
A Sensitivity Analysis of Common Operating Systems to
ROP Attacks

Marco Prandini and Marco Ramilli

DEIS - Università di Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy

Abstract. Return Oriented Programming (ROP) is a well know technique used
by attackers to build the last generation of stack-based attacks. ROP uses small
code sequences (“gadgets”) to invoke code from the stack, but bypassing the NX
bit security protection, allowing attackers to control the execution flow. This pa-
per analyzes some widespread operating systems, profiling the gadgets that can
readily be used, and deducing what kind of payloads they allow to build. Un-
derstanding which gadgets are usable from the attacker’s perspective is of great
practical importance to devise countermeasures to the possible attacks.

1 Return Oriented Programming

Return-oriented programming is an attack technique that recently attracted significant
attention from the scientific and professional communities for its effectiveness against
most up-to-date systems. Buchanan et Al. in [2] describe how to turn good code into
bad code using an alternative way of parsing it; this technique was introduced in 2007
by Shacham and later named: Return Oriented Programming (ROP). The ROP tech-
nique uses code misalignment to forge new instructions from data already loaded into
the memory. This technique is made possible by the so called IA32 “density”. The IA32
architecture has so many opcodes that almost every sequence of bytes could be inter-
preted as a valid IA32 instruction. Consequently, by parsing a binary code not from
the “natural” entry point but from an address misaligned by one or more bytes with
respect to it, it is highly likely to find usable sequences of instructions. Shacham on his
paper on ROP proved that such a misalignment produces a Turing complete language,
which gives to the programmer the ability to write any possible code. Each instruction
sequence ending in the IA32 instruction RETN is called a gadget. Gadgets are remark-
able because they allow the attacker to regain the control of the execution flow after
performing some computation. If the attacker knows where to find gadgets, he can start
a jump/return chain to execute arbitrary code. The first gadget is invoked by placing
its address on the stack (%ebp + 4), then the attacker gets the control flow back since
every gadget ends with a RETN. By modifying the next return address on the stack the
attacker could redirect the control flow to another gadget and so on and so forth until he
wants to end the code execution.

Fig. 1 represents a possible stack layout without address space layout randomiza-
tion. The first jumping address (0xbadbeef) is placed in %eip (%ebp + 4) giving
the control to the first gadget which, in this specific scenario, is a simple RETN in-
struction that transfers the control flow to the address found in next 4 bytes: a pointer

Prandini M. and Ramilli M..
A Sensitivity Analysis of Common Operating Systems to ROP Attacks.
DOI: 10.5220/0004099300850092
In Proceedings of the 9th International Workshop on Security in Information Systems (WOSIS-2012), pages 85-92
ISBN: 978-989-8565-15-0
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

to RegCreateKeyEx. RegCreateKeyEx keeps some inputs parameters through
POP instructions from the stack. Each needed parameter is given to the running func-
tion through the stack. Eventually a 4 bytes stack padding is added to compensate each
further POP/PUSH instructions that might misalign the %SP register. Once a function
has finished a RETN is invoked giving back the control to next address in the stack,
which in Fig. 1 specific case points to the WriteFile function.

0xbadbeef	

Pointer-‐RegCreateKeyEx	
Parameter1	 hkey	
Parameter2	 lpSubKey	
Parameter3	 Reserverd	
Parameter4	 lpClass	
Parameter5	 dwOpDons	
Parameter6	 samDesired	
Parameter7	 lpSecurityAJ.	
Parameter8	 phkResults	
Parameter9	 lpdwDispo.	

RET	 Pointer-‐RegCreateKeyEx	
POP	 Parameter1	

POP	 Parameter9	
…	

RET	 Gadget	

…	

RET	 Pointer-‐WriteFile	

Pointer-‐WriteFile	
Parameter1	 hFile	
Parameter2	 lpBuffer	
Parameter3	 nNumberOf.	
Parameter4	 lpOverlapped	
Parameter5	 lpCompleDt.	

PUSH-‐POP	 Gadget	
POP	 Parameter1	

POP	 Parameter9	
…	

…	

RET	 Pointer-‐ShellExeu4on	

PUSH-‐POP	 Gadget	

Pointer-‐ShellExecuteFunct	

0xbadbeef	 %EIP	

St
ac
k	
Pa
dd

in
g	

St
ac
k	
Pa
dd

in
g	

}

}
POP	 Parameter1	

…	

%SP	

Low	 Addresses	

High	 Addresses	

…
..	

