Findability through Traceability
A Realistic Application of Candidate Trace Links?

Markus Borg
Dept. of Computer Science, Lund University, Lund, Sweden

Keywords:

Abstract:

Traceability, Impact Analysis, Information Seeking, Findability, Human Computer Interaction, Automation.

Since software development is of a dynamic nature, the impact analysis is an inevitable work task. Traceability

is known as one factor that supports this task, and several researchers have proposed traceability recovery tools
to propose trace links in an existing system. However, these semi-automatic tools have not yet proven useful
in industrial applications. Based on an established automation model, we analyzed the potential value of
such a tool. We based our analysis on a pilot case study of an impact analysis process in a safety-critical
development context, and argue that traceability recovery should be considered an investment in findability.
Moreover, several risks involved in an increased level of impact analysis automation are already plaguing the
state-of-practice work flow. Consequently, deploying a traceability recovery tool involves a lower degree of

change than has previously been acknowledged.

1 INTRODUCTION

Change is an inherent characteristic of the evolu-
tion of large software systems. Consequently, impact
analysis, the process of determining possible effects
of proposed software changes, is an inevitable work
task. Conducting an impact analysis is often a labor-
intensive manual process, avoided unless absolutely
necessary (Bohner, 2002). However, in development
projects governed by safety regulations, impact anal-
ysis is a fundamental part of the development process,
necessary for safety certification of products (IEC,
2003).

The impact analysis work task involves a high de-
gree of information seeking, an increasingly costly
activity among knowledge workers in general (Karr-
Wisniewski and Lu, 2010). Previous studies have
identified this issue also in software engineering
projects (Olsson, 2002; Sabaliauskaite et al., 2010).
As a large software development project constitutes
a complex information landscape (i.e., thousands of
artifacts such as requirements, source files, test cases
and user manuals), analysing change impact is a chal-
lenging task. Thus, an important aspect of a devel-
opment project is the findability it offers, defined as
“the degree to which a system or environment sup-
ports navigation and retrieval” (Morville, 2005).

One way to support the information seeking is to
maintain traceability, defined as “the degree to which

Borg M..

artifacts are related” (IEEE Computer Society, 1990).
It is widely recognized as an important factor for ef-
ficient software development (Antoniol et al., 2002;
Domges and Pohl, 1998). However, maintaining trace
links in an evolving system is a tedious task. To
support this activity, several researchers have pro-
posed traceability recovery (i.e., proposing trace links
among existing artifacts) based on Information Re-
trieval (IR) approaches (Antoniol et al., 2002; Marcus
and Maletic, 2003). However, despite numerous re-
lated publications during the last decade, success sto-
ries in industrial settings are conspicuously few (Borg
et al., 2012). This makes us believe that the general
expectations on the approach are too high, and that the
tools should be considered from a new perspective.

The typical functionality of traceability recovery
tools is to present the user a ranked list of candidate
trace links, who then gets to vet the output (De Lu-
cia et al., 2012). Since the human still is expected
in the process, tools of this kind often claim to pro-
vide “semi-automatic” support. As automation is de-
fined as “a device or system that accomplishes (par-
tially or fully) a function that was previously, or con-
ceivably could be, carried out (partially or fully) by a
human” (Parasuraman et al., 2000), one might won-
der to what level the tools actually automate human
work. This leads us to discuss findability around the
following research questions:

RQ1: What type and level of automation do state-

173

Findability through Traceability - A Realistic Application of Candidate Trace Links?.

DOI: 10.5220/0004093501730181

In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 173-181

ISBN: 978-989-8565-13-6

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

ENASE 2012 - 7th International Conference on Evaluation of Novel Software Approaches to Software Engineering

of-the-art (SoA) traceability recovery tools offer?

RQ2: How would the introduction of a SoA trace-
ability recovery tool change the state-of-practice
(SoP) impact analysis work flow?

To tackle these questions, we conducted a pilot
case study of an impact analysis process in a safety-
critical development context, and assessed how SoA
tool support could be applied. To structure our anal-
ysis, we applied the SWELL Automation Analysis
Framework (SAAF), developed as an extension to
an automation model initially proposed by Parasur-
aman et al. (Parasuraman et al., 2000). Based on our
findings, we argue that proposed traceability recovery
tools primarily should be considered as a step towards
improved findability, rather than as an attempt to gen-
erate a full set of traces.

