AN ORDER HYPERRESOLUTION CALCULUS FOR GODEL LOGIC

General First-order Case

DuSan Guller

Department of Applied Informatics, Comenius University, Mlynskéa dolina, 842 48 Bratislava, Slovakia

Keywords:

Abstract:

Gadel Logic : Resolution : Many-valued Logics : Automated Deduction

This paper addresses the deduction problem of a formula from a countable theory in the first-order Godel
logic from a perspective of automated deduction. Our approach is based on the translation of a formula
to an equivalent satisfiable CNF one, which contains literals of the augmented form: either aora ¥ b or
(@®b) ¥ borQxc ¥ aora ¥ Qxc where a, c are atoms different from 0 (the false), 1 (the true); b is an
atom different from 1; Q 2 f8;9g; x is a variable occurring in c. A CNF formula is further translated to an
equivalent satisfiable finite order clausal theory, which consists of order clauses - finite sets of order literals
of the form: eitheraP borQxcPaoraP Qxcora borQxc aora Qxcwherea, b, care atoms;
Q 2 8;9g; x is a variable occurring in c. P and  are interpreted by the equality and strict linear order on
[0; 1], respectively. For an input theory, the proposed translation produces a so-called semantically admissible
order clausal theory. An order hyperresolution calculus, operating on semantically admissible order clausal

theories, is devised. The calculus is proved to be refutation sound and complete for the countable case.

1 INTRODUCTION

Concerning the three fundamental first-order fuzzy
logics, the set of logically valid formulae is P»-
complete for tukasiewicz logic, P»-hard for Prod-
uct logic, and S;-complete for Godel logic, as with
classical first-order logic. Among these fuzzy logics,
only Godel logic is recursively axiomatisable. Hence,
it is all important to provide a proof method suitable
for automated deduction, as one has done for classical
logic. In contrast to classical logic, we cannot make
shifts of quantifiers arbitrarily and translate a formula
to an equivalent (satisfiable) prenex form. In (Baaz
et al., 2001; Baaz and Fermiiller, 2010), the prenex
fragment of Godel logic in presence of the projection

operator D: [0;1] ¥ [0;1],
Da= lifa=1,
"~ Oelse;

is investigated, denoted as the prenex GZ. (Baaz et al.,
2001) solves the validity problem (VAL). A variant
of Herbrand’s Theorem for the prenex G is proved,
which reduces the VAL problem of a formula in the
prenex G to the VAL problem of an open formula in
GY. Further, a meta-level logic of order clauses is de-
fined, which is a fragment of classical one. An order
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clause is a finite set of inequalities of the form either
a<bora bwhere<, aremeta-level binary pred-
icate symbols and a, b are atoms of G considered
as meta-level terms. The semantics of the meta-level
logic of order clauses is given by classical interpre-
tations on [0; 1], varying on assigned (truth) values to
atoms of G (meta-level terms), which are the strict
dense linear order with endpoints on [0; 1]; < is inter-
preted as the strict dense linear order with endpoints
and  as its reflexive closure on [0;1]. A formula
in the prenex GY, is valid if and only if a translation
of it to the order clause form is unsatisfiable with re-
spect to the semantics of the meta-level logic. In the
prenex G, the problem of the unsatisfiability of a for-
mula cannot straightforwardly be reduced to the VAL
problem. Although the standard Skolemisation can be
used for the reduction of the VAL problem to the open
case, it does not preserve satisfiability. (Baaz and
Fermller, 2010) have shown that any conjunction of
formulae can be translated to an equivalent satisfiable
universal form via an alternative version of Skolemi-
sation. The ordered chaining calculi (Bachmair and
Ganzinger, 1998) may be used for resolution-style de-
duction over order clauses.

In the paper, we solve the deduction problem of a
formula from a countable theory in Godel logic. Our
approach is based on the translation of a formula to
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an equivalent satisfiable CNF one, which contains lit-
erals of the augmented form: either a ora ¥ b or
(@¥hb) " borQxc ¥ aora ¥ Qxc where a, ¢
are atoms different from 0, 1; b is an atom differ-
ent from 1; Q 2 £8;9g; x is a variable occurring in
c; Lemma 3.1, Section 3. A CNF formula is fur-
ther translated to an equivalent satisfiable finite order
clausal theory, which consists of order clauses - fi-
nite sets of order literals of the form: either a P b
orQxcPaoraPQxcora borQxc aor
a Qxc where a, b, ¢ are atoms; Q 2 8;9g; X is
a variable occurring in c¢; Lemma 3.1, Section 3. P
and are interpreted by the equality and strict lin-
ear order on [0;1], respectively. They are added to
Gadel logic as new binary connectives. The trans-
lation is based on so-called interpolation rules given
in Tables 2-4, Section 3. For an input theory, the
translation produces a so-called semantically admis-
sible order clausal theory, Section 4, Subsection 4.1.
Corollary 4.1 states that for an input countable the-
ory T and formula F, there exists a countable se-
mantically admissible order clausal theory S$ such
that T = f if and only if S$ is unsatisfiable. In
case of a finite T, jSTj 2 O(Tj2 +jfj?) and the time
as well as space complexity of the translation is in
O((jTj? +jfj®) log(jTj+jfi)). An order hyperres-
olution calculus, operating on semantically admissi-
ble order clausal theories, uses order hyperresolution
rules introduced in Tables 6 and 7, Section 4, Subsec-
tion 4.3. Most of the resolution rules of ordered chain-
ing calculi (Bachmair and Ganzinger, 1998) (e.g. the
factorised chaining rule) have non-empty residua in
their consequences; i.e. they infer new (in)equalities.
Many of them are only transitive consequences, un-
necessary for refutational argument. We avoid this
inefficiency using the hyperresolution principle; our
rules do not infer new (in)equalities being transitive
consequences, which confines search space consider-
ably. The calculus is proved to be refutation sound
and complete for the countable case, Theorem 4.4,
Section 4, Subsection 4.3.

The paper is organised as follows. Section 2 con-
cerns Godel logic. Section 3 deals with the transla-
tion to order clausal form. Section 4 proposes the or-
der hyperresolution calculus. Section 5 brings con-
clusions.

2 GODEL LOGIC

Throughout the paper, we shall use the common
notions and notation of first-order logic. By L we
denote a first-order language. Var|_ j Funcp j Pred| j

Termp j GTermp j Atom_ j GAtom denotes the
set of all variables j function symbols j predicate
symbols j terms j ground terms j atoms j ground
atoms of L. ar_ : Func. [ Pred. ¥ N denotes
the mapping assigning an arity to every function
and predicate symbol. We assume nullary predicate
symbols 0;1 2 Pred., arp(0) = ar (1) =0; 0
denotes the false and 1 the true in L. By Form_ we
designate the set of all formulae of L built up from
Atom( and Var using the connectives: :, negation,
~, conjunction, _, disjunction, ¥, implication,
and the quantifiers: 8, the universal quantifier, 9,
the existential one. In addition, we introduce new
binary connectives P, equality, and , strict order.
By OrdFormpwe designate the set of all so-called
order formulae of L built up from Atom; and Varp
using the connectives: -, ”~, _, ¥, P, , and the
quantifiers: 8, 9.1 In the paper, we shall assume that
L is a countable first-order language; hence, all the
above mentioned sets of symbols and expressions
are countable. Lete, e, 1 1 m,u,1 i n,
be either an expression or a set of expressions
or a set of sets of expressions, in general. By