Fig. 1. A possible stack layout of a gadget chain.

Ralf Hund et Al. in [7] present the design and the implementation of the first root-
kit which, by using the ROP technique, fully automates the process of constructing
malicious instruction sequences reusing memory data. Hovav Shacham in [3] shows
a new concept of attack which combining a large number of short instructions is able
to build ROP gadgets allowing arbitrary computation on the target machine. Thomas
Dullien et Al. in [5] described the current algorithms used for finding gadget into the
memory and an automated implementation of a framework to find out gadgets into
every possible file. Checkoway et Al. in [3] went even beyond the previous research
by studying a ROP technique without any return statement. Their attack makes use
of certain instruction sequences that behave like a return, which occur with sufficient
frequency in large libraries on (x86) Linux and (ARM) Android to allow creation of
Turing-complete gadget sets. Because they do not make use of return instructions, they
can circumvent several recently proposed classes of defense against ROP.

Even though much research has been conducted on the topic, no comprehensive and
implemented defense mechanism has been proposed so far. Kaan Onarlioglu et Al. in
[9] proposed G-Free, a compiler-based approach that represents a first practical solu-
tion. G-free is able to eliminate all unaligned free-branch instructions inside a binary
executable, and it is able to protect the aligned free-branch instructions to prevent them

86

from being misused by an attacker. Even if the project is implemented and working,
very few developer communities are using it, and in any case it is a compiler-based
solution which assumes that every developer uses a ”patched” compiler to build their
applications. This is a far-fetched assumption, and for sure cannot be readily applied
to the installed base of vulnerable software. Michalis Polychronakis et Al. described a
ROP payload detection technique that makes use of speculative code execution, where
they explore the space of admissible code flows for binaries that already exists in the
address space of a targeted process according to the scanned input data, and identify
the execution of valid ROP code at runtime. This approach is pretty expensive in term
of performance, and a tool implementing it, if not continuously kept well up-to-date,
could cause a sensitive amount of false positives.

This paper studies how the common attacking technique called Return Oriented
Programming could be adopted to compromise brand-new operative systems. In section
2 we analyze some of the most countermeasures to fight ROP, in 3 we study the native
gadgets in common operative systems. By adopting a misalignment of 15 bytes we
extract all the available gadgets from four selected operative systems and we study their
frequencies. In section 4 we shows some of the real payloads freely available in exploit-
db 1. Section 5 and 6 concludes the whole study by comparing the found gadgets to the
analyzed payload.

2 ROP Countermeasures

Researches put their efforts in finding good ways to fight ROP malware, for example
Davi et Al. [8] And Chen et Al [4] [10] implemented a threshold system able to count
how many sequences of instruction followed by RETN are present in a given executable,
once the threshold is reached the security mechanism alerts the user about that. Another
direction has been to look for violations of last-in, first-out invariants of the stack data
structure that call and return instructions usually maintain in normal benign programs.
Francillon Et Al. [6] implemented shadow return address in hardware stack such that
only call and return instructions can modify the return address stack. Davi et al. claim
that it is possible to extend their ROP defender with a frequency measurement unit
to detect attacks with return-less ROP. The idea is that pop-jump sequences are un-
common in ordinary programs, while “returnless” ROP invokes such a sequence after
each instruction sequence. Kanjie Lu [8] propose a ”conversion tool” able to transform
the most advanced ROP-Based payloads into equivalent non-ROP payloads, which can
subsequently be analyzed by standard malware analysis tools such as sand boxes and
decompilers, but is still not able to prevent ROP attacks in real time.

All these countermeasures could be classified as detection mechanisms since the
goal of these techniques is to detect possible Return Oriented Programming attacks;
none of these mechanisms would prevent ROP attacks. Currently, the two most widely
deployed OS-built defense mechanisms are not effective against ROP attacks, since
ROP was devised exactly for circumventing the NX bit/DEP protection and the address
space layout randomization (ASLR) [1], has already been bypassed in more than a way
[12],[11],[13].