This paper is organized as follows: Section 2
presents work related to IR-based traceability recov-
ery and automation analyses. Section 3 describes our
case study and SAAF. Section 4 reports the outcome
of our analysis, and finally Section 5 concludes and
outlines future work.

2 RELATED WORK

2.1 IR-based Traceability Recovery

Several researchers have proposed expressing trace-
ability recovery as an IR problem. Most developed
traceability recovery tools implement standard IR
techniques based on algebraic or probabilistic mod-
els (Antoniol et al., 2002; De Lucia et al., 2005; Mar-
cus and Maletic, 2003). In such tools, the answer to
a query is a ranked list of artifact suggestions, sorted
by the level of calculated similarity (algebraic mod-
els), or probability that they are related (probabilistic
models). The ranked list is analogous to the output of
web search engines and enterprise search tools. Con-
sequently, search results can be either relevant or non-
relevant to the information need of the specific user.
A number of traceability recovery tools were de-
veloped as plug-ins. Klock et al. have developed
Traceclipse, supporting trace link recovery and man-
agement within Eclipse (Klock et al., 2011). They
developed Traceclipse to be expandable, to simplify
meeting future feature requests and to easily sup-
port other IR models. The functionality of the plug-
in was initially evaluated, however only tool out-
put was considered rather than human-tool interac-
tion. Canfora and Cerulo developed Jimpa, another
traceability recovery plug-in for Eclipse (Canfora and

174

Cerulo, 2006). They implemented probabilistic re-
trieval to establish links between change requests and
source code, and evaluated the approach on three open
source systems. De Lucia et al. developed their own
Document Management Systen (DocMS), ADAMS,
and the IR-based traceability recovery plug-in Re-
Trace (De Lucia et al., 2005). Furthermore, they have
evaluated their plug-in in studies with student sub-
jects (De Lucia et al., 2009). Falessi et al. imple-
mented a plug-in, PROUD, to the industrial CASE
tool Enterprise Architect (Falessi and Briand, 2009),
and evaluated it in a controlled experiment with stu-
dents and in an industrial case study. We, on the
other hand, have proposed developing a traceability
recovery plug-in to HP Quality Center (Borg, 2011a;
Borg, 2011b). Developing plug-ins to tools already
deployed in industry enables in-vivo studies without
introducing additional external tools.

2.2 Automation Analysis

Several taxonomies and frameworks have been devel-
oped to support the analysis of automation. A com-
prehensive overview, however from the viewpoint of
manufacturing, was recently presented by Frohm et
al. (Frohm et al., 2008). In their work, they re-
port eight different definitions of “levels of automa-
tion”. Sheridan and Verplank developed a 10-level
taxonomy for automation levels in 1980 (Sheridan
and Verplank, 1978). Billings studied automation in
the context of air-traffic controllers (Billings, 1997).
His work explicitly separated automation and human
functions, and defined a continuum of management
modes from unassisted control to fully autonomous
operations. Parasuraman et al. developed a model
incorporating both the type and the level of automa-
tion (Parasuraman et al., 2000). We extend this model
by adding two preceding and one subsequent analy-
sis phases, described in detail in Section 4.3. The
model by Parasuraman et al. was previously ap-
plied in human-computer interaction research to ana-
lyze adaptive automation solutions for air-traffic con-
trol (Clamann et al., 2002). However, to the best of
our knowledge, it has not been applied to analyze soft-
ware engineering tools.

Huffman Hayes et al. touched upon the automa-
tion questions for traceability recovery in a techni-
cal report (Huffman Hayes et al., 2006), in which
they base the discussions on their long experience of
hands-on traceability activities in industry. Further-
more, they have published several studies on how en-
gineers should work with semi-automatic tool sup-
port, including how humans interact with tools in
the traceability loop (Huffman Hayes and Dekhtyar,

Findability through Traceability - A Realistic Application of Candidate Trace Links?

