Coverage based Test Generation for Duration Systems

Maha Naceur, Lotfi Majdoub and Riadh Robbana

LIP2 Laboratory, Faculty of Sciences of Tunis, Tunis, Tunisia

Abstract. In this paper, we are interested in generating test cases for duration
systems with respect to coverage criteria. Duration systems are an extension of
real-time systems for which delays that separate events depend on the accumu-
lated times spent by the computation at some particular locations of the system.
We present a test generation method for duration systems by considering cover-
age criteria. This method uses the approximation approach and extends a model
using an over approxima- tion, the approximate model, containing the digitiza-
tion timed words of all the real computations of the duration system. Then, we
propose an algorithm that generates a set of test cases presented with a tree by
considering a discrete time and respecting a coverage criterion in order to select
test cases.

1 Introduction

Testing is an important validation activity that aims to check whether an implementa-
tion, referred to as an Implementation Under Test (IUT), conforms to its specification.
The testing process is difficult, expensive and time-consuming. A promising approach
to improve testing consists in automatically generating test cases from formal models
of specification. Using tools to automatically generate test cases may reduce the cost of
the testing process.

In this work, we are interested in testing duration systems. Duration systems are
an extension of real-time systems for which, in addition to constraints on delays sepa-
rating certain events that must be satisfied, constraints on accumulated times spent by
computation must also be satisfied. Timed automata constitute a powerful formalism
widely adopted for modeling real-time systems [2]. Duration Variables Timed Graphs
with Inputs Outputs (DVTG- I0Os) are an extension of timed automata [3], which are
used as a formalism to describe duration systems. DVTG- |Os are supplied with a finite
set of continuous real variables that can be stopped in some locations and resumed in
other locations. These variables are called duration variables.

For testing real-time systems, most works borrow several techniques from the real-
time verification field due to similarities that exist between model-based testing and
formal verification (e.g., symbolic techniques, region graph and its variations, model
checking techniques, etc.). Those techniques are used particularly to reduce the infinite
state space to a finite or countable state space. Then they adapt the existing untimed
test case generation algorithm. We cite as examples [6][8][9]. It is well known that the
verification of real-time systems is possible due to the decidability of the reachability

Naceur M., Majdoub L. and Robbana R..

Coverage based Test Generation for Duration Systems.

DOI: 10.5220/0004089000030014

In Proceedings of the 10th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems and 1st
International Workshop on Web Intelligence (MSVVEIS-2012), pages 3-14

ISBN: 978-989-8565-14-3

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

problem for real-time systems [1]. However, it has been shtvat the reachability
problem is undecidable for timed graphs extended with omatitun variable [5] and,
consequently, it is not possible to use classical verificatechniques to generate test
cases for DVTG-IO.

We give in this paper a method for generating test cases e#pect to coverage
criteria for duration systems. In practice, Complete tases cannot be performed in a
finite time. This implies that a strategy of test selectionwstl be done to choose the
adequate test cases to be applied in the implementatiom tesieCoverage criteria are
a measure allowing to select test cases according to sotaei@rDifferent coverage
criteria have been proposed such as statement coveragehlm@erage and so on [17].
Here, we propose a technique to select test cases accoodét@té coverage criterion
and transition criterion.

Formally, we describe the specification as well as the implemation under test
with DVTG-IO. In order to reduce the infinite state space taadistate space, we use
the approximation method that extends a given DVTG-IO $ppation to another called
the approximate model that contains the initial test casesedl as their digitizations.
An algorithm for generating a set of test cases, satisfyiogverage criterion, is given.
We present this set of test cases by a tree.

This paper is organized as follows: In the next section, wes@nt the duration
variables timed graphs with inputs outputs. In-section 3pvesent the approximation
method. Section 4 shows our testing method for generatstg eith respect to cover-
age criteria. Section 5 gives conformance relation to sthatithe generated test cases
are sound. Concluding remarks are presented in section 6.

2 Duration Variables Timed Graphs with Inputs Outputs

A DVTG-IO is described by a finite set of locations and a triaosirelation between
these locations. In addition, the system has a finite set ddtidun variables that are
constant slope continuous variables, each of them chamgintinuously with a rate
in {0,1} at each location of the system. Transitions betwkerations are conditioned
by arithmetical constraints on the values of the duratiamatédes. When a transition is
taken, a subset of duration variables should be reset andtiam ahould be executed.
This action can be either an input action, an output actioarounobservable action
[16].