1 http://www.exploit-db.com/

87

3 Gadgets Available in Common OSes

We consider four of the most used Linux based operative systems: BackTrack 5 which
is very different from normal OS because it offers an unusually large number of exe-
cutables and hacking/security tools; Debian 6 which is one of the most widely deployed
distributions, and is conversely very minimal; Fedora Core 15 which is another standard
distribution for desktop purposes; Ubuntu Server 11.10 which is one of the most used
operative systems in server environments.

Longld at vnsecurity.net implemented an open source tool able to seek gadgets in-
side a given executable, called ROPEME 2. We used a modified version of ROPEME in
order to scan all the available executables and to extract all the available gadgets from
them.

There are significant quantitative differences between the analyzed distributions.
BackTrack 5 is the one with more ready-to-be-used gadgets followed by Fedora Core
15, Ubuntu Server 11 and Debian 6. The number of gadgets depends on several factors
such as: dimension of the executable, number of libraries embedded into the executable,
number of executables and executable operations. BackTrack is the one with the highest
number of executables and the one with the highest number of embedded libraries. This
explains why it contains almost 160,000 gadgets while desktop/server distributions fare
between 40,000 and 120,000.

An interesting parameter to be analyzed is the frequency of predetermined and well
known operations inside the gadgets. It gives us a measure to compare what the gadgets
do and if they can be used to compose common payloads. In other words this param-
eter let us understand how good the chances are of rebuilding known malware, which
was probably neutralized by the appearance of NX and ASLR, as a ROP program that
uses the available gadgets. The left side of Fig.2 shows the total count of PUSH, POP,
ADD, MOV, INC, XOR, MUL, DIV, XCHG, SUB, LEA, CALL and JMP instructions over
the found gadgets. BackTrack 5 classifies first, meaning that, in addition to having the
highest number of gadgets, it also has the highest number of useful and easy-to-use
ones. It is followed by Fedora Core 15, Ubuntu Server 11 and Debian 6.

The presence of PUSH and POP operations within the gadgets increase the payload
complexity, because each operation like these that changes the stack pointer calls for
the introduction of a 4-bytes padding into the injected payload. For this specific reason
the attackers prefer to use gadgets with as few of these instructions as possible. The
second parameter we measured is the frequency with which the different registers are
used. Gadgets that do not change registers (besides the ones needed for the payload-
specific computation) allow the construction of simpler chains; otherwise, save/restore
operations are to be added. The right side of Fig 2 shows the register usage by gadgets
per operating system. Obviously the register selection is not on the developer’s hands,
but in the compiler hands, this might explain why different operative systems behave
in a very similar way. %eax is the most used register for almost all the analyzed oper-
ating systems. The frequency of the second and third most used registers differs from
distribution to distribution. The graph in Fig. 2 (right) shows a commonplace asym-
metry in general-purpose registers usage, with %eax and %ebx prevailing over %ecx

2 http://www.vnsecurity.net/2010/08/ropeme-rop-exploit-made-easy/

88

and %edx. Another common characteristic is the frequency of usage of %ebp, which is
higher than the frequency of usage of any other registry (excluding %eax and %ebx).
Here Fedora Core makes an exception, showing instead a more marked usage of %esi
and %edi.

From an attacker’s perspective the number of used registers is a very interesting
index since it represents the kind of building block available to code the payload’s al-
gorithm. Different register usages lead to different attacker choices, for example a high
number of gadgets operating on many different registers could allow a more complex
and compact coding of the same algorithm than what could be done in an environments
were it is likely to find only gadgets that operate on few registers.

Fig. 2. Assembly operations (left) and CPU registers (right) usage frequency in gadgets.

4 Analysis of Real Payloads

In order to apply the previous results to real-life applications, we need to study the same
analyzed parameters from real payloads. Once we classify the basic operations payloads
carry out, and the most frequently used registers, we can compare these findings with
the gadgets characteristics of the analyzed operating systems, to infer whether they are
likely vulnerable to ROP-based rewriting of the analyzed payloads. Through automatic
scripts we gathered 312 payloads from exploit-db.com and Google, by looking for pre-
determined names and fixed strings that commonly appear in gadget-based malware.
Once we collected the desired number of payloads we computed the same kind of stats
already gathered for gadgets.