Var,  j  boundvars(es;:::;em) var, j

Atomp. we denote the set of all variables j free
variables j bound variables j predicate symbols j
e is closed

LetX,Y,Zbesets,Z X;f:X XY beamap-
ping. By kXk we denote the set-theoretic cardinal-
ity of X. X being a finite subset of Y is denoted as
X E Y. We designate f[Z] = ff(2)jz 2 Zg; f[Z] is
the image of Z under f; and fj; = f(z; f(2))jz 2 Zg;
fjz is the restriction of f onto Z. Letg w. A se-
quencedof X isabijectiond:g ¥ X. X is countable
if and only if there exists a sequence of X. Let X be a
set of non-empty sets. A selector S over X is a map-
ping S :X ¥ X such that for all x 2 X, S(x) 2 x.
We denote Sel(X) =SS is a selector over Xg. Let
f,g:N ¥ Ry. f is of the order of g, in sym-
bols f 2 O(g), iff there exist ng and ¢ 2 Ra“ such
that foralln  ng, f(n) ¢ g(n). Lett2 Term,,
f 2 OrdForm, T g OrdFormp. The size of t j
f, in symbols jtj 2 N j jfj 2 N, is defined as the
number of nodes of its standard tree representation.
We define the size of T as jTj = 7jfj 2 N. By

IWe assume a decreasing connective and quantifier
precedence: 8,9, :,™, ¥, P, ,



varseq(f), vars(varseq(f)) Var(, we denote the se-
quence of all variables of L occurring in ¥ which is
built up via the left-right preorder traversal of f. For
example, varseq(9w (8x p(x;x;z) _ 9yq(x;y;z))) =
W, X;X;X;Z;Y; X, ¥;Z and jw; X;X;X;Z,Y;X;Y;2) = 9. A se-
quence of variables will often be denoted as X, y, z,

of variables of L. By Qx f we denote Qx; :::Qx, .

Gadel logic is interpreted by the standard G-
algebra augmented by binary operators P and  for
P and |, respectively.

G=(0;1; ;™D 5P; ;0:1)

where __j ~ denotes the supremum j infimum operator
on [0;1];

lifa b; lifa=0;
b= a=
ad b else; & 0 else;
lifa=pq1b; 1ifa<qb;
aPb= o] b= o4
0 else; 0 else

where =o.1] J <[o.3j Is the equality j strict order on
[0;1]. We recall that G is a complete linearly ordered
lattice algebra; the residuum operator D) of / satisfies
the condition of residuation:

foralla;b;c2G,a”b c D a bdc (1)
Godel negation ~ satisfies the condition:
foralla2G,a=a)0; (2)

the following properties, which will be exploited later,
hold:?

forall a;b;c 2 G,

a_b~c=(a_b)™a_c);

(distributivity of __ over ™) (3)
an(b_c)=a"b_anc;

(distributivity of ~ over _) (4)

a)d_c)y=adb_adc; (5)
a)bnc= (@I b)™@yo); (6)
(a_b)dc=@>rc)™bdc); @)
a~b)c=a)dc_b)cg; (8)
ay(®dc)=anbdgc; 9)
(@>b)db)Ib=adb; (10)

@>b)dc=(@db)Ib)™MbIc)_c; (11
@>b)>0=(@>0)>0)"(b>0): (12)

2\We assume a decreasing operator precedence: —,

o.P, .

An interpretation | for L is a triple
Up:Ffljf 2 FuncLg;fp' jp 2 Pred g

defined as usual. A variable assignmentin | is a map-
ping Var. ¥ Uj. We denote the set of all variable
assignments in | as Sy. Lett 2 Term_; v be a se-
quence of variables of L; £ 2 OrdForm_; e 2 Sy. In
I with respect to e, we define the value ktké 2 U
of t by recursion on the structure of t, the value
kvk! 2 UI" of v, the truth value kfk! 2 [0;1] of f by
recursion on the structure of ¥, as usual. A theory of
L is a set of formulae of L. An order theory of L is a
set of order formulae of L. Let F; 2 OrdForm,_ and
T;T"  Ordrorm_. fis equivalent to ', in symbols
f ,iff, for every interpretation | for L ande 2 Sy,
kfk! = kfk!. f j T is equisatisfiable to ' j T iff f j
T is satisfiable if and only if £ j T? is satisfiable.

3 TRANSLATION TO ORDER
CLAUSAL FORM

At first, we introduce conjunctive normal form (CNF)
in Godel logic. In contrast to two-valued logic, we
have to consider an augmented set of literals appear-
ing in CNF formulae. Let I;¥2 Formp. | is a literal
of L iffeither | =aorl=a ¥ borl=(a ¥ b) ¥ b
orl=Qxc ¥ aorl=a ¥ Qxcwherea;c 2 Atom_

f0;1g, b 2 Atom  flg, x 2 vars(c). f is a conjunc-
tive j disjunctive normal form of L, in gymbgls CNF j
DNFV\;ffeitherf:Oorleorfz in j miI}j
f= ", jmli where I! is a literal of L. Let
D=1lh_ _Iy é Formi, I is a literal of L. We de-
Form. D is a factor iff,
foralli<i’® n, I & ly. We now describe some gen-
eralisation of the translation in (Guller, 2010; Guller,
2012) to the first-order case. A similar approach ex-
ploiting the renaming subformulae technique can be
found in (Plaisted and Greenbaum, 1986; de la Tour,
1992; Nonnengart et al., 1998; Sheridan, 2004). Let
| 2 OrdFormi_. | is an order literal of L iff either
I=aPborl=QxcPaorl=aPQxcorl =QxcP
Q'ydorl=a borl=Qxc aorl=a Qxcor
I=Qxc Qydwherea;b;c;d 2 Atom|_, x 2 vars(c),
y 2 vars(d). An order clause of L is a finite set of or-
der literals of L; since =[p,1; is commutative, we iden-
tify the order literals e; P e, and e; P e; with respect

intheformly __I,. The order clause 0 is called the
empty order clause and denoted as . An order clause
flg is called a unit order clause and denoted as I; if it
does not cause the ambiguity with the denotation of
the single order literal | in given context. We desig-
nate the set of all order clauses of L as OrdCl_. Let



We define the size of C as jCj = |o¢cjlj 2 N. By
lo_ _ln_Cwedenote flog[[ [ flng [C where,
forall i;i’ n,i&i’, ;@Candli&ly. ByC_C
we denote C [ C'. C is a subclause of C’, in symbols
CwvCiffC C' An order clausal theory of L is a
set of order clauses of L. A unit order clausal theory
is a set of unit order clauses. Let | be an interpre-
tation for L and e 2 S;. C is true in | with respect
to e, written as | j=, C, iff there exists | 2 C such
that | j=¢ | . | is a model of C, in symbols | =C,
iff, foralle2 Sy, | e C. LetS;S"  OrdClI_. | is
a model of S, in symbols | =S, iff, for all C 2'S,
| =C. Cis a logical consequence of S, in symbols
S = C, iff, for every model | of SforL, | EC. &
is a logical consequence of S, in symbols S j= S, iff,
for every model | of Sfor L, | S Cj S is sat-
isfiable iff there exists a model of C j S for L. Let
f;# 2 0rdForm_ and T;T'  OrdForm_. £jTjCj
S is equisatisfiable to # j T' j C' j S iff Fj T jC
S is satisfiable if and only if ¥ j T?j C"j S is sat-
isfiable. Let S g OrdCl_. We define the size of S
as jSj = co2sjCj2N. Let I =N N; I isan infi-
nite countable set of indices. Let P = ff;ji 2 Ig such
that P\ Pred,. = 0; P is an infinite countable set of
new predicate symbols. From a computational point
of view, the worst case time and space complexity will
be estimated using the logarithmic cost measurement.
Let A be an algorithm. #0 2 N denotes the number of
all basic operations executed by A. The translation to
order clausal form is based on the following lemma.

