
PurePos: An Open Source Morphological
Disambiguator

György Orosz and Attila Novák

MTA-PPKE Language Technology Research Group, Pázmány Péter Catholic University,
Faculty of Information Technology, 50/a Práter street, Budapest, Hungary

Abstract. This paper presents PurePos, a new open source Hidden Markov model
based morphological tagger tool that has an interface to an integrated morpho-
logical analyzer and thus performs full disambiguated morphological analysis in-
cluding lemmatization of words both known and unknown to the morphological
analyzer. The tagger is implemented in Java and has a permissive LGPL license
thus it is easy to integrate and modify. It is fast to train and use while having an
accuracy on par with slow to train Maximum Entropy or Conditional Random
Field based taggers. Full integration with morphology and an incremental train-
ing feature make it suited for integration in web based applications. We show
that the integration with morphology boosts our tool’s accuracy in every respect
– especially in full morphological disambiguation – when used for morphologi-
cally complex agglutinating languages. We evaluate PurePos on Hungarian data
demonstrating its state-of-the-art performance in terms of tagging precision and
accuracy of full morphological analysis.

1 Introduction

Tools called ‘Part-of-speech (PoS) taggers’ are widely used in current language pro-
cessing systems as a preprocessing tool. Calling them PoS taggers is a bit misleading,
since a number if tagging algorithms are capable of effectively assigning tags to words
from a much richer set of morphosyntactic tags than just the basic PoS categories. How-
ever, morphosyntactic tagging is still just a subtask of morphological disambiguation:
in addition to its tag, the lemma of each word also needs to be identified. Most of cur-
rently available taggers only concentrate on determining the morphological tag but not
the lemma, thus doing just half of the job. For morphologically not very rich languages
like English, and in situations where there is ample training material, a cascade of a
tagger and a lemmatizer yields acceptable results. For morphologically rich agglutinat-
ing languages – such as Hungarian, Finnish or Turkish – and especially in cases where
only a limited amount of training material is available, our results show that a closer
integration of the tagger and the morphological analyzer (MA) is necessary to achieve
acceptable results.

Halácsy et al. previously demonstrated [8] that a morphological analyzer can im-
prove the accuracy of tagging. Improvement is considerable when disambiguating texts
written in agglutinating languages. In our paper, we first introduce the main fields of
application where we believe our new open source tool could be used more efficiently

Orosz G. and Novák A..
PurePos: An Open Source Morphological Disambiguator.
DOI: 10.5220/0004090300530063
In Proceedings of the 9th International Workshop on Natural Language Processing and Cognitive Science (NLPCS-2012), pages 53-63
ISBN: 978-989-8565-16-7
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



than other tools available. We then describe the process of creating our tool. Our imple-
mentation is based on algorithms used in TnT [3] and HunPos [7] but the new tool is
capable of morphosyntactic tagging and lemmatization at the same time thus yielding
complete disambiguated morphological annotation1. In addition to the Hidden Markov
model (HMM) used for the disambiguation of morphosyntactic tags, the tool includes
an interface to an integrated morphological analyzer that not only greatly improves the
precision of the tagging of words unseen in the training corpus but also provides lem-
mata. Finally we compare the performance of PurePos with other tagging tools.

2 Need of an Integrated Morphological Analyzer

2.1 Agglutinating Languages

If we compare agglutinating languages like Hungarian or Finnish with English in terms
of the coverage of vocabulary by a corpus of a given size, we find that although there
are a lot more different word forms in the corpus, these still cover a much smaller per-
centage of possible word forms of the lemmata in the corpus than in the case of English.
On the one hand, a 10 million word English corpus has less than 100,000 different word
forms, a corpus of the same size for Finnish or Hungarian contains well over 800,000
[14]. On the other hand, however, while an open class English word has about 4–6 dif-
ferent word forms, it has several hundred or thousand different productively suffixed
forms in agglutinating languages. Moreover, there are much more different possible
morphosyntactic tags in the case of these languages (corresponding to the different
possible inflected forms) than in English (several thousand vs. a few dozen). Thus data
sparseness is threefold: i) an overwhelming majority of possible word forms of lemmata
occurring in the corpus is totally absent, ii) word forms that do occur in the corpus have
much less occurrences, and iii) there are also much less examples of tag sequences,
what is more, many tags may not occur in the corpus at all.