Q ’ Phase 1.
& V. Preliminaries

= (3 steps)
Literature study

»
Phase 2.
Change identification
i (3 steps)

Case study

Phase 3.
Automation classification
(2 steps)

Phase 4.
Evidence-based cost-
benefit analysis
(3 steps)

Guidelines for tool
support

Figure 1: Overview of the automation analysis. The box
represents SAAF.

2005). However, the automation analysis is not the
central part of their publications, which motivated our
inquiry.

3 METHOD

To concretize our discussion on automation, we ap-
plied our automation analysis on a specific case in a
safety-critical development context. An overview of
SAAF, the framework used for the automation analy-
sis, is presented in Figure 1. It is based on the model
by Parasuraman et al. (Parasuraman et al., 2000) men-
tioned in Section 2.2. Our understanding of tool sup-
port for traceability recovery originates from an ex-
tensive literature review, and the outcome of this au-
tomation analysis is intended to guide our future tool
developing efforts.

3.1 Safety-critical Impact Analysis - A
Pilot Study

To better understand how traceability recovery can
support the impact analysis process, we developed an
initial model of the inherent information seeking ac-
tivity based on our industrial experiences. To vali-
date the model, we presented it to three software en-
gineers from the case company. We communicated
primarily via e-mail, and the respondents were se-
lected using convenience sampling. However, to im-
prove generalizability, we selected respondents repre-
senting three different development teams from two
different departments. Based on the feedback re-
ceived, we refined the model to the version presented
in Section 4.2. Furthermore, we asked the respon-
dents about their views on risks involved in increasing

automation in the impact analysis process.
3.2 Phases of SAAF

The first phase, Preliminaries, establishes the focus,
i.e., the scope of activities affected as well as effect
targets, for the automation effort within a context.
Also, the phase clarifies any assumptions taken and
what is included in the analysis. The three steps of
this phase describe: Context of the automation, Scope
of the automation, and Effect targets.

Automation change identification, the second
phase of SAAF, describes pre- and post-automation
task flows. This phase should specify which work
tasks are changed, added or removed as a conse-
quence of automation. The three steps of this phase
describe: Pre-automation work flow, Post-automation
work flow, and Changed/Added/Removed tasks.

Automation classification, third phase, analyses
automation according to the model by Parasuraman
et al. (Parasuraman et al., 2000). The object of the
analysis is both the pre- and post-automation work
flows. The two steps of this phase comprise analy-
sis of: Types of automation, and Levels of automation
(presented in Table 1 and Figure 3).

The final phase, Automation impact analysis, es-
timates both direct and indirect effects of the in-
creased automation. Since automated solutions typ-
ically bring both positive and negative effects, under-
standing them prior to implementing any changes is
essential. Our analysis targets threats involved in the
actual automation, and also its cognitive side-effects.
The final phase of SAAF also includes a break-even
analysis, a parametric assessment of benefits, where
the parameter values are selected to equate costs and
benefits. It is one of the methods that evolved to quan-
tify benefits of information systems (Sassone, 1988).
Fixed costs and costs dependant on volume are com-
pared to determine the volume at which an automa-
tion investment results in neither a profit nor a loss,
the so called breakpoint. We base discussions on the
feasibility of traceability recovery for impact analysis
on such an initial analysis, and report: Direct effects,
Indirect effects, and Existing evidence for effects.

4 RESULTS AND DISCUSSION

This section describes the results from applying
SAAF. Every phase is concluded by our final assess-
ment, expressed using the levels presented in Table 1.

175

ENASE 2012 - 7th International Conference on Evaluation of Novel Software Approaches to Software Engineering

Table 1: Summary of types and levels of automation (Parasuraman et al., 2000).

Type Level | Description
Information 10 Autonomous, ignoring human.
acquisition 9 May inform human.
+ 8 Informs human if asked.
Information 7 Executes automatically, then informs.
analysis 6 Allows human time to veto.
+ 5 Executes if human approves.
Decision 4 Suggests one alternative.
selection 3 Narrows down selection to a few.
+ 2 Offers complete set of alternatives.
Action 1 No assistance at all.
implementation

4.1 Preliminaries
4.1.1 Description of the Context

The analyzed impact analysis process originates from
a large multinational company active in the power
and automation sector. The development context
is safety-critical embedded development in the do-
main-of-industrial control systems, governed by IEC
61511 (IEC, 2003). The number of developers is in
the magnitude of hundreds; a project has typically a
length of 12-18 months and follows an iterative stage-
gate project management model. The software is cer-
tified to a Safety Integrity Level (SIL) of 2 as de-
fined by IEC 61508 (IEC, 2010), corresponding to
a risk reduction factor of 1,000,000-10,000,000 for
continuous operation. There are process requirements
on the maintenance of traceability information, es-
pecially between requirements and test cases. Both
requirements and test case descriptions are predomi-
nantly specified in English natural language text.