Lemma 3.1. Let f2 Form; T Formg be count-
able; F I such that there exists ng and F\
f(i;j)ji  nog=0;n¢ no.

(i) There exist either Jg = @ or J¢ = F(ng; )]
nkd, Jr F I, Jg\F =0; a CNF y 2
FOI’mL[fﬁjjjzjfg; Sf = OrdCIL[fﬁjjszfg such
that
(@) kisk 2 jfj;

(b) either Jy =Sg=0,0rJg=0,Sg=F g, or
Je & 0, RS €& 0;

(c) there exists an interpretation A for L and
A F 2 Formp if and only if there exists
an interpretation A’ for L LTP;jj 2 Jeg and
A’y 2 Formipep; 20, Satisfying A =
AjL;

(d) there exists an interpretation A for L and
A F T2 Formp if and only if there exists
an interpretation A’ for L [fP;jj 2 Jeg and
A’ =S¢ OrdCIL pep, jjasg Satisfying A =
Alj;

(e) jyij 2 O(jfj%); the number of all basic opera-
tions of the translation of fto y is in O(jfj?);

the time and space complexity of the transla-
tion of Fto y is in O(jfj? logjfj);

() jS¢i 2 O(jfj%); the number of all basic op-
erations of the translation of £ to S¢ is in
O(jfj%); the time and space complexity of the
translation of f to S¢ is in O(jfj? logjfj);

(@ ify&0and y &1, theny = ; nyDi,
Dj is a factor; J¢ & 0; foralli ny, 0 &
preds(Di)\P  ff;jj 2 J¢g; for all i <’
ny, lits(Di) & lits(Dyp);

(h) if Sf& 0 and S¢ & T g, then J¢ 6 0; for all
C2Ss, 06 preds(C)\P  Tf;ji 2 Jeg.

(ii) There exist Jy I, Jy \F =0, and St

OrdCIL[fﬁjjszTg being countable such that

(@) either Jy =St =0,0rJr =0,Sr =f g,or
J & 0, RSt & @;

(b) there exists an interpretation A for L and

AFT Form if and only if there exists
an interpretation A for L [ f;jj 2 Jrg and

A’j= St OrdCly rep, jjor g, Satisfying A =
AjL;
() ifT g Form_,thenJr g ILkdJtk 2 jTj;

St F OrdCIL rep, 5207, ST 2O(TJ?); the
number of all basic operations of the trans-
lation of T to St is in O(Tj?); the time and
space complexity of the translation of T to St
isin O(Tj? log(1+jTj));

(d) if St &0and St & g, then Jr 6 0; for all
C2S1,06 preds(C)\P  Tf;jj 2 Jrg.

Proof. Technical using interpolation. Let 1 2 C 2
S¢jSt. Theneither |l =aPborl=cPaorl=
aPcorl=a borl=c aorl=a <cab2
atoms(Sg) jatoms(St), ¢ 2 gatoms(S¢) jgatoms(St).

Let g 2 Form, . There exists ¢’ 2 Form such (13)
that

@ d q

() jo'i 2 jaj; 9" can be built up via a pos-
torder traversal of q with #0 2 O(jqj),
the time and space complexity in O(jqj
logjaj);

(¢) o does not contain :;

(d) either g° =0, or 0 is a subformula of ¢ if
and only if 0 is a subformula of a subfor-
mula of g’ of the formJ ¥ 0, J & 0;

(e) either g =1 or 1 is not a subformula of ¢.

The proof is by induction on the structure of q.

In Table 1, for every form of literal, an order
clause is assigned so that for every interpretation A
for L, foralle 2Sa, A e | ifand only if A j=¢ C.



Table 1: Translation of | to C.

Case: | C

1 a aP1 iCi 3 jlj
2 atlo aPo0 iCi 3 jlj
3 alb a b_aPb iCi 3 jlj
4 @¥0) %0 0 a ici 3l
5 (@¥b)®b b a_bP1 iCi 3 jlj
6 Qxc ¥ a Qxc a_OQxcPa jCj 3 jlj
7 a ¥ Qxc a Qxc_aPQxc jCj 3jlj

a;b;c 2 Atom  f0;1g, x 2 vars(c).

Let g 2 Form_ T0;1g; (13c—e) hold for q; (14)
x be a sequence of variables of L, vars(x)
vars(q); G 1 such that there exists n;

and G\F(i; j)ji  mg=0; ng n; i=
(ngija) 21, f; 2 P, ar(f;) = jxj, fig\ G
f(i;j)ji  mg\G=20. There exist ny  jj,
I=Fg:Dili+1 | mg rLINGL
fig) = 0; a CNF ys 2 FormL[fﬁﬁg[fﬁjijJg,

S5 F OrdClL[fﬁﬁg[fﬁjjjz‘]g, s =+; , such

that for both s,

(a) kdk jaj 1;

(b) there exists an interpretation A for L [
fhigand A= p;(X) ¥ g2 Form pp,g if
and only if there exists an interpretation
A for L [ fp;g [ Fp;ji 2 Jg and A’ =
y* 2 Formg [F6:9LF; ji23g" satisfying A =
AL fpi0;

(c) there exists an interpretation A for L[
foigand AjF=q ¥ fi(X) 2 Formg pep,g
if and only if there exists an interpreta-
tion A’ for L [ fp;g [ fp;ji 2 Jg and
A EyYy 2 FOFmL[fﬁﬂg[fﬁjijJg, satisfy-
ing A = AljL_[rp,g;

(d) for  every interpretation A  for
L LFRig LR35 239, AFE y* 2
Formy s, grp; 230 if and only if
AF S OrdClL g, grfp;i2s0)

(e) there exists an interpretation A for L [
;g and A pi(x) ¥ q 2 Formg pp,q
if and only if there exists an interpreta-
tion A’ for L [ fp;g [ fp;ji 2 Jg and
/-D\U F S* O.OrdCIL[fﬁig[fﬁjjjz-]g’ Satisfy-
ing A = A'jLp.g

() there exists an interpretation A for L [
;g and AjF=q ¥ f;(x) 2 Formp regyg
if and only if there exists an interpreta-
tion A" for L [ g [ ff;jj 2 Jg and
A FS OrdCIL[fﬁig[fp“jjjz‘]g, satisfy-
ing A = AOjL [fﬁng;

Table 3: Unary interpolation rules for ¥ .