The identification of the correct lemma is not trivial either, especially in the cases of
guessed lemmata. But also for words that can be analyzed by the regular morphological
analyzer, identifying the lemma can still be a problem. In Hungarian, for example, there
is a class of verbs that end in -ik in their third person singular present tense indicative,
which is the customary lexical form (i. e. the lemma) of verbs in Hungarian. Another
class of verbs has no suffix in their lemma. The two paradigms differ only in the form
of the lemma, so inflected forms can belong to the paradigm of either an -ik final or an
non-ik final verb and many verbs (especially ones containing the productive derivational
suffix -z/-zik) have an ambiguous lemma.

2.2 Resource Poor Languages

A great proportion of resource poor languages (that lack annotated corpora) is morpho-
logically complex. For these languages, to create an annotated corpus, an iterative work-
flow is a feasible approach. First, a very small subset of the corpus is disambiguated
manually and the tagger is trained on this subset. Then another subset of the corpus is

1 i.e. each word is annotated with its lemma and its morphosyntactic tag.

54



tagged automatically and corrected manually, yielding a new, bigger training corpus and
this process is repeated. For this workflow to be in fact feasible, a fast turnaround time
is needed for the retraining process. In terms of training time, Hidden Markov Model
based taggers greatly outperform other tagger algorithms, like maximum entropy and
conditional random fields, which take comparatively longer time to train. HMM thus
fits better the iterative workflow sketched above. (To be specific, training HunPos, a
Markov model based tagger on a 1 million word Hungarian tagged corpus takes less
than a minute vs. several hours of training of a maximum entropy based OpenNLP [2]
tagger model on the same hardware.) The higher accuracy the tagger used for disam-
biguation has in the small training corpus scenario, the less time and human resource is
needed to develop the annotated corpus.

2.3 Web Services

Nowadays, an increasing number of Natural Language Processing tools are becoming
available as an online web service (Google Translate, OpenCalais, HealthMash and
other semantic search engines). Since many of these systems heavily employ a tagger
and / or a lemmatizer, a solution is required that yields the most accurate results in the
web service setting. The web service scenario imposes an additional constraint on the
morphological tagger in comparison with off-line tasks: the text to be processed is not
known at the time of the initialization of the tool. This constraint makes the simple
solution of loading a table of possible morphological analyses (MT) in the tagger – as it
is done in HunPos [7] – a poor substitute for a real morphological analyzer, especially
in the case of agglutinating languages, where a morphological table equivalent to the
full MA would not be bounded in size due to the recursive nature of the morphology.
Reinitializing the tool for each request loading a table optimized to the actual request
leads to an unacceptable response time. On the other hand, using a constant table is
costly in terms of process memory and inefficient in terms of coverage. When providing
morphological annotation as a web service, another feature comes handy: incremental
training of the tool with additional annotated text.

3 Implementation

3.1 Background

Our goal was to find or create a morphological disambiguation tool that i) contains an
interface to integrate a morphological analyzer, ii) performs full morphological disam-
biguation including lemmatization, iii) is open source, iv) can handle Unicode input,
v) can efficiently handle (including lemmatization of) both words unknown to the mor-
phological analyzer and ones missing from the training corpus, vi) is fast to train and
vii) is easy to train and use.

Although there are a few tools (see the end of this section) that meet part of the
above requirements, none of them satisfies all, therefore, we decided to build a mor-
phological tagger implemented in Java, a widely known and platform independent ob-
ject oriented programming language. Java has an additional advantage of making an

55



easier integration with popular and language independent natural language processing
tools like UIMA [19] and GATE [5]. Choosing Java as the base of our implementation
our tool has the advantage of universally representing characters of texts written in any
language covered by Unicode. We modelled our implementation on HunPos, an open
source HMM tagger written in OCaml. Enriching HunPos with the required function-
ality would probably have been the easiest way to attain our goal. However, the lesser
known programming language in which it is implemented could be a hindrance to the
portability, integration and further customization of the tool.

