vectoruG

i differs
from its target vectorxG

i , andk ∈ {1,2, ..,SN} is a
randomly chosen index[1,NP]. Althoughk is deter-
mined randomly, it should be different fromi. ϕi j is a
random number between [-1,1].
6: Evaluate the new solutions and apply a greedy se-
lection process using equation (15).
7: Calculate the probability values based on their fit-
ness values using equation (9).
8: Produce new solutions using onlooker bees; the
process of neighborhood search by onlooker bees is
the same as that used by employed bees.
9: Apply a greedy selection process to onlooker bees
using equation (15).
10: Determine the abandoned solutions and generate
new solutions randomly using scouts using equation
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(11).
11: Memorize the best solution found so far
12: Cycle = Cycle + 1
13: end while
14: return the best solution
End

4 EXPERIMENTS

The first experiment tuned theF andCR parameters
for DE and HIDEABC. Next, theF andCRparame-
ters produced by the first test were used to compare
the robustness of the optimization approach. These
experiments involved 50 trials for each function. The
initial seed number was varied randomly during each
trial.

4.1 Benchmark Functions

To estimate the stability and convergence to the op-
timal solution using HIDEABC, we used five bench-
mark functions with 20 dimensions, namely, Rastri-
gin (RA), Ridge (RI), Griewank (GR), Ackley (AC),
and Rosenbrock (RO). These functions are given as
follows.

RA: f1 = 10n+
n

∑
i=1

{x2
i −10cos(2πxi)} (19)

RI : f2 =
n

∑
i=1

(

i

∑
j=1

x j

)2

(20)

GR: f3 = 1+
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(

xi√
i

)

(21)

AC : f4 =−20exp

(

−0.2

√

1
n

n

∑
i=1

x2
i

)

−exp

(

1
n

n

∑
i=1

cos(2πxi)

)

+20+e(22)

RO: f5 =
n

∑
i=1

[100(xi+1− x2
i )

2+(xi −1)2] (23)

For each function, Table 1 lists the characteris-
tics including the dependent terms, multi-peaks, and
steepness. All of the functions are minimized to zero
when the optimal variablesxopt = 0 and RO function
xopt = 1 are obtained. Note that it is difficult to search
for optimal solutions by applying a single optimiza-
tion strategy, because each function has specific com-
plex characteristics.

Table 2 summarizes the design range variables.
The search process is terminated when the search
point reaches an optimal solution or a current genera-
tion process reaches the termination point.

Table 1: Characteristics of the benchmark functions.

Function Dependent Multi-peaks Steepness
RA No Yes Average
RI Yes No Average
GR Yes Yes Small
AC No Yes Average
RO Yes No High

Table 2: Design range variables of the benchmark functions.

Function Design range
RA −5.12≤ x≤ 5.12
RI −51.2≤ x≤ 51.2
GR −51.2≤ x≤ 51.2
AC −5.12≤ x≤ 5.12
RO −2.048≤ x≤ 2.048

4.2 Tuning of F and CRParameters for
DE and HIDEABC

As mentioned above, the DE control parameters such
as the population sizeNP, scaling factorF , and
crossover control parameterCR are highly sensitive.
In this test, we determined the best values ofF and
CR for each function using each approach. We tested
50 runs each for DE and HIDEABC. The population
size wasNP= 8D = 160,F = 0.05,0.1, ...,0.95,1.0,
CR= 0.05,0.1, ...,0.95,1.0, andMax cycle= 2500.
The experiment results are summarized in Table 3.
The solutions of all benchmark functions reached
their global optimum solutions.

4.3 Testing the Robustness of the
Algorithms

4.3.1 Setting the Parameters for Standard ABC

The population size wasNP = 160. The onlooker
bees and employed bees constituted 50% each of the
colony population,SN=NP/2= 80,FoodNumber=
80, andLimit = FoodNumber∗D.

4.3.2 Setting the Parameters for DE and
HIDEABC

The population size wasNP= 160. TheF andCR
values in Table 3 were used in the test, with the
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Table 3: Best values forF andCRusing 20 dimensions.