4.1.2 Description of the Work Task

As specified in IEC 61511 (IEC, 2003), impact of
proposed software changes should be analyzed be-
fore implementation. In the studied case, this pro-
cess is tightly integrated in the Defect Management
System (DefMS). The issues in the DefMS, i.e., de-
fect reports and change requests, are administered by
a change control board. The board distributes issues
to responsible teams for investigation. As part of the
investigation, developers are required to perform an
impact analysis, and report their results according to a
project specific template. The template, developed by
internal safety engineers and validated by an external
certifying agency, contains between 5-20 questions
depending on the SIL of the affected software compo-
nents. In the template, several questions explicitly ask
for trace links. The developer is required to specify
source code that will be modified (with a class-level

176

granularity), and also which related software artifacts
need to be updated to reflect the changes, e.g., re-
quirement specifications, design documentation, test
case descriptions, test scripts and user manuals. Fur-
thermore, the report should specify which high-level
system requirements cover the involved features, and
which test cases should be executed to verify that the
changes are correct once implemented in the system.
The test case selection should cover both developer-
centric functional testing, and system testing con-
ducted by the test organization.

4.1.3 Effect Targets

The intention of increased automation is to make the
impact analysis faster and more accurate. Also, one
engineer explained “It is important to reduce the num-
ber of mundane questions to save the effort for the
ones requiring thought and analytical abilities”.

4.2 Automation Change Identification

(RQ2)
4.2.1 Pre-automation Task Flow

A major part of the impact analysis involves spec-
ifying trace links to related software artifacts. As
there rarely are any requirement traceability matrices
to consult, the tracing is mainly a poorly supported
information seeking activity. If the engineers do not
already know which artifacts (if any) are related to the
issue, or if they do not know where to find the infor-
mation, they have to search or browse databases or
seek information from colleagues. When this infor-
mation need arise, a typical first step is to search the
DefMS for already solved issues that are similar, as
presented in Figure 2. If no such issues are found,
one could search the DocMS for relevant project doc-
umentation, or ask a colleague for help as a last resort.
One engineer stated “I probably search for informa-
tion in project documentation more than I should, it is

Findability through Traceability - A Realistic Application of Candidate Trace Links?

/,@ L/ (

Impact known | | ‘\

Information need:

4220 . A Dz
Impact? & \/ /&w,\ é =
A [y 2
; (| Search similar i
TSN Vi issues
\ __ Information need

G satisfied!

4L 8
s M \/ §
: o Search project \
Information need documentation| | |
satisfied! — 3 y |

/ Information need
I 4 satisfied!

Information need
satisfied!

Figure 2: Overview of the SoP impact analysis process.
very time-consuming and rarely successful”.

4.2.2 Post-automation Task Flow

The idea of the traceability recovery tool is to support
the two steps of manual database searching by auto-
matically executing search queries. Without human
action, we envision the tool to search for both related
issues in the DefMS and related documentation in the
DocMS. Based on the textual content of the currently
analyzed issue, the tool predicts which software arti-
facts are the most likely to be related. As in the man-
ual work flow, the last resort is to ask a colleague.

4.2.3 Changed/Added/Removed Tasks

From the perspective of the engineer, the work task
is slightly altered. An automatic search is conducted
and the resulting search hits, i.e., candidate trace
links, are presented. Thus, an added human subtask
is to assess the search hits. If the search result is
enough to satisfy the information need, the manual
DefMS and DocMS searching are removed subtasks.
On the other hand, if the engineer does not consider
the search results to provide enough information, the
engineer will as before have to seek information by
manual queries, or by asking a colleague.