HunPos itself is an open source reimplementation and enhancement of Thorsten
Brants’ TnT. It is capable of i) using a generalized smoothed n-gram language model
(while TnT has trigrams only), ii) context sensitive emission probabilities (another en-
hancement over TnT), iii) clever tricks like applying different suffix guesser models
to capitalized and lower case words, iv) different emission models for ordinary words
and special tokens that contain digits and other non-letter characters, and, v) in order
to improve tagging speed, a beam search instead of an unconstrained Viterbi search.
In addition, HunPos can load a morphological table at initialization time that can be
used to emulate the operation of an integrated morphological analyzer if all the word
forms in the text to be processed had been listed along with all their possible tags using
the analyzer in an off-line manner before initializing the tagger. However, this kind of
poor man’s MA is not applicable in web service scenarios as noted above. A special en-
hanced version of TnT had a similar table loading mechanism that was used by Oravecz
and Dienes [14]. However, as far as we know, that version was not made accessible to
the public.

A drawback of HunPos is that it can only process 8 bit input, it handles case dis-
tinctions incorrectly if we attempt to use it on UTF-8 text. There is a degradation of
performance even when trying to use it for UTF-8 Latin text with accented letters but
using it for Cyrillic text, especially for a language with accented characters, would be
quite a challenge. Moreover a model which is trained on 8-bit encoded text, cannot be
correctly used for a text which has a different character encoding.

Candidates for a starting point for our development could also have been one of
the following tools: TriTagger [12, 11], an open source trigram HMM tagger imple-
mented in Java, has a language specific integrated morphological analyser (for Ice-
landic) – called IceMorphy [10] – but it does not perform lemmatization and lacks a
few clever tricks implemented in HunPos, which seem to boost the performance of that
tagger significantly. Another open source trigram HMM tagger [18, 17] implemented
in C/C++ is included in the Apertium [1] rule based machine translation toolset. It
performs full morphological disambiguation by taking morphologically analyzed input
and disambiguating it. This tagger heavily relies on the concept of ambiguity classes,
which implies that during training a morphological analyzer is necessary. In addition,
words unknown to the morphological analyzer (that were left unannotated in the input)
are handled in a uniform manner not taking the form of the word into consideration.
Handling unknown words is thus left to the preprocessor/morphological analyzer.

56



3.2 Reimplementation

We implemented the following new features in PurePos in addition to the integration of
a morphological analyzer interface: i) a lemma guesser for words unseen in the training
corpus and unknown to the MA and ii) incremental training, i.e. additional training data
can be added to the tagger model without a full recompilation of the model.

Incremental training is made possible by the fact that the model generated during
training is only normalized right before tagging (i.e. we serialize the model without
normalizing it). The calculation of model parameters and normalization takes very little
time when loading the model.

When revising the original HunPos code, we also discovered an implementation
error in it. The authors use the special tokens lexicon erroneously: the lexicon is built up
using names of special token classes, but in the tagging process, the algorithm searches
for special tokens themselves in the lexicon instead of the name of the class to which
they belong. This erroneous behaviour was fixed in PurePos.

3.3 Using the Integrated Morphological Analyzer

The integrated morphological analyzer has a twofold role in the tagger. On the one
hand, it helps to determine the correct tag for words unseen in the training corpus by
eliminating false tag candidates generated by the suffix guesser. As Halácsy et al. [7]
showed and as is clearly demonstrated in the evaluation section, the knowledge of pos-
sible tags for a particular token yields better accuracy during tagging, since the suffix
guesser may have many false guesses that can be filtered out by using a morphological
table. Keeping this feature in our implementation we also introduced an interface for a
morphological analyzer, which is used in the same way.