Function
RA RI GR AC RO

F CR F CR F CR F CR F CR
DE/rand/1 0.10 0.15 0.55 0.95 0.15 0.65 0.15 0.65 0.45 0.95
DE/best/1 0.50 0.05 0.75 0.95 0.50 0.65 0.40 0.40 0.70 0.70
DE/target/1 0.50 0.05 0.65 0.95 0.55 0.85 0.45 0.50 0.65 0.65
DE/best/2 0.30 0.05 0.55 1.00 0.35 0.65 0.35 0.50 0.50 0.80
DE/rand/2 0.05 0.10 0.35 1.00 0.10 0.65 0.10 0.55 0.35 0.95
HIDEABC/rand/1 0.50 0.05 0.35 0.90 0.25 0.90 0.40 0.35 0.75 0.75
HIDEABC/best/1 0.50 0.05 0.35 0.90 0.30 0.90 0.50 0.50 0.65 0.65
HIDEABC/target/1 0.95 0.05 0.65 0.90 0.50 0.80 0.50 0.75 0.60 0.65
HIDEABC/best/2 0.50 0.05 0.65 1.00 0.20 0.90 0.35 0.55 0.55 0.75
HIDEABC/rand/2 0.10 0.10 0.50 1.00 0.15 0.60 0.15 0.55 0.40 0.95

same accuracy (eps= 1.0e−6) to compare the iter-
ation when the optimum was satisfied. If the suc-
cess rate of the optimal solution was not 100%, ”–”
is shown in Tables 4 to 8. We refer to HIDEABC/...
as H/... for convenience.

Tables 4 to 8 show that the hybrid HIDEABC
reached the global optimum in fewer iterations than
with ABC and DE for all functions, with the excep-
tion of the RI function. The hybrid method failed to
achieve better results with the RI function.

Tables 3 and 8 show that the results with HIDE-
ABC/rand were good for the RA function, while Ta-
bles 7 and 8 show that they were good for the RI
function. Tables 5, 6, and 7 show that the results
were good with GR, that the AC function was good
with HIDEABC/target/1, and that the RO function
was good with HIDEABC/best/1. This problem de-
pended on the function’s characteristics (see Table 1)
and the control parametersF andCR.

Table 4: Number of iterations required to reach global opti-
mum (Average results for 50 trials).

Function ABC DE/rand/1 H/rand/1
RA 543.10 349.62 253.10
RI – 1670.80 1079.00
GR 246.84 106.26 12.63
AC 571.60 224.98 78.60
RO – 1328.02 712.72

Table 5: Number of iterations required to reach global opti-
mum (Average results for 50 trials).

Function ABC DE/best/1 H/best/1
RA 543.10 451.88 311.50
RI – 815.98 1102.20
GR 246.84 55.56 12.90
AC 571.60 281.74 79.80
RO – 1237.54 592.69

Table 6: Number of iterations required to reach global opti-
mum (Average results for 50 trials).

Function ABC DE/target/1 H/target/1
RA 543.10 716.36 398.43
RI – 581.68 1118.07
GR 246.84 59.34 31.33
AC 571.60 170.0 73.00
RO – 1196.98 539.52

Table 7: Number of iterations required to reach global opti-
mum (Average results for 50 trials).

Function ABC DE/best/2 H/best/2
RA 543.10 574.62 407.03
RI – 546.94 841.30
GR 246.84 55.28 12.23
AC 571.60 148.46 73.13
RO – 1049.56 957.50

Figures 5 to 9 show the average fitness of in-
dividual solutions until these methods reached the
global optimum solutions. Numerical experiments
showed that HIDEABC improved the generation
number compared with the average generation results
using simple ABC and DE. All benchmark functions
reached their global optimum solutions. However,
there were some differences among the methods.
HIDEABC converged faster than ABC and DE, and
it was particularly effective for the RO function.

Table 8: Number of iterations required to reach global opti-
mum (Average results for 50 trials).

Function ABC DE/rand/2 H/rand/2
RA 543.10 329.72 265.50
RI – 469.26 944.37
GR 246.84 104.52 60.83
AC 571.60 235.50 135.70
RO – 1336.84 856.80
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Figure 5: Convergence graph for the Rastrigin function.

HIDEABC arrived at the global optimum with a
high probability for every function. In summary, this
validation confirmed that the HIDEABC strategy
can reduce the computational costs and improve the
stability during convergence to the optimal solution.
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Figure 6: Convergence graph for the Ridge function.
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Figure 7: Convergence graph for the Griewank function.
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Figure 8: Convergence graph for the Ackley function.
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Figure 9: Convergence graph for the Rosenbrock function.

5 CONCLUSIONS

This paper introduces a new hybrid algorithm that ex-
ploits the strengths of ABC and DE. Our main con-
cept is to integrate the exploitation capacities of ABC
with the exploration abilities of DE. Five benchmark
functions were used to validate the performance of
HIDEABC compared with standard ABC and DE.
The results showed that HIDEABC outperformed
both tests for most functions. The results demon-
strated that the convergence speed was faster with
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HIDEABC than with ABC and DE.
In this study, we separated theF andCRparame-

ters for each function in each method, and hence we
had to tune these parameters. In future work, we will
try to develop adaptive or self-adaptiveF and CR.
We confirmed that HIDEABC reduced the calculation
costs and improved the time required for convergence
to the optimal solution.
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