Case: Laws

q=0q: ¥ 0
Positive p:(x) ¥ (01 ¥ 0)
interpolation  (f;(X) ¥ 0_f:; (x) ¥ 0)™ (a1 ¥ Piy (X))

©).® @0

jConsequentj =8+2 jxj+ja1 ¥ i, (X)j 13 (L+jxj)+jar ¥ Pz, (¥j

Positive Pi(x) ¥ (q ¥ 0)
interpolation f;(X) P 0_p:, (X) P 0;a: ¥ f:, (X)g

(28)

jConsequentj =6+2 jxj+jar ¥ Pz, ()] 15 (1+jxj)+jar ¥ Pz (X)]

Negative (g1 ¥ 0) ¥ f;(x)

interpolation ((B:, (<) ¥ 0) ¥ 0_p; ()~ (F;, (¥ ¥ a1) (11) (29

jConsequentj = 8+2 jXj+jps, (X) ¥ qij 13 (1+]jX))+jfs; () ¥ i

Negative (q1 ¥ 0) ¥ B;(x)
interpolation 0 fi;, (X) _f: (X) P 1,0z, (X) ¥ qi9

(30)

iConsequentj =6+2 jxj+jPs; (%) ¥ a1 15 (1+jX)) +jfs, (O T uj

() iy®i 13 jaj (1+jxj), y* can be builtup
from g and x via a preorder traversal of q
with #0 2 O(jaj (1 +jxj));

(h) jS%j 15 joj (1+jxj), S° can be built up
from g and x via a preorder traversal of g
with QS) 2 0(jgj (1+jxj);

)y = nys D$, D & fi;(x) is a factor; for
all i nys, 06 preds(D)\P  Fig [
;i3 23g; foralli<i’ nys, lits(D§) &
lits(D});

(j) forallC2S%, 06 preds(C)\P g [
5;j5 239 ji(x) P L B:(x) 1885

The proof is by induction on the structure of g using
the interpolation rules in Tables 2—4.

(i) By (13) for f 2 Formy_, there exists ' 2 Form|_
such that (13a—e) hold for . We then distinguish
three cases for . Case 1:  =0. We put Jf =
0 FLI\F=0,y=02Form_;Sg=F g F
OrdCl_. Case 2: #=1. WeputJg=0 ¢ I,
JJ\F=0; y=12Form_; Sg=0 ¢ OrdCl,..
Case 3: &0 and f & 1. Let x = varseq(f).
Let i = (ng;0) 21, f; 2 P, ar(f;) = jxj. We get
by (14) for ¥, X, F, no, ng, i, f; that there ex-
ist ng«, J* =Ff(ng;)jl  j ng+g E L JITN\
(F [fig) = 0; a CNF y™ 2 FOrmy s, qrp;ji23*g;
S* E OrdCl_ [fp:00f5;j2+g; and (14a,b,e,g—j) hold
for , X, f;, J*, y*, S*. We put ny = ny+,
J=Ffig[J" f I, X\F=0 y=pmax"
y" 2 Formppep; 2500 St = FO: () P 19[S F
OrdCl [Ff; ii23r9- (i) straightforwardly follows from
@i). O



Table 2: Binary interpolation rules for ~, _, ¥.

Case:

Laws

a=0a:1"q2

Pi(x) ¥ g1™ae

Positive interpolation

iConsequentj =9+4 jxj+jfz; (X) ¥ quj+jfi,(X) ¥ G2

Positive interpolation €

jConsequentj = 12+8 jXj+jfi, (X) ¥ quj+jfz, (X) ¥ G2

Negative interpolation

jConsequentj =9+4 jXj+jo1 ¥ fiz; (j+joz ¥ Pz, (X

Negative interpolation €

jConsequentj =12+8 jXj+jo1 ¥ s, ()j+jdz ¥ Fs, ()]

9=01_0Q2
Positive interpolation

jConsequentj =9+4 jXj+jf;; (X) ¥ quj+jfi, (%) ¥ qoj

CAOE EN O GAOE RN N CROR NG ORES) ©
13 A+jX) +jfsy, () ¥ quj+ifs, () ¥ 2
pi(x) ¥ 91" g >
B0 Pi OB P P P () Pz, () () P Pz, (%
iy (0 ¥ 01 f:, () ¥ a2
15 (1+jx))+jPz, (00 ¥ quj+jfs, (X) ¥ 02
g ¥ () ®
(P, 00 ¥ i ()_fP:, 00 ¥ ()™M (A ¥ Pz ()N (A2 ¥ P, (X))
13 (A1+jxj)+jar ¥ Pz, (j+jdz2 B s, (X]
@™ ¥ pi(x) >
i () P () _ Pz, () P P (0 B, ) i () B, (%) P iz (%);
ar ¥ fiy (%):02 ¥ Py (0)
15 (1+jxj)+jar ¥ f:, (Qj+idz ¥ fi, (]
Pi(x) ¥ (A1__92) )
B0 ¥ By (O_Pa() ¥ Fiy (O) (P O ¥ qr) M (P, (X)) ¥ q2)
13 (1+jx)) +jPs, () ¥ quj+ifs, () ¥ Q2
P(x) ¥ (A1_02)

Positive interpolation

jConsequentj = 12+8 jxj+jfi;; () ¥ q1j+jfi, () ¥ qzj

Negative interpolation

() Py (O_F:(¥) P iz, (0 _

P () Pip 0 _ P (X) P Pay (X); Bz () ¥ Qa5 P, (X) ¥ 029

15 (1+jxj) +jPa, () ¥ quj+jfs, (X) ¥ a2

(@_0g2) * (¥

iConsequentj =9+4 jxj+jor ¥ fz; (i +jaz2 ¥ fi, (X))

(P, 00 ¥ P ()M (P, 0 ¥ PN (A ¥ s, (0) ™M (a2 B Py (X))

13 (A+jxi)+jau ¥ Py (Qi+jdz ¥ fa, (X))

(@1_92) ¥ f:(X)

™

Negative interpolation

jConsequentj = 12+8 jxj+ja1 ¥ f;, (Nj+jqz ¥ fz, (]

q=01 ¥ 02,0260
Positive interpolation

5, (0 i) _Pi ) P P (; i, 00 i () _ Pz, () P Pz (%);01 ¥

15 (1+jx)+jay ¥ pzy ()i +joz ¥

Pi(x) ¥ (a1 ¥ q2)

iConsequentj =9+4 jxj+jor ¥ fz; (X)j+]Pi, (X) ¥ G2

Positive interpolation €

Pi(x) ¥

B () ¥ i, (O _ Pz, 00 ¥ Pz, (00)N (A1 ¥ Py )N (P, (00 ¥ a2)

i (0:;02 ¥ i, (09

Pz, (K]

13 (A+jxi)+jan B Py () +]Psz, () ¥ 02

(a1 ¥ q2)

ar ¥ Py (005, (%) ¥ g
jConsequentj = 12+8 jXj+jor ¥ fy, (X)j+jPi, () ¥ 02

Negative interpolation

Y
B0 Pi, ) _ i) P P, () _Piy () iy () _ Pz () P Py (%

15 (L+jxj)+jar ¥ Pz, (Qj+jfs, (X) ¥ Qaj

(@ ¥ ) ¥ f:(x)

(P, () B Pz, () X P, () _ P (0) N (Fi, () X P (X)) ™

(P, 00 ¥ A1) (92 ¥ iz, (X))

jConsequentj = 13+6 jXj+jfis, (X) ¥ quj+jaz ¥ i, (N)j

Negative interpolation €

(@1 ¥ q) ¥ P

13 (1+jxj) +jfs; (X) ¥ aaj+joz ¥

P, (]

Pi, () Piy () _ P, QP 1_p:(X) P 1P, (X

Pi () ¥ duidz ¥ P, (%)

jConsequentj = 15+8 jXj+jfis; (X) ¥ daj+joz ¥ i, (X)j

15 (1+jxj) +jfs; (X) ¥ aaj+jgz X

Sy
Bz (%) _Pi, (%) P P (X);

P, (0]

9). (®)

(11), (3. (V)

(15)

(16)

(1"

(18)

(19)

(20)

(1)

(22)

(23)

(24)

(25)

(26)




Table 4: Unary interpolation rules for 8 and 9.