Since the identification of lemmata is part of our goal, we need to select the most
probable lemma that corresponds to each selected tag and token. In the case of words
missing from the lexicon of the integrated morphological analyzer, possible lemmata
are generated by a morphological guesser. This guesser gets its input from the training
data, and learns [lemma transformation, tag] pairs (TTP) for the given suffixes. A trans-
formation is represented as the difference between the word and the lemma. A reverse
trie of suffixes is built in which each node can have a weighted list containing the cor-
responding TPPs. Once the training is finished, the lemma guesser is used along with
the MA to calculate the possible lemmata. For tokens recognized by the MA, the ana-
lyzer supplies lemmata, while in the case of out-of-vocabulary (OOV) words, the lemma
guesser is used to generate possible lemmata. Each guess contains a morphosyntactic
tag with which it is compatible. Having the guesses for each token and the best tag
sequence for the sentence, for each token the most probable compatible lemma (having
the same morphosyntactic tag) is selected, where probability is estimated as the relative
frequency of the lemma (given its main PoS category) in the training set.

The tagger uses the same rich tagset that is used in the training corpus and the MA
without any mapping. In the case of the Szeged corpus this amounts to 1030 different
tags.

57



4 Evaluation

We compared our implementation with other state-of-the-art PoS taggers in terms of
tagging accuracy, such as HunPos and the maximum entropy based OpenNLP tagger.
The evaluation was done on a modified version of the Hungarian Szeged Corpus [4]
in which the morphosyntactic annotation was converted into a form that is compatible
with that of the HUMor [15] morphological analyzer that we interfaced with our tagger.
Conversion was complicated by the fact that many closed class grammatical words like
conjunctions, pronouns, postpositions and sentence adverbials are differently catego-
rized in the two formalisms. At the same time, lemmata also had to be converted to be
compatible with the used analyzer’s output. HUMor can yield a richer analysis includ-
ing a number of productive derivational affixes (e.g. participles, gerunds etc.) which
results in a different lemma than the one in the original Szeged Corpus. Since this con-
version was done automatically – that might contain errors in the case of lemmata –
we had to create a handcrafted test set, on which the lemmatization tests were run. In
addition to reporting accuracy of morphosyntactic tagging, we also present the results
of lemmatization accuracy and a combined accuracy of morphological annotation of the
tool (i.e. both the lemma and the tag must be identical to that in the gold standard for
the annotation of the token to be accepted as correct).

Comparison of PurePos with HunPos and OpenNLP is only possible in terms of
tagging accuracy as the latter perform no lemmatization. We know of only one freely
available tool for Hungarian: magyarlanc [22] that performs full morphological anno-
tation using a similar approach. Direct comparison of its performance with PurePos is
not possible due to the difference in the set of tags and lemmata produced by the two
systems, so, unfortunately, we currently cannot present a comparison of the accuracy
of the two systems. Nevertheless, PurePos has a few clear advantages: due to its depen-
dence on the Stanford tagger, magyarlanc has a more restrictive license than PurePos,
it includes a lot of machinery irrelevant to the tagging task and cannot be readily used
for other languages or annotation schemes than the one built into it.

Since our algorithm is entirely modelled on that of HunPos, it doesn’t really make
sense to compare them in the regular way: using a morphological table of the text to
be processed and using a built in MA to analyze the same words yield the same result.
If we do this we get almost exactly the same results. The differences in the output
of HunPos and PurePos mainly originate in having fixed a few relatively unimportant
implementation errors in HunPos and another part of them are cases, where there is
an indeterminacy in the exact set of paths to follow during beam search. While small
bug fixes result in about less than 0.01% improvement (and only in those cases where
the training set is small enough) the beam search indeterminacy accounts for even less
difference.