4.3 Automation Classification (RQ1)
4.3.1 Types of Automation

Table 1 shows Parasuraman et al.’s types of automa-
tion. The first step, Information acquisition, refers to
operations supporting human sensory processes, sens-
ing and registration of input data. In the case of trace-
ability recovery, the required information is stored

digitally in databases. Software artifacts are typically
distributed in separate systems with poor interoper-
ability, a condition that applies also to the case we
study. Since the usefulness of an IR-based traceability
recovery tool is dependant on which software artifacts
it can access and index, plug-in solutions to existing
DefMS and DocMS have the advantage of being de-
ployed where the information actually resides.

Information analysis, the second step of an au-
tomation solution, deals with the cognitive func-
tions such as working memory and inferential pro-
cesses (Parasuraman et al., 2000). Regarding IR-
based traceability recovery tools, it is not meaningful
to distinguish between acquisition and analysis of in-
formation. As the information is accessed, it is also
analyzed. This includes the steps of the implemented
IR model such as preprocessing (stop word removal,
stemming etc.), feature extraction and weighting, and
extraction of language models. In the rest of this re-
port, we consider information acquisition and analy-
sis to be one single type of automation.

The third step, Decision selection, comprises the
augmentation and replacement of human decision op-
tions. Supporting decision selection is the backbone
of IR-based traceability recovery tools, since they are
intended to present candidate trace links. The tools
rank search results, and present them to the user. Fur-
thermore, a number of traceability recovery tools of-
fer the user both filtering and highlighting.

Action implementation, the last automation type,
is defined as the actual machine execution of the ac-
tion choice. For the IR-based traceability recovery
plug-in we envision, the action implementation is lim-
ited to correctly reporting the outcome in the impact
analysis template described in Section 4.1.2. Au-
tomating this step is meaningful since it would reduce
the risk of human input errors (which are known to
exist), e.g., incorrect use of document identifiers, and
copy/paste errors.

4.3.2 Levels of Automation

Table 1 shows the levels of automation according to
Parasuraman et al., from no support at all to a fully
autonomous solution. Based on our analysis of types
of automation, we studied the corresponding levels of
automation, and the risks involved in increasing them.

Regarding Information acquisition and analysis,
the SoP activity is to manually input search queries in
search tools offered by DefMSs and DocMSs. In such
tools, the human activity is at best supported by a set
of boolean search operations, e.g., AND, OR, NOT.
The SoA traceability recovery tools on the other hand,
automatically enters and executes search queries. The
human is not at all involved in this process, however

177

ENASE 2012 - 7th International Conference on Evaluation of Novel Software Approaches to Software Engineering

error messages tend to appear if major failures occur.
Letting the tools access too much information is a se-
curity issue. In many cases, employees have different
access rights. Efforts to improve information access
in enterprise search solutions are often limited by pol-
icy decisions (Tolone et al., 2005).

The SoP activities corresponding to the automa-
tion type Decision support are mainly concerned with
vetting various search results. Search strings can be
refined until the information need of the engineer
is satisfied. SoP search solutions typically return a
ranked list of documents and support features such
as sorting and filtering. More advanced search solu-
tions also implement features as query expansion and
relevance feedback (Baeza-Yates and Ribeiro-Neto,
2011).

After automatic execution of the search queries,
SoA tracebility recovery tools do not differ from SoP
search solutions. In both cases, the goal is to limit the
search space of the engineers, and to at least give them
starting points for browsing to the information they
are seeking. Obviously, an ideal traceability recovery
tool would automatically make decisions with a bet-
ter judgement than a human engineer. Instead, since
search results include both relevant and non-relevant
results, increasing the automation to levels where the
human is not part of the process leads to both false
positives and missed trace links. Since the accuracy
of SoA traceability recovery is considered low, fully
removing the human involvement is currently not fea-
sible (Oliveto et al., 2007; De Lucia et al., 2012). IR
tools balance on the precision-recall trade-off (Baeza-
Yates and Ribeiro-Neto, 2011), and a fully automated
solution have to be designed with care. Missed links
threat underestimating change impact, which moti-
vates search tools offering a high recall. On the other
hand, false positives caused by low precision force en-
gineers to spend extra effort. For both cases, incorrect
effort estimations are consequences.