Case:

8qu
Positive P:(X) ¥ 8xqy
interpolation (P (x) ¥ 8x iz, (X)) (P, (X) ¥ 1)

(31)

jConsequentj =6+2 jxj+jf;; (X) ¥ qij 13 (1+jxj)+jf;; () ¥ qij

Positive Bi(X) ¥ 8xqy
interpolation  Ff: (X)  8x Pz, (X) _ P (X) P 8x s, (X); s, (X) ¥ a9

(32

jConsequentj =10+4 jxj+jfs; (X) ¥ daj 15 (1+jx)) +jfs; (X) T G

Negative 8xa ¥ fi(X)
interpolation  (8x P, (X) ¥ P: (X))~ (a1 ¥ fiz, (X))

(33)

jConsequentj =6+2 jXj+jor ¥ Pz, (0] 13 (L+jx)+jar ¥ P, (O

Negative 8xa1 ¥ P (x)
interpolation 8x iz, (X) Pz (X) _8x iz, (X) P Pz (X);a1 ¥ Pz, ()9

(34)

jConsequentj =10+4 jxj+jqi ¥ f;, ()i 15 (1+jxj)+jar ¥ fs;, (i
X1

Positive P:(X) ¥ 9xq;
interpolation  (f:(X) ® 9xfs; ()) ™ (P (%) ¥ a1)

(35)

jConsequentj =6+2 jxj+jfi; (X) ¥ qij 13 (1+jxj)+jfs, (X) ¥ Gaj

Positive B (X) ¥ 9xqy
interpolation  f5; (X)  9x Pz, (X) _ Pz (X) P 9x Pz (%); iz, (X) ¥ 019

(36)

jConsequentj =10+4 jxj+jfs; (X) ¥ daj 15 (1+jx))+jfs; (X) T aa

Negative oxaa ¥ i (%)

interpolation (X P, (0 ¥ PG~ (as ¥ P, 00 @

jConsequentj =6+2 jxj+jor ¥ f;, (0j 13 (L+jxj)+jar ¥ P, (0

Negative 9xq; ¥ p:(x)
interpolation  FOxf:, (X)  P: (X) _9xf:, () P Pa(X);01 ¥ Pz, ()9

(38)

jConsequentj =10+4 jXj+jgs ¥ f;, (] 15 (L+jX)+jas ¥ fs, ()

4 HYPERRESOLUTION OVER
ORDER CLAUSES

4.1 Restrictions on Order Clauses

The described translation produces order clausal
theories in some restrictive form, which will be
utilised in devising an order hyperresolution calcu-
lus. Let p 2 Form_. p is a quantified atom of L

QAtom;  Formp denotes the set of all quantified
atoms of L. QAtom(B QAtom|, Q 2 f8;9g, de-
notes the set of all quantified atoms of L of the form
Qxa. Letej, 1 i n, be either an expression

or a set of expressions or a set of sets of expres-
QAtom|_j
QAtomE we denote the set of
all quantified atoms j quantified atoms of the form

p(to; )il =t;i ¢
tti=xg&0:

Let | =fiji t;x@vars(t))g; and ry;:::;rg, it
k t foralll i<i® Kk ri<ry, bea sequence
suchthat frjj1 i kg=1. We denote

triiotd sth 2 Termy:

Let | be an order literal of L. | is admissible iff | =

a b, a;b2Atom_ [ QAtom;. LetC 2 OrdCl_.. C

is admissible iff, for all | 2 C, | is admissible. Let

S OrdCl.. S is admissible iff, forallC 2 S, C is

admissible. LetJ landS OrdCIL[fﬁjjjzjg. Sis

semantically admissible iff

(@) Sisadmissible;

(b) forall a2 gatoms(S), there exists j 2 J such that
preds(a) = ff; 0;

(c) for all Qxa;Qx’a’ 2 gqatoms(S), if
preds(a) = preds(a’), then Q = Q°, x = X,
boundindset(Qxa) = boundindset(Q’x'a).

Corollary 4.1. Let T  Formp be countable; f 2

Form_; F | such that there exists ng and F \

£(i;j)ji nog=0. There exist 3] 1, JF\F =0,
f .

and Sy OrdCIL[fﬁjijJig being countable such that

(i) T E=~Fifand only if Sﬁ is unsatisfiable;

(i) if T ¢ Form, then JI ¢ I, kJ[k 2 O(Tj+
s e ofF .oF. i
ifiSt F OrdCIL[fﬁjjjza{g' iSti2 O(Tj*+
jfj?); the number of all basic operations of the
translation of T and Fto ST is in O Tj2 +jfi?);
the time and space complexity of the translation
of T and Fto ST is in O((Tj2 +jfj2) log(Tj+
if0));

(iii) S}c is semantically admissible.

Proof. (i) We put Jn, = f(no;j)jj 2 Ng | and
G=FL[Jh I WegetbyLemma 3.1(ii) for T,
G, ng+ 1 that there exist Jr I, Jr \G =0; St

OrdCIL[fﬁjijJTg being countable; and 3.1(ii a—d)



hold for T, Jr, St. By (13) for f 2 Form__, there ex-
ists # 2 Form_ such that (13a—e) hold for . We
then distinguish three cases for . Case 1: =
0. Weputdf =0 1,II\F=0 and sf =
St OrdCl Y being countable. Case 2:

LLfp;)i2d;

=1 WeputJ =0 1,JJ\F=0,and S =
f g OrdCl_ being countable. Case 3: ¥ & 0
and F & 1. Let X = varseq(f’). Let i = (ng;0) 2
I, f; 2 P, ar(f;) = jxj. We get by (14) for 8xF,
X, F, no, ng, i, f; that there exist n; , J =
fno; )il j nyg r ILJ \(FL[fig) =0
S E OrdClL[fﬁig[fﬁjjjzj g; and (14a,f,h,j) hold
for 8XF, X, f;, J , S . We put ¥ = Jr [Fig [
J 0 LIJ\F=0 andSf =S [fi:(X) 1L
S OrdCIL[fﬁjjszIg being countable. (ii) and (iii)
straightforwardly follow from the translation via in-
terpolation. Let12C 2 S}:. Then either | =a P b or
I=cPaorl=aPcorl=a borl=c aor
l=a cab2 atoms(Sﬁ), c2 qatoms(S?). O