Table 1 and 2 present tagging, lemmatization and combined (full morphological
disambiguation) accuracy of PurePos. The version termed “Guesser” in the tables uses
only information learned from the corpus both for tagging unseen words and lemma-
tization of all tokens. The version termed “Gue.+MT” uses an off-line generated mor-
phological table that lists all possible tags of all tokens in the test set that was generated
using the HUMor morphological analyzer. However, this version still uses only the
lemma guesser for lemmatization. “Gue.+MA” uses the integrated MA both for tagging

58



Table 1. Morphological disambiguation accuracy per token.

Guesser Gue.+MT Gue.+MA
Tagging acc. 98.14% 98.99% 98.99%
Lemmatization acc. 90.58% 91.02% 99.08%
Combined acc. 89.79% 90.35% 98.35%

Table 2. Morphological disambiguation accuracy per sentence.

Guesser Gue.+MT Gue.+MA
Tagging acc. 75.08% 85.21% 85.21%
Lemmatization acc. 29.17% 30.74% 87.13%
Combined acc. 26.17% 28.05% 78.11%

Table 3. Comparison of part-of-speech tagging accuracy.

Accuracy
PurePos (with MA) 98.99%
PurePos (without MA) 98.14%
OpenNLP perceptron 97.16%
OpenNLP maxent 96.45%

and lemmatization. In this setup, the guesser is only used for OOV words. Table 1 shows
token accuracy and table 2 shows sentence accuracy using 90% as training set and 10%
as test set of the modified Szeged Corpus. The results clearly show that using only the
lemma guesser yields mediocre results, but if the MA is applied for lemmatization for
words in its vocabulary, accuracy significantly increases. Comparing PurePos (with and
without MA) with OpenNLP (in table 3) on the same training and test set (both with the
Maximum Entropy and Perceptron learning package) shows that our system is compet-
itive with nowadays popular systems.

In addition, we examined the learning curve of the system modelling the incremen-
tal creation of an annotated corpus from scratch. For this we followed the iterative work-
flow described above. We used the following systems: i) the reimplemented HunPos
algorithm with no analyzer integrated (as a baseline) using the trained lemma guesser
to perform lemmatization, ii) the same with a constant morphological table containing
the 100000 most frequent words from the Hungarian Webcorpus [9, 6] (an unannotated
corpus independent of Szeged Corpus) and iii) full PurePos with the integrated analyzer
that performs lemmatization as well.

The integrated basic lemma learning algorithm – in the case of a training set of an
adequate size – has a lemmatization accuracy of about 80–90% that can be used as a
baseline. Its relatively low performance is due to overregularization of frequent irregular
words. Figure 1 and 2 show that there is a clear advantage of having an integrated
morphological analyzer to handle word forms missing from the training corpus and to
do lemmatization. The advantage is striking at the initial phase of the corpus creation
process. Although it becomes less pronounced as more and more training corpus is

59



available, even with a 1 million word training corpus the tagger combined with the MA
produces only about half as many tagging errors as the version containing no analyzer.

Fig. 1. Learning curve of full disambiguation accuracy.

Fig. 2. Learning curve of PoS tagging accuracy.

Tables 4 and 5 show the performance of the tool in a hypothetical web service
scenario. We kept the – nine to one split – training and testing set, and compared the
version with an integrated MA with variants which either do not employ any morpho-
logical information (as a baseline) or use a fixed morphological table (MT, generated
from an independent corpus). In the latter case the morphological table is generated
from the Hungarian Web corpus. For this we took the first 10000 (“MT-10k”), 30000
(“MT-30k”), 100000 (“MT-100k”) most frequent words from the Web corpus. “MT-
100k*” contains the most frequent 100000 words of the Web corpus that do not occur
in the training set.

Our results show that in a web service setting using an integrated MA increases
performance significantly. The increase in efficiency is also noticeable if only the ac-
curacy of PoS tagging is considered. Having a fixed morphological table provides little
improvement in tagging performance. This is not very surprising in the MT-10k, MT-
30k and MT-100k cases, as most common words in the table are already in the training

60



Table 4. Morphological disambiguation accuracy (per token) in a web service setting.