The last automation type in the sequence, the Ac-
tion implementation, is currently supported by a tem-
plate and corresponding guidelines developed by in-
ternal safety engineers. The outcome of the impact
analysis is reported manually, by entering free text in
a document. The tailored traceability recovery plug-
in we envision, enables simple drag-and-drop oper-
ations in a graphical user interface. Both manually
typing free-text information in a template and opera-
tions in a graphical interface introduce errors due to
the human factor, thus we do not consider this a ma-
jor risk. Although, efficient Uls enable engineers to
input incorrect information faster. Consequently, an
increased level of automation of the last automation
type in the sequence might actually increase the num-

178

Type
Acquire Ll
Analyze Decide Implement
o
-
e °
o SoP
[
g Cal
— . SoA

-

Figure 3: Types and levels of automation for IR-based
traceability recovery support in impact analysis. The ma-
jor risks involved in increasing the levels are from left to
right: contravening access policies, incorrect impact analy-
sis, increased number of human errors.

ber of human errors.
4.4 Automation Impact Analysis (RQ2)
441 Direct Effects

There are two main hypotheses of increasing the level
of automation by deploying a traceability recovery
plug-in. First, engineers will on average finish the im-
pact analysis work task faster. Second, the correctness
of the engineers’ impact analyses will be higher.

4.4.2 Indirect Effects

Besides risks already mentioned, there is a risk that
additional tool support, if it is well received, would
make engineers too confident in their output. Such
overconfidence might cause engineers, especially un-
der stress, to hastily accept tool output as final an-
swers. Another risk of deploying efficient search sup-
port is that communication between developers might
decrease, as people might rely more on tools.

4.4.3 Evidence of Effects

There are few evaluations of deploying IR-based
traceability recovery tools in complete software de-
velopment projects, and only one of them was con-
ducted in an industrial setting. Li et al. conducted a
case study on impact analysis in a five-people project
running in a Chinese company for 30 weeks (Li et al.,
2008). They concluded it to be a feasible approach,
and that it helped engineers finish the tracing tasks
faster. De Lucia et al. conducted another case study,
however in a university setting (De Lucia et al., 2009).
By studying seven student development projects, they
found that deploying their IR-based traceability re-
covery plug-in improved the maintenance of trace-

Findability through Traceability - A Realistic Application of Candidate Trace Links?

ability information, as more trace links were discov-
ered.

Apart from case studies, several controlled exper-
iments have concluded that tools implementing IR-
based traceability recovery can be beneficial. For sim-
ilar tasks related to establishing trace links, both Huff-
man Hayes et al. (Huffman Hayes et al., 2007) and
De Lucia et al. (De Lucia et al., 2009) concluded that
working with tool support is better than working man-
ually, and that it improves accuracy and/or efficiency.
De Lucia et al. also found that inexperienced devel-
opers benefit most from such tool support (De Lu-
cia et al., 2009). On the contrary, an experiment by
Falessi et al. concluded that letting student subjects
work with their IR-traceability recovery tool did not
lead to any significant advantages (Falessi and Briand,
2009). Also, in contrast to findings by De Lucia et al.
regarding impact of experience, they found the tool
support more useful when used by a requirements an-
alyst in an Italian company.

The usefulness of IR solutions are known to de-
pends on the context, users, and the task it is meant
to support, which is also indicated by the conclusions
from previous studies. Consequently, the applicabil-
ity of deploying a tailored plug-in in the safety-critical
context of our case study is uncertain. However, pri-
marily considering it as an investment in findability
(i.e., moving beyond manual keyword searching to
automatically suggesting search results), we expect
the information seeking to be more efficient. Fig-
ure 4 presents a break-even analysis, assuming that
the tool support would make an engineer complete
an impact analysis faster. The main costs in an au-
tomated solution would be initial, as the tool mainte-
nance is expected to be negligible. Instead the costs
are mainly related to development and deployment of
atool, and user training. The tracing costs would then
linearly increase depending on the number of tracing
tasks performed. For the manual tracing process, the
tracing cost is expected to decrease as the number of
tasks grow due to human learning effects. Thus, for
a traceability recovery plug-in to be a meaningful in-
vestment, we would expect two aspects from the de-
velopment context. First, the information landscape
must be challenging enough to make tracing a time-
consuming task (high slope of manual curve). Sec-
ond, the tracing task must be common enough to be
considered an issue (n high enough for curves to in-
tersect). Whether the studied case fulfils these aspects
requires further study.

time 4
break- Man.
even

/ Auto.