4.2 Substitutions

We assume the reader to be familiar with the standard
notions of substitutions. Let X = fxg;:::;X00 F
Var_. A substitution J of L is a mapping J :
X ¥ Termg. J may be written in the form
We denote dom(J) =X
Var| andrange(Jd) = ,oxvars(J(x)) g VarL.The
set of all substitutions of L is designated as Substy .
We define id_ : Varp ¥ Varp; id_(x) = x. Let
J 2 Subst) . Let Qxa 2 QAtom| , x 2 vars(a). J is
applicable to Qxa iff dom(J) freevars(Qxa) and
X & range(Jjsreevars(Qxa)). Ve define the application
of Jto Qxaas (QX a)J =Qx a(ijreevars(Qxa) [X:X) 2
QAtom| . Let e; e, be an admissible order literal
of L. We define the application of J to e; e, as
(e1 e2)J =e1J epJ being an admissible order lit-
eral of L. Let e, e’ be either expressions or sets of
expressions of L, in this context. €’ is an instance of
e of L iff there exists J 2 Subst,_ such that e’ = eJ. €
is a variant of e of L iff there exists a variable renam-
ing r 2 Subst, such that e’ =er. Let C 2 OrdCI_ be
admissibleand S OrdClI be admissible. C is an in-
stance j a variant of S of L iff there existsC 2 S such
that C is an instance j a variant of C of L. We denote
Inst_ (S)=fCjC isaninstance of Sof Lg OrdCI_.

foralli n, Jis a unifier of L for Ej. g is a most
general unifier of L for E iff g is a unifier of L for
E, and for every unifier J of L for E, there exists
g 2 Subst, such that ‘]jfreevars(ﬁ) = ijreevars(ﬁ) g. By

mgu; (E)  Subst_ we denote the set of all most gen-
eral unifiers of L for E.

Theorem 4.2 (Extended Unification Theorem). Let
E g Term_ or Ej g Atomp
or E; g QAtom_ or E; 2 OrdCI_ is admissible.
If there exists a unifier of L for E, then there ex-
ists a most general unifier g of L for E such that
range(djsreevars(e)) \ boundvars(E) = 0.

Proof. Standard. O
4.3 Order Hyperresolution Rules

At first, we introduce some basic notions and notation
concerning chains of admissible order literals. Let
e1;e2 2 Atom [ QAtom_ . e; E ey iff either e; = ep
ore; =0ore; =1; or ep = 8xa, x 2 vars(a), there
exists t 2 Term and ez = a(x=t LidLjyars(a) fxg); OF
e, = 9xa, X 2 vars(a), there exists t 2 Term__ and
er=a(x=t [id Ljvars(a) fxg)-

LetJ 1l and S OrdCIL[fﬁjjszg be se- (39)
mantically -admissible. — For all e1;ey;es 2
AtOM_ 5, 5239 [ gatoms(S), if e; E e, E e3,
then e; E es.
The proof. A straightforward consequence of the se-
mantical admissibility of S.

Ri[Re = ftf;tfg;: i figitig;
ftjl;tjzg F Termg:
Note that if m=0, then Ry [Rz =*. LetJ I and
S OrdCl_ [Ff; 11299 be semantically admissible. Let
&i 2 Atom_rrp, jj209 [ 0atoms(S), i = 1;2. We define
the sequence e; E e, of the form either 0 & A
AOM|_ 5, 5239 OF 06 A F gatoms(S)orRy;:::; Ry,
Ri=ft};tig ¢ Termr, in Table 5.

Un; € juUj is an admissible order literal of L. ey 2
Atomp [ QAtom,_is the beginning element of X and
up 2 Atom [ QAtom the ending element of X.
eo XUy, denotes X together with its respective begin-

be a chain of L. X is an equality chain of L iff, for
alli n, =P, and foralli<n, ui=¢ej+1. Xis
an increasing chain of L iff, for all i <n, uj E ej+1.

L. X is a strictly increasing chain of L iff there exists
i nsuchthat ; = . Xisan unstrictly increasing
chain of L iff, foralli n, ;=P. Let X be a chain
of L. X is a contradiction of L iff e Xu is a strictly in-
creasing chainof L andu Ee. LetS  OrdCl_ be ad-



Table 5: e; E e5.

ife; =0;
ife, =1,

e Ee, = _ Tepjexg

A ARRRRRAY 00

if either e; & 0;e, & 1;e1;€, 2 Atom [Fp;i32g; OF €1;€2 2 gatoms(S);

freetermseq(e; ) [ freetermseq(eo=e;) if e; 2 gatoms(S)8; e, 2 Atom;. [f5;ii230) preds(e;) = preds(ez);

~ freetermseq(ey=ey) [ freetermseq(e,) if e; 2 Atom [F5; 132303 €2 2 gatoms(S)®; preds(e;) = preds(e;):

an equality chain j an increasing chain j a strictly in-
creasing chain j an unstrictly increasing chain j a con-
tradiction of L. X is a chain j an equality chain j an
increasing chain j a strictly increasing chain j an un-
strictly increasing chain j a contradiction of S iff, for
alli n,e jui28S.

Let W = fajar(Wa) = 0;a < wg such that W \
Funcp. = 0; W is an infinite countable set of new con-
stant symbols. LetJ I and S OrdCIL[fﬁjijJg
be semantically admissible. = A basic order hyper-
resolution calculus is defined in Table 6. The basic
order hyperresolution calculus can-be generalised to
an order hyperresolution one in Table 7. Let Lo =
LLfp;jj2JgandSo =0 1g[S OrdCly,. Let

duction of C,, from S by basic order j basic witnessing
order j order hyperresolution iff, forallk n,Cy 2 Sp,
or there exist j, <k, k m, such that Cy is an or-
der resolvent of C(}O;:::;C%m using Rule (40)—(43) j
Rule (40)-(45) j Rule (46)—(48) where C[}k is an in-
stance j a variant oijk of Lx 1; Lk and Sk are defined
by recursionon1 k nas follows:

Lk 1 [ fW5 g in case of Rule (44); (45);

Ly =
Lk 1 else;

Sk=5Sk 1 [kag OrdCh_ki

D is a refutation of S iff C, =
clo®™(S)  OrdCI_ pypep,jiz09 | ClO
OrdCIL[W[fﬁjijJg J CIOH (S) OrdCIL[W[fﬁjijJg
we denote the closure of S under basic order j basic
witnessing order j order hyperresolution.

. By
BWH (S)

Lemma 4.3 (Lifting Lemma). Let J | and S
OrdCIL[fﬁjjjzjg be semantically admissible. If C 2

cloBH (S), then there exists C 2 clo" (S) such that C
is an instance of C of L [W [ff;jj 2 Jg.

Proof. By complete induction on the length of a de-
duction of C from S by basic order hyperresolu-
tion. O

We are in position to prove the refutational sound-
ness and completeness of the order hyperresolution
calculus.

Theorem 4.4 (Refutational Soundness and Complete-
ness). LetJ 1land$S OrdCIL[fﬁjjszg be count-

able, semantically admissible. 2 clo" (S) if and
only if S is unsatisfiable.