Lemmatization Tagging Combined
Baseline 90.58% 98.14% 89.79%
MT-10k 90.58% 98.14% 89.79%
MT-30k 90.58% 98.17% 89.81%
MT-100k 90.64% 98.30% 89.90%
MT-100k* 90.72% 98.39% 89.97%
MA 99.07% 98.99% 98.35%

Table 5. Morphological disambiguation accuracy (per sentence) in a web service setting.

Lemmatization Tagging Combined
Baseline 29.17% 75.08% 26.27%
MT-10k 29.17% 75.15% 26.27%
MT-30k 29.23% 75.45% 26.33%
MT-100k 29.47% 76.85% 26.63%
MT-100k* 29.64% 78.17% 26.87%
MA 87.13% 85.21% 78.11%

corpus. However, the integrated MA yields a considerable improvement even compared
to the MT-100k* system.

5 Conclusions

In our paper, we presented PurePos a new stochastic morphological tagger that is freely
available, is open source with a permissive LGPL license and has an interface for in-
tegrating a morphological analyzer. The tagging performance of the tool is higher than
that of OpenNLP and as high as that of HunPos, another open source tagger, however,
it is easier to integrate and modify due to being implemented in Java. It can handle
Unicode input and it performs full disambiguated morphological analysis, not just mor-
phosyntactic tagging. It is fast to train and use thus we hope that it will be a tool of
choice for corpus annotation projects for less resourced languages. The integrated MA
interface makes it suitable for providing high performance morphological annotation as
a web service. The tool is available at http://nlpg.itk.ppke.hu/software/purepos.

Acknowledgements

We would like to thank Balázs Indig for his continuous help in understanding the Hun-
Pos source code, Péter Halácsy for having implemented HunPos and Nóra Wenszky for
her comments on preliminary versions of this paper. This work was partially supported
by the grants TÁMOP-4.2.1.B-11/2/KMR-2011-0002 and TÁMOP-4.2.2/B-10/1-2010-
0014.

61



References

1. Armentano-Oller, C., Carrasco, R. C., Corbı́-Bellot, A. M., Forcada, M. L., Ginestı́-Rosell,
M., Ortiz-Rojas, S., Pérez-Ortiz, J. A., Ramı́rez-Sánchez, G., Sánchez-Martı́nez, F. and
Scalco, M. A.. Open-source Portuguese-Spanish machine translation. In R. Vieira,
P. Quaresma, M.d.G.V. Nunes, N.J. Mamede, C. Oliveira, and M.C. Dias, editors, Com-
putational Processing of the Portuguese Language, pages 50–59. Springer-Verlag, Itatiaia,
Brazil, May 2006.

2. Baldridge, J., Morton, T. and Bierner, G.. The OpenNLP maximum entropy package. Tech-
nical report, 2002.

3. Brants, T. TnT - A Statistical Part-of-Speech Tagger. In Proceedings of the sixth confer-
ence on Applied Natural Language Processing, pages 224–231. Universität des Saarlandes,
Computational Linguistics, Association for Computational Linguistics, 2000.

4. Csendes, D., Csirik, J. and Gyimóthy, T.. The Szeged Corpus: A POS tagged and syntacti-
cally annotated Hungarian natural language corpus. In Proceedings of the 5th International
Workshop on Linguistically Interpreted Corpora LINC 2004 at The 20th International Con-
ference on Computational Linguistics COLING 2004, pages 19–23, 2004.

5. Cunningham, H., Gaizauskas, R. J. and Wilks, Y.. A General Architecture for Language
Engineering (GATE) - a new approach to Language Engineering R&D. International Con-
ference On Computational Linguistics, page 52, 1996.

6. Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I., Trón, V. Creating open language
resources for Hungarian. In Proceedings of the 4th International Conference on Language
Resources and Evaluation, 2004.

7. Halácsy, P., Kornai, A., Oravecz, C.. HunPos: an open source trigram tagger. In Proceedings
of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions,
pages 209–212, Prague, Czech Republic, June 2007. Association for Computational Linguis-
tics.