L}

l

tool \

cost -

I

1

e
n # tracing tasks

Figure 4: Initial break-even analysis for automated impact
analysis.

5 CONCLUSIONS AND FUTURE
WORK

We have presented a structured analysis of how a
SoA IR-based traceability recovery tool could support
findability in-an impact analysis work task. Also, we
argue that the tools should be judged as search tools
rather than as traceability miners, and thus should be
evaluated accordingly. The rest of our contribution is
threefold. First, we presented a model of the infor-
mation seeking activity involved in an impact analy-
sis work task in a safety-critical development context.
Second, we found that deploying a SoA traceability
recovery tool, with a limited risk, can increase the
level of automation, but not for the automation type
defined as decision selection. Third, based on an ini-
tial break-even analysis, we claim that investing in au-
tomated traceability recovery only is worth the effort
if both (a) the information landscape is challenging,
and (b) the artifact tracing is a frequent work task.

Future work includes implementing an IR-based
traceability recovery plug-in to HP Quality Center
and evaluating it in an industrial context, based on
established methodology for user evaluations in in-
formation retrieval. Furthermore, a deeper case study
on impact analysis processes in safety-critical soft-
ware engineering should be conducted. Such a study
should be dominated by qualitative analysis, since
guantitative analyses have dominated the field of IR-
based traceability recovery.

ACKNOWLEDGEMENTS

This study was done as part of the SWELL? course on
Automated Verification and Validation where we have

Iswell.se

179

ENASE 2012 - 7th International Conference on Evaluation of Novel Software Approaches to Software Engineering

studied and developed models for analyzing levels of
automation in V&V. Thanks go to Rickard Torkar,
Said Assar, and Per Runeson for review comments.

REFERENCES

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. (2002). Recovering traceability links be-
tween code and documentation. In Trans. on Software
Engineering, volume 28, pages 970-983.

Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern In-
formation Retrieval: The Concepts and Technology
behind Search. Addison-Wesley.

Billings, C. (1997). Aviation Automation: The Search for a
Human-Centered Approach. Larrence Erlbaum Asso-
ciates, New Jersey.

Bohner, S. (2002). Software change impacts-an evolving
perspective. In Proceedings of the International Con-
ference on Software Maintenance, pages 263— 272.

Borg, M. (2011a). In vivo evaluation of large-scale IR-
based traceability recovery. In Proceedings of the
European Conference on Software Maintenance and
Reengineering, pages 365-368.

Borg, M. (2011b). IR-based traceability recovery as a plu-
gin - an industrial case study. In Fourth BCS-IRSG
Symposium on Future Directions in Information Ac-
cess.

Borg, M., Wnuk, K., and Pfahl, D. (2012). Industrial com-
parability of student artifacts in traceability recovery
research - an exploratory survey. In Proceedings of the
16th European Conference on Software Maintenance
and Reengineering.

Canfora, G. and Cerulo, L. (2006). Fine grained indexing
of software repositories to support impact analysis. In
Proceedings of the International Workshop on Mining
software repositories, pages 105-111.

Clamann, M., Wright, M., and Kaber, D. (2002). Compari-
son of performance effects of adaptive automation ap-
plied to various stages of human-machine system in-
formation processing. In Proc. of the Ann. Meeting of
the Human Factors and Ergonomics Soc., pages 342—
346.

De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.
(2005). ADAMS re-trace: A traceability recovery
tool. In Proc. of the 9th European Conference on Soft-
ware Maintenance and Reengineering, pages 32-41.

De Lucia, A., Marcus, A., Oliveto, R., and Poshyvanyk, D.
(2012). Information retrieval methods for automated
traceability recovery. In Cleland-Huang, J., Gotel, O.,
and Zisman, A., editors, Software and Systems Trace-
ability, pages 71-98. Springer, London.