Listing in fig. 4 shows an example of a gadget based exploit taken from exploit-db.
The python code is made for Aviosoft Digital TV Player Professional 1.x and exploits
a stack based buffer overflow through a .plf file. For each grabbed exploit we analyzed
the core structure (in the example is the content of the “rop” variable) by counting key-
words in the comments next to the gadget addresses. Fig 4 shows the results computed
over the full set of found malwares. On the left hand side we show the frequency of the
common assembly instructions found in the analyzed payloads. POP is the most com-
mon instruction. It is followed by ADD, MOV, XCHG and PUSH. No MUL, DIV and JMP
instructions were found into the analyzed payloads. On the right hand side we show the
CPU register usage frequency. %eax, %ecx and %ebx are the most used registers in
real payloads, while %esi, %esp and %edi are less used registers.

89

import struct

file = ’adtv_bof.plf’

totalsize = 5000

junk = ’A’ * 872

align = ’B’ * 136

aslr, dep bypass using pushad technique

seh = struct.pack(’<L’, 0x6130534a) # ADD ESP,800 # RETN

rop = struct.pack(’<L’, 0x61326003) * 10 # RETN (ROP NOP)

rop+= struct.pack(’<L’, 0x6405347a) # POP EDX # RETN

rop+= struct.pack(’<L’, 0x10011108) # ptr to &VirtualProtect()

rop+= struct.pack(’<L’, 0x64010503) # PUSH EDX # POP EAX # POP ESI # RETN

rop+= struct.pack(’<L’, 0x41414141) # Filler (compensate)

rop+= struct.pack(’<L’, 0x6160949f) # MOV ECX,DWORD PTR DS:[EDX] # POP ESI

rop+= struct.pack(’<L’, 0x41414141) * 3 # Filler (compensate)

rop+= struct.pack(’<L’, 0x61604218) # PUSH ECX # ADD AL,5F # XOR EAX,EAX # POP ESI # RETN 0C

rop+= struct.pack(’<L’, 0x41414141) * 3 # Filler (RETN offset compensation)

rop+= struct.pack(’<L’, 0x6403d1a6) # POP EBP # RETN

rop+= struct.pack(’<L’, 0x41414141) * 3 # Filler (RETN offset compensation)

rop+= struct.pack(’<L’, 0x60333560) # & push esp # ret 0c

rop+= struct.pack(’<L’, 0x61323EA8) # POP EAX # RETN

rop+= struct.pack(’<L’, 0xA13977DF) # 0x00000343-> ebx

rop+= struct.pack(’<L’, 0x640203fc) # ADD EAX,5EC68B64 # RETN

rop+= struct.pack(’<L’, 0x6163d37b) # PUSH EAX # ADD AL,5E # POP EBX # RETN

rop+= struct.pack(’<L’, 0x61626807) # XOR EAX,EAX # RETN

rop+= struct.pack(’<L’, 0x640203fc) # ADD EAX,5EC68B64 # RETN

rop+= struct.pack(’<L’, 0x6405347a) # POP EDX # RETN

rop+= struct.pack(’<L’, 0xA13974DC) # 0x00000040-> edx

rop+= struct.pack(’<L’, 0x613107fb) # ADD EDX,EAX # MOV EAX,EDX # RETN

rop+= struct.pack(’<L’, 0x60326803) # POP ECX # RETN

rop+= struct.pack(’<L’, 0x60350340) # &Writable location

rop+= struct.pack(’<L’, 0x61329e07) # POP EDI # RETN

rop+= struct.pack(’<L’, 0x61326003) # RETN (ROP NOP)

rop+= struct.pack(’<L’, 0x60340178) # POP EAX # RETN

rop+= struct.pack(’<L’, 0x90909090) # nop

rop+= struct.pack(’<L’, 0x60322e02) # PUSHAD # RETN

nop = ’\x90’ * 32

Fig. 3. An example of gadget-based exploit.

Fig. 4. Assembly operations (left) and CPU registers (right) usage frequency in payloads.

5 Discussion

Real world payloads work by using POP, ADD, MOV, XCHG and PUSH IA32 assembly
instructions. Operating systems offer gadgets that mostly make available POP, ADD and
MOV instructions.

Real world payloads work by using %eax, %ecx and %ebx registers. Operating

90

systems offer gadgets acting on %eax, %ebx, %edi, and %ebp.
Comparing those results we observe that many payloads using the XCHG, LEA, SUB

and CALL, which are difficult to find in unmodified operating systems, could be ported
onto them with some difficulty. Conversely, payloads which mainly use instructions
such as PUSH, POP, MOV, ADD, INC could be used with high success in unmodified
operating systems, but this is a pattern seldom found in typical payloads.