Proof. (=)) Let A be a model of S for L [W [
fP;jj2JgandC 2 clo™ (S). Then A=C. The proof
is by complete induction on the length of a deduc-
tion of C from S by order hyperresolution. Let 2
clo™ (S). Let A be a model of S for L [W [ fi;jj2
Jg. We get A=, which is a contradiction. We con-
clude that S is unsatisfiable.

(=) Let L contain a constant symbol, S & 0,

& clo™ (S). We get by Lemma 4.3 forJ, S, that

& cloBH (S). Itis straightforward to prove that there
exist L being an expansion of L [ ff;jj 2 Jg, a re-
duction of L [W [ ff;jj 2 Jg; and S  OrdCI.
being countable, semantically admissible, S° S,

2 SCIO, gclo = Inst, (SC|0), gclo = C|OBWH (SC|O);
the condition of completeness (49) (formulated be-
low) holds. Then S¢° =S and 0 1 2 S°¢lo,
We put S = fCjC 2 S°° is unit; freevars(C) = @g
OrdCl. , Up = GTerm. & 0, B = GAtom_ [
gatoms(S). Hence, 0;1 2 B; B is countable; there
exist2 gg wandasequenced:gg ¥ B ofB
such that d(0) =0,d(1) =1. Lete;;e; 2B. e; P e,
iff e; = e, or there exists an equality chain e; Xe; of
S. e1 e iff there exists a strictly increasing chain
u; Xuy of Sand e; E u; Xuy E ep. We can formulate
the condition of completeness as follows:

forall e;;e, 2 B,
eithere; e,ore;Peyore, eq.
Note that0 1.
O 1;foralle;2B,e; 6 0,1 6 ej,e1 6 ey.
(50)

(49)

The proof is straightforward.

Let f0;1g X B. A partial valuation V is a
mapping
V :X ¥ [0:1]suchthatV (0)=0,V (1) =1



Table 6: Basic order hyperresolution calculus.

(Basic order hyperresolution rule) (40)

TCi 2 Ska1
i=0

lo;:::; 1y is a contradiction of Ly:

(Basic order hyperresolution rule of rank r) (41)

] mn
— 10 Al |
I} _Cosiy T 17 _Cr 2§

=0 j=0

n

Ci 2 Sk+1

i=0

foralli n;m; r;

forall S 2 Sel(fm; +1ji  ng); there exists a contradiction of flg, i ng;
there does not exist ® 6 | n+ 1 such that for all S 2 Sel(fm; + 1ji 2 1g); there exists a contradiction of fI‘s(i)ji 21g:

(Basic order 8-saturation rule) (42)

i ;
cC H_CcPu_" Ci2S
i=0

un 2 atoms(Sk); 1 2 gatoms(Sk)®; i E up; us[min(boundindset())] 2 Vary.; us[min(boundindset())] & vars(freetermseq(un=p)) [S?:O freevars(Ci);
eo 2 atoms(Sk) f0g [ gatoms(SL);

if up[min(boundindset(i))] & freevars(eo); then ¢ = ey; else gatoms(Sk)® 3 ¢ E eo; us[min(boundindset())] & freevars(c):

(Basic order 9-saturation rule) (43)

B c_puPc_" Ci2Sk+
i=0
eo 2 atoms(Sk); 1 2 qatoms(Sk)°; e E p; eo[min(boundindset(p))] 2 Vary_; eo[min(boundindset(y))] 8 vars(freetermseq(eo=H)) [SLO freevars(C;);
€0 oUo;:::;€n nUn isan increasing chain; eo[min(boundindset(i))] 2 I, freevars(ei)\ ' g freevars(u;);
un 2 atoms(Sk) Flg [ qatoms(SL);
if eg[min(boundindset(i))] & freevars(u,); then ¢ = uy; else u, E ¢ 2 qatoms(Sk)?; eo[min(boundindset())] & freevars(c):

(Basic order 8-witnessing rule) (44)

€0 oUo; iij€n nUn2Sk.
ag  Up 2 Sks1

Wa 2W;W, & Funcy,;

g=Xx=W, 2 Substy,,;dom(g) = vars(a):

(Basic order 9-witnessing rule) (45)

€ oUp; iij€n nUn2Sk.
€ ag 2 Sk+1

Wa 2W;W, & Funcy,;
g=x=Wy 2 Subst,,;dom(g) = vars(a):

Sl =Inst, (Sk) OrdCly, .



Table 7: Order hyperresolution calculus.

(Order hyperresolution rule) (46)

k Mo kn mn
—a0 0,0 —0..... —an nn n
ej juj_ Ij ..... ej juj 172 S,

i=0 i=1 =0 =1

n mj .

I} Q2 Sk+1
i=0j=1
Wi W,
0 0,,0.10..... 0 «uunn kKn an ngnene..oon 0 plecee-

q2mguy, J0eJ Juj'll""’lmg""’ =0 €] juJ,Il,.. Imn,uoEeo,.. Eeo,uoEeO,

dom(q) = freevars fe'j 'jujjj ki;i ng,fljjl j mi;i ng;
thereexistsi  nsuchthat | =

(Order 8-saturation rule) (47)

ko Mo kn mn
FTER0= Oy () = 0. . e I I el |
ey gL I el T 1728
j=0 j=1 j=0 j=1
n mj . !
cC p_cPu_ Ii 42 Sk«
i=0 j=1
Wig W,
0 0,,0.90..... 0 -vnnn kn n nyn-qn-----n 0 plee- n 1
a2 mguy, JOeJ Ju 19;:: Shhgiti Rl Julilfii U Eed;ii: Eej ;

dom(q) = freevars fe' juiii kisi ng,fl'jl j miiong;

ufq 2 atoms(S}); p 2 qatoms(S )8 u E udg;

ugq[min(boundindset(u))] 2\_|/§1r|_ uoq[mln(bound_llndset(u))] & vars(freetermseq(ugg=p)) [ i 0freevars(fl'qjl i mig);
uoq[mm(boundlndset(u))] 2 [, freevars(ehq) \ freevars(uoq)

eoq 2 atoms(S) fog [qatoms(S )

if ulgmin(boundindset(1))] & freevars(edq); then ¢ = edq; else gatoms(Sk)® 3 ¢ E eq; ug[min(boundindset(y))] & freevars(c):

(Order 9-saturation rule) (48)

poc_pPc_ T 1 q28m
i=0j=1
Wk Wi
0 0,,0.90..... 0 vounn n n;N.n---..n . 0pple.... n 1
q2mguy, J0eJ Juj'll""’lmg""’ ,09, juJ,Il,.. Imn,uoEeo,.. Eef ;

dom(q) = freevars fe'j ']u ji ki ng,fl-]l j mi;iong;

eoq 2 atoms(S}); 1 2 gatoms(S})?; eoq Ey;

edq[min(boundindset(y))] 2Var|_ eoq[mm(bound_llrjdset(u))] & vars(freetermseq(eS0=()) [ i 0freevars(fl'q j1 j  mg);
eJq[min(boundindset(p))] 2 |, freevars(ehq) \ ' [ freevars(ulq);

uq 2 atoms(S}) flg [qatoms(Sk),

if egq[min(boundindset(u))] & freevars(ugq); then ¢ = ugg; else ugg Ec 2 qatoms(S})%; egq[min(boundindset(u))] 2 freevars(c):

iyl

W W, -
Foralli<i’® n, freevars( gl Lyb T I')\freevars( JOe Lyl T;”llf):@; S} = Inst, (Sk)  OrdCly, .