De Lucia, A., Oliveto, R., and Tortora, G. (2009). Assess-
ing IR-based traceability recovery tools through con-
trolled experiments. Empirical Software Engineering,
14(1):57-92.

Domges, R. and Pohl, K. (1998). Adapting traceability
environments to project-specific needs. Communica-
tions of the ACM, 41(12):54-62.

180

Falessi, D. and Briand, L. (2009). The impact of automated
support for linking equivalent requirements based on
similarity measures. Technical report, Simula.

Frohm, J., Lindstrom, V., Winroth, M., and Stahre, M.
(2008). Levels of automation in manufacturing. Er-
gonomia, page 29.

Huffman Hayes, J. and Dekhtyar, A. (2005). Humans in
the traceability loop: can’t live with “em, can’t live
without “em. In Proceedings of the 3rd International
Workshop on Traceability in Emerging Forms of Soft-
ware Engineering, pages 20-23.

Huffman Hayes, J., Dekhtyar, A., and Sundaram, S. (2006).
Advances in dynamic generation of traceability links:
Two steps closer to full automation? Technical report,
University of Kentucky.

Huffman Hayes, J., Dekhtyar, A., Sundaram, S., Hol-
brook, A., Vadlamudi, S., and April, A. (2007). RE-
quirements TRacing on target (RETRO): improving
software maintenance through traceability recovery.
Innovations in Systems and Software Engineering,
3(3):193-202.

IEC (2003). IEC 61511-1 ed 1.0, safety instrumented sys-
tems for the process industry sector.

IEC (2010). IEC 61508 ed 2.0, @ Electri-
cal/Electronic/Programmable electronic safety-related
systems.

IEEE Computer Society (1990). 610.12-1990 IEEE stan-
dard glossary of software engineering terminology.
Technical report.

Karr-Wisniewski, P. and Lu, Y. (2010). When more is too
much: Operationalizing technology overload and ex-
ploring its impact on knowledge worker productivity.
Computers in Human Behavior, 26(5):1061-1072.

Klock, S., Gethers, M., Dit, B., and Poshyvanyk, D. (2011).
Traceclipse: an eclipse plug-in for traceability link re-
covery and management. In Proceeding of the 6th
International Workshop on Traceability in Emerging
Forms of Software Eengineering, pages 24-30.

Li, Y, Li, J, Yang, Y., and Li, M. (2008). Requirement-
centric traceability for change impact analysis: A case
study. In International Conference on Software Pro-
cess, pages 100-111.

Marcus, A. and Maletic, J. (2003). Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In Proc. of the Int’l Confer-
ence on Software Engineering, pages 125-135.

Morville, P. (2005). Ambient Findability: What We Find
Changes Who We Become. O’Reilly Media.

Oliveto, R., Antoniol, G., Marcus, A., and Hayes, J. (2007).
Software artefact traceability: the Never-Ending chal-
lenge. In Software Maintenance, 2007. ICSM 2007.
IEEE International Conference on, pages 485-488.

Olsson, T. (2002). Software Information Management in
Requirements and Test Documentation. Licentiate
thesis, Lund University.

Parasuraman, R., Sheridan, T., and Wickens, C. (2000). A
model for types and levels of human interaction with
automation. Transactions on Systems, Man and Cy-
bernetics, 30(3):286-297.

Findability through Traceability - A Realistic Application of Candidate Trace Links?

Sabaliauskaite, G., Loconsole, A., Engstrm, E., Unterkalm-
steiner, M., Regnell, B., Runeson, P., Gorschek, T.,
and Feldt, R. (2010). Challenges in aligning re-
quirements engineering and verification in a Large-
Scale industrial context. In Requirements Engineer-
ing: Foundation for Software Quality, pages 128-142.

Sassone, P. (1988). Cost benefit analysis of information sys-
tems: a survey of methodologies. In Proceedings of
the Conference on Office Information Systems, pages
126-133.

Sheridan, T. and Verplank, W. (1978). Human and com-
puter control of undersea teleoperators. Technical,
MIT Man-Machine Systems Laboratory, Cambridge,
MA, United states.

Tolone, W., Ahn, G., Pai, T., and Hong, S. (2005). Ac-
cess control in collaborative systems. ACM Comput-
ing Surveys, 37(1):29-41.

181