8. Halácsy, P., Kornai, A., Oravecz, C., Trón, V., Varga, D. Using a morphological analyzer in
high precision POS tagging of Hungarian. In 5th edition of the International Conference on
Language Resources and Evaulation, pages 2245–2248, 2006.

9. Kornai, A., Halácsy, P., Nagy, V., Oravecz, C., Trón, V., Varga, D. Web-based frequency
dictionaries for medium density languages. In Adam Kilgarriff and Marco Baroni, editors,
Proceedings of the 2nd International Workshop on Web as Corpus, 2006.

10. Loftsson, H. Tagging icelandic text using a linguistic and a statistical tagger. In Human Lan-
guage Technologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics; Companion Volume, Short Papers, NAACL-Short ’07, pages
105–108, Stroudsburg, PA, USA, 2007. Association for Computational Linguistics.

11. Loftsson, H., Helgadóttir, S., and Rögnvaldsson, E. Using a morphological database to in-
crease the accuracy in pos tagging. In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing 2011, pages 49–55, Hissar, Bulgaria, 2011.
RANLP 2011 Organising Committee.

12. Loftsson, H., Rögnvaldsson, E. Icenlp: a natural language processing toolkit for icelandic.
In Proceedings of InterSpeech 2007, Special session: Speech and language technology for
less-resourced languages, pages 1533–1536, Antwerp, Belgium, 2007. ISCA.

13. Novák, A., Orosz, G., Balázs, I. Javában taggelünk. In Attila Tanács and Veronika Vincze,
editors, VIII. Magyar Számı́tógépes Nyelvészeti Konferencia, page 336, Szeged, 2011.

14. Oravecz, C. and Dienes, P. Efficient Stochastic Part-of-Speech Tagging for Hungarian. In
Third International Conference on Language Resources and Evaluation, pages 710–717,
2002.

62



15. Prószéky, G. and Novák, A. Computational Morphologies for Small Uralic Languages. In
Inquiries into Words, Constraints and Contexts., pages 150–157, Stanford, California, 2005.

16. Ratnaparkhi, A. A maximum entropy model for part-of-speech tagging. In Proceedings
of the conference on Empirical Methods in Natural Language Processing, volume 1, pages
133–142, 1996.

17. Sánchez-Martı́nez, F., Pérez-Ortiz, J. A. and Forcada, M. L. Using target-language informa-
tion to train part-of-speech taggers for machine translation. Machine Translation, 22:29–66,
2008.

18. Sheikh, Z. and Sánchez-Martı́nez, F. A trigram part-of-speech tagger for the Apertium
free/open-source machine translation platform. In Juan Antonio Pérez-Ortiz, Felipe Sánchez-
Martı́nez, and Francis M. Tyers, editors, Proceedings of the First International Workshop on
Free/Open-Source Rule-Based Machine Translation, pages 67–74, Alicante, Spain, 2009.
Universidad de Alicante. Departamento de Lenguajes y Sistemas InformÃ¡ticos.

19. Thilo, G. and Suhre, O. Design and implementation of the UIMA common analysis system.
IBM Systems Journal, 43:476–489, 2004.

20. Toutanova, K., Klein, D., Manning, C. Singer, Y. Feature-rich part-of-speech tagging with
a cyclic dependency network. In Marti Hearst and Mari Ostendorf, editors, Proceedings of
the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology, pages 173–180, Edmonton, Canada, 2003.
Association for Computational Linguistics.

21. Vincze, V., Szauter, D., Almási, A., Móra, G., Alexin, Z. and Csirik, J. Hungarian De-
pendency Treebank. In Proceedings of the Seventh conference on International Language
Resources and Evaluation, pages 1–5, 2010.

22. Zsibrita, J., Nagy, I., Farkas, R. Magyar nyelvi elemző modulok az UIMA keretrendszerhez.
In Attila Tanács, Dóra Szauter, and Veronika Vincze, editors, VI. Magyar Számı́tógépes
Nyelvészeti Konferencia, pages 394–395, Szeged, 2009. Szegedi Tudományegyetem.

63