JJJ— I I



We denote dom(V) =X, f0;1g dom(V) B.We
define a partial valuation V5 by recursionon2 a
gg as follows:

V, =1(0;0);(1;1)g;
Va =Va 1 [f(d(a 1);1a 1)9
(3 a gg isasuccessor ordinal);
EFP, =1V, 1(@)jaPd(@ 1);a2dom(Va 1)g;
D, 1 =fVa 1(@ja d(@ 1);a2dom(Va 1)g;
Uy 1=1Va 1(@jd(a 1) aa2dom(Va 1)g;
8w \V4
< Da 1+ Ua

1=y LfER, =0;
- EP, else;
L g
Vg = Va (gg is a limit ordinal):
a<gg
Forall2 ~a gg, Vg isa partial valuation, (51)

dom(Va)=d[a];andforall2 a a’ gg,
Va Vg

The proof is by inductionon2 a gg.

Forall2 a gg,foralla;a’2dom(Va), (52)
if a P &, then V4(a) = Va(@);

ifa & then Va(a) < Va(@);

if Va(a) =0, thena P 0;

if Va(a) =1, thena P 1.

The proof is by inductionon2 a gg.
We put V = Vg, , dom(V') &2 d[gg] = B;

p2Predp ;ui 2Up;
A= Up;ffAjf 2Func, g;fp™jp2Pred, g :

We get A= S° =S OrdCly g, jj209- We coN-
clude that Aji pep,jj209 is @ model of S for L[
TP;ji 2 Jg and S is satisfiable. The theorem is
proved. O

In Table 8, we show that £ =8x(q1(x) ¥ q) ¥
(9xg1(x) ¥ qgp) 2 Form is logically valid using the
proposed translation to order clausal form and the ba-
sic order hyperresolution calculus.

5 CONCLUSIONS

The order hyperresolution calculus is amenable to
adding the projection operator D® to Godel logic, as
a unary connective of L. Henceforward, we sup-
pose that Form_ designates the set of all formulae
of L built up from Atom_ and Varp using the con-
nectives: -, D, ”, , ¥, P, , and the quantifiers:
8, 9; OrdForm_ designates the set of all order for-
mulae of L built up from Atom and Varp using the
connectives: =, D, ™, _, ¥, P, , and the quan-
tifiers: 8, 9. We slightly modify the definition of
literal. Let | 2 Form_. | is a literal of L iff either
I=aorl=a¥borl=(a¥b) ¥bhorl=Dd ¥ a
orl=a ¥Ddorl=0Qxc * aorl=a ¥ Qxc
where a;c;d 2 Atomp f0;1g, b 2 Atom.  flg,
x 2 vars(c). The definition of order literal remains
unchanged. We add two rows to Table 1, given in
Table 9. We add unary interpolation rules for D,
Table 10. This way modified Lemma 3.1 will still
hold. Thanks to having the definition of order lit-
eral unchanged, the rest of the formal treatment re-
mains intact. So, in the countable case, we have pro-
posed a refutation sound and complete hyperresolu-
tion proof method over semantically admissible order
clausal theories together with an efficient translation
of theories in general Godel logic (with D) to such
clausal theories, and hence, we have solved the deduc-
tion problem of a formula from a theory in the context
of automated deduction.
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Table 8: Anexample: F=8x(q1(x) ¥ g2) ¥ (9xq1(X) ¥ 7).

F=8x(@m() ¥ a2) ¥ (9xa(X) ¥ q2)

fho(x) 1 !BX(Ql(i(; L qz}{ L (Igil(f; L qf‘) ¥ fo(x)g (26)
1) LA
o) Lp(x) F1()_f()PL1_fo() P Lif2(x)  Po(¥)_P2(x) P Fo(x); fr(x) ¥ 8x(ga(x) ¥ q );(9x?1(x} L c{qz ) ¥ fa(x)g (32);(26)
ki ity ol o 28 Sl 3
F300 A) Fs ()

o) L) Fr)_Pf()P1_fo() P 1Lf(x)  Fo(X)_P20) P Po(x); r(x)  8xFa(x) _Fr(x) P 8xfs(x); fa(x) ¥ (llh{(zxg L I%%});

P  P7(¥)

Ps()  Pa()_Ps(X) P 1_P2(x) P 1;Ps(x) P2 (X) _Ps(x) P P2(X); Pa(x) ¥ Ox ?}{(in;qz Ps(x) _az P Ps(x)g (24);(36)
g (x)

B2t P100_Pa( P 1_[ ho(x) P1] @

B200 Bo¥) |_ P2 P oo ©
B100 BXPa() _ P10 P 8xfa(x) | 4

Pz Pr()—Pa(x) P pr(x) L Ps(¥) B () _

BOOPF) [
0260 Fs9_ 00 P o9 | (6

(5100 & PP | U

Bs(0  Fa()_Fs0) PL] ho(0 P 1] 8
Bs() 200 |_Fs () P 0 [

[ 500 9xFa()_pe() P 9xBs() | [10]
P00 a.09_Bo(0 P a9 | EE)
[0 Fs()_a2P a9 | [12)

Rule (40) : [1][2] :
B0 i0_[ P20 P L] 23]
Rule (40) : [3][13] :

P2() P Bo(x) |_F2(x)  F2(X) [14]
Rule (40) : [1][13][14] :

p2(x)  p1(X) [15]
Rule (40) : [8][15] :

B0 Fa()_[ B0 P L] [26]

Rule (40) : [9][16] :

[300 P 20 |_Fs0 ) 7]
Rule (40) : [15][16][17] :

Bs() 0 [18]
Rule (41) : [4][5][7][9][12][15] :

P00 100_ps() P pr( | [19]

repeatedly Rule (43) : [6][7][11][19] :

EET [20]
Rule (41) : [10][12][18][20] :

[21]



Table 9: Translation of | to C.

Case: | C

8 Dd¥a d 1 aP1l jCj 3 jlj
9 a¥dd aP0_dP1 jCj 3 jlj

a;d 2 Atom_  f0;1g.

Table 10: Unary interpolation rules for D.

Case:

Doy
Positive p:(X) ¥ Doy
interpolation  (P: (X) ¥ Dz, (X)) (F:y (X) ¥ 1)

(53)

jConsequentj =5+2 jXj+jfs, () ¥ quj 13 (1+]jX)) +jpz, (X) ¥ quj

Positive p:(X) ¥ Day

4
interpolation  Ff; (x) P 0_f;; () P 1;5;, (X) ¥ a1 1

jConsequentj =6+2 jXj+jfs; (X) T quj 15 (1+]jX)) +JPs; (X) T quj

Negative Da; ¥ p;(x)
interpolation- (D Pz, (X) ¥ 3 ()" (a1 ¥ Pi; (X))

(55)

iConsequentj =5+2 jxj+jar ¥ f;; ()i 13 (1+jxj)+jos ¥ fi, (X)j

Negative Da: * fi(X)
interpolation  fp:, ()  1_p:(X) P La1 ¥ fii; (g

(56)

jConsequentj =6+2 jxj+jar ¥ Pz (] 15 (1+]jxj)+jar ¥ Pz, ()]
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