2.1 Formal Definition

We considetX a finite set of duration variables. A guard &his a boolean combination
of constraints of the form: < ¢ wherez € X, ¢ € N, <€ {<,<,>,>}. Let
I'(X) be the set of guards ali. A DVTG-10 describing duration systems is a tuple
S =(Q,q,FE, X, Act,v,a,d,0) where :

e (O is a finite set of locations,

e qo is the initial location,

e £ C () x is afinite set of transitions between locations,

o Act = Actr, U Actou U {7} is afinite set of input actions (denoted tyy), output

actions (denoted by:) and unobservable acti@n

e v : E — I'(X) associates to each transition a guard which should be edltis§i
the duration variables whenever the transition is taken,

e o : E — 2% gives for each transition the set of duration variables shaiuld be
reset when the transition is taken,

e : & — Act gives for each transition the action that should be execwtezh the
transition is taken,

e 0 :Q x X — {0,1} associates with each locatigrand each duration variabie
the rate at which: changes continuously in

Example. To illustrate DVTG-IO, we show on Fig.1 the specification ofending
machine. This machine delivers a beverage after receiviogirafrom the user. It is
composed of locationyo, g1, g2, g3, g4, g5 } Wheregg is the initial location, transitions
between locations and is supplied with a set of input acti@rBoose, ?coin}, output
actions{!price, laccept, ldeliver, Ireturncoin, lreturn, ltimeout} and three duration
variablest, y, z. Duration variables: andy are clocks used to make constraints on the
time execution of the vending machineis a duration variable, it is stopped 49, ¢-

and it is used to make constraints on the time spent by thersy§the behavior of this
machine can be describes as follows:

- In the initial nodey, the system waits for.the user to choose a beverage. Thearser c
decide his choice during a time unit.

- In the nodey;, the machine tells the user the price of the drink chosen ard o the
nodeg,.

- In the nodeys, the machine checks the coins; if they are accepted, itettiernode

q4 and provides the drink, otherwise it returns coins and [zi%5g .

2.2 State Graph

The semantic of DVTG-IO is defined in terms of a state graph states of the form
s = (q,v) whereq € Q andv : X — R is a valuation function that assigns a real
value to each duration variable. L&ts be the set of states ¢f. We notice thaiSts is
an infinite set due to the value of duration variables takeR 0nA state(q, v) is called
integer state it : X — N. We denote byV(Sts) the set of integer states 6f
Given a valuatiornv and a guardy, we denote by = ¢ the fact that valuation of
under the valuation is true.

We define two families of transition between states : digctetnsition(q, v) <
(¢",v") with (¢,¢") € E, §(¢,q') = a, v |F v(¢g,q') s true andv'(z) = v(x)
Ve € X\alq,qd) , V' () = O0Vz € al(q,q’), that corresponds to moves between
locations using transition if; timed transition(q, v/) L (q,v') such thatt € R*
and v/ (z) = v(z) + (¢, z) xt Va € X, that corresponds to transitions due to time
progress at some locatign The state graph associated wihs (Stg, —) where—
denotes the union of all discrete and timed transitions.

2.3 Computation Sequences and Timed Words

A Computation sequence of a DVTG-IO is defined as a finite secpief configura-
tions. A configuration is a pas,) wheres is a state ané is a time value. LeCs be

Itimeout

?choose
0<x<1

)

Iprice

Ireturn

x=3Az=2
x:=0,y:=0, z:=0

Ireturncoin
x=2
x:=0,y:=0,2:=0

Ideliver
y=1

Fig. 1. DVTG-IO of a vending machine.

the set of configurations &. Intuitively, a computation sequence is a finite path in the
state graph of an extension 8fby an observation clock that records the global elapsed
time since the beginning of the computation.

Formally, if we extend each transition relation from statesonfigurations, then
a computation sequence 6fis o = (s0,0) ~ (s1,71) ~ ... ~ (sn,7n), Where
si = (gi,v;) andr,_; < 7;fori = 1..n. LetCs(S) be the set of computation sequences
of S. A timed word is a finite sequence of timed actions. A timaeton is a paitar
wherea € Act andT € R*, meaning that action takes place when the observation
clock is equal tor. A timed actionar is called integer timed action if € N. A timed
word is a sequence = a;Tas7s...a, T, Wherea; is an action and; is a value of the
observation clock. We notice that< ;1. Let L(S) be the set of timed words .
A sequencev = a7 asTs...a, T, IS cONsidered a timed word di(.S) if and only if
there exists a computation sequemce= (sg,79) ~ (81,71) ~> ... ~ (Sp,Tn) €
CS(S) such thatu; = 6(g;—1,¢;) fori = 1,..,n ands; = (q;, ;). For simplicity, we
may Write(S(),’T()> & (Sn, Tn).