Regarding registers, we notice that the usage distribution of %eax and %ebx in typ-
ical payloads is suitable to match the characteristics of all operating systems, whereas
an attack to Fedora Core could be slightly more difficult to mount since this distribution
shows few gadgets operating on the %esp and %ebp registers which are required by
typical payloads.

6 Conclusions

In this paper we analyzed how real-world payloads could successfully attack stock op-
erating systems. The research follows a simple statistic analysis comparing the IA32
assembly instructions set and registers set found in 312 real-world payloads to the IA32
assembly instructions set and registers set found into the gadgets offered by four com-
mon operating systems in the GNU/Linux family. Comparing these parameters we ob-
served that there might be two different kinds of payloads: the ones making intensive
use of XCHG, LEA, SUB and CALL, and the ones making intensive use of textttPUSH,
POP, MOV, ADD, and SINC. Our research shows that the analyzed operating systems
could be more easily attacked by the second kind of payload. In other words if a user
runs an unmodified operating system without any additional software on it, he might
adopt countermeasures able to detect/prevent only the smallest set of payloads: the one
using PUSH, POP, MOV, ADD and INC. On the other side we observed that both of the
payload sets make intensive use of a registry pattern followed by all but one operative
systems. Only Fedora Core 15 differs, exhibiting very few gadgets that manipulate two
registers that are commonly used by payloads. This might significantly increase the se-
curity of this kind of systems since very few payloads can work without using the CPU
registers that Fedora Core 15 gadgets does not allow to manipulate.

References

1. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: an efficient approach to
combat a board range of memory error exploits. In Proceedings of the 12th conference
on USENIX Security Symposium - Volume 12, SSYM’03, pages 8–8, Berkeley, CA, USA,
2003. USENIX Association.

2. E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go bad: gen-
eralizing return-oriented programming to risc. In Proceedings of the 15th ACM conference
on Computer and communications security, CCS ’08, pages 27–38, New York, NY, USA,
2008. ACM.

3. S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns. In Proceedings of the 17th ACM confer-
ence on Computer and communications security, CCS ’10, pages 559–572, New York, NY,
USA, 2010. ACM.

91

4. P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-oriented
programming malicious code. In Prakash and Gupta [10], pages 163–177.

5. T. Dullien, T. Kornau, and R.-P. Weinmann. A framework for automated architecture-
independent gadget search. In Proceedings of the 4th USENIX conference on Offensive
technologies, WOOT’10, pages 1–, Berkeley, CA, USA, 2010. USENIX Association.

6. A. Francillon, D. Perito, and C. Castelluccia. Defending embedded systems against control
flow attacks. In Proceedings of the first ACM workshop on Secure execution of untrusted
code, SecuCode ’09, pages 19–26, New York, NY, USA, 2009. ACM.

7. R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits: bypassing kernel code in-
tegrity protection mechanisms. In Proceedings of the 18th conference on USENIX security
symposium, SSYM’09, pages 383–398, Berkeley, CA, USA, 2009. USENIX Association.

8. K. Lu, D. Zou, W. Wen, and D. Gao. derop: removing return-oriented programming from
malware. In Proceedings of the 27th Annual Computer Security Applications Conference,
ACSAC ’11, pages 363–372, New York, NY, USA, 2011. ACM.

9. K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: defeating return-
oriented programming through gadget-less binaries. In Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC ’10, pages 49–58, New York, NY,
USA, 2010. ACM.

10. A. Prakash and I. Gupta, editors. Information Systems Security, 5th International Confer-
ence, ICISS 2009, Kolkata, India, December 14-18, 2009, Proceedings, volume 5905 of Lec-
ture Notes in Computer Science. Springer, 2009.

11. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effectiveness
of address-space randomization. In Proceedings of the 11th ACM conference on Computer
and communications security, CCS ’04, pages 298–307, New York, NY, USA, 2004. ACM.

12. R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter. Breaking the
memory secrecy assumption. In Proceedings of the Second European Workshop on System
Security, EUROSEC ’09, pages 1–8, New York, NY, USA, 2009. ACM.

13. H. Xu and S. J. Chapin. Address-space layout randomization using code islands. J. Comput.
Secur., 17(3):331–362, Aug. 2009.

92