Letw = a111a97s...a, 7, e @ timed word and € Act, 7 € R such thatr,, <

7 then we denote by.ar the timed word obtained by adding to w and we have
W.aT = 41T102T2...0nTnAT.

3 Approximation

The approximation method is used in the verification of daresystems [14]. It allows
to reduce the infinite set of states to a finite set. We adaptntiegithod to test duration
systems.

3.1 Digitization

We present the notion of digitization [7], which is suitabide the systems in which we
are interested. Let € R*. For everye € [0,1], called digitization quantum, we define
the digitization ofi7]. = 7] if 7. < (|7] + €) else[r]. = [7].

Givene € [0,1], , the digitization of a timed wordy = a1 as7s...a, 7y, IS [W]e =
aq [Tl]é as [7’2]5...0,” [Tn]e-

Therefore, it is not difficult to see thaty.at]. = [w]c.a[t]c Moreover, it is easy to
relate digitizations of a computation sequence and itsdimerd. If o is a computation
sequence ang is its corresponding timed word then fere [0, 1], [w]e IS the corre-
sponding timed word dfr].. We denote byDig:t(L(.S)) the set of all the digitizations
of all the real timed word of5. We notice thatDigit(L(S)) is countable. The digiti-
zation is used to reduce the infinite set of states to a finitefsgates. A question that
one may ask is whethdpigit(L(S)) C L(S) or not.

3.2 Approximate Model

As we have seen in the previous example, some timed words @fT&B O do not have
any digitizations inS. The idea given in [14] consists of over approximating thedgio
S by an approximate modél’ such thatDigit(L(S)) C L(S").

Definition 1: The functions : X x F — N calculates for each variablee X and
each transitiorr = (¢, ¢') the maximum of restarts of from the last reset of: until
the locationg in each way.

A restart of a variabler is the change of its rate frofito 1. After a reset of a
variablez, if the rate of a variable in the current location i, then the access to this
location is considered as a restartaofThat is why, for the clocks, the functioh is
equal to 1 for each transition.

Definition 2: The approximate mode&l’ = App(S) is obtained fromS by transform-
ing each guard of a transitianof the formu < y < w by the guard:

If u—B(y,e) > —1thenu — B(y,e) +1 <y < w+ By, e) —1Lelsed < y <
w+ B(y,e) — 1 whereu,w € N, z € X, et <€ {<,<}.

Proposition 1: Vw € L(S) we havew]. € L(S’) for eache € [0, 1].

This proposition demonstrates that for every timed wordhefdpecification model,
its digitizations belong to the approximate model.

Example. If we apply the approximation method on the DVTG-IO of the .Eigwe
obtain the approximate model on the Fig.2. It involves reipig the guard x=3\ z=2
associated with the transitidns, go) with the guard x=3\ 1 < z < 3 because we have

B (2, (g5 ,q0)) =2

Itimeout
x>1
x:=0,y:=0,2:=0

?choose
0<x<1

D
Itimeout

x>2 Iprice
x:=0,y:=0,2:=0 x=1

Ireturn
2 x=3A1<2z<3

Ireturncoin
X=2
x:=0,y:=0,2:=0

x:=0,y:=0,2:=0

laccept
x=2

D
Ideliver
y=1

-

Fig. 2. The approximate model of a vending machine.

3.3 Test Generation with the Approximate Model

First, let us introduce the notion of an observation which gquence of controllable
(inputs) and observable (outputs) actions that are eitkecwted or produced by the
IUT followed by its occurrence time. Formally, we descrilmeadservation by a timed
wordw = a17ias7s...a,7, Wherea; € Act andr; € Rt fori = 1..n.

Our result is based on a reduction of the infinite state gragba@ated withs’ =

App(S) to the countable state graphv(Sts), % U %), where the space of states is
the set of integer states. Transitions between statesthes discrete transitidg, v/) ~>
(¢’,v") labeled with action inAct, or timed transition(q, v/) > (g,v") labeled with
a constant delay of time equal to 1. Notice thadind’ € [X — N]. Clearly, the
digitizations of all timed word®igit(L(S)) are included i N (Stg/), U).

We define a number of operators that we use in the algorithremdigting test tree.
Let C be a configuration of N (Stg/), % U ~%) andar is timed action.
Out(C)(resp.In(C)) is the set of all timed output actions (resp. the set of ekt
input actions) that can occur when the system is at configuraf C. Furthemore(
afterar is the set of all configurations that can be reached fédmfter the execution
of the timed wordur. Notice thatOut(C), In(C) andC afterar are finite sets. They
are calculated ifiV (Stg/), ~» U -%).

3.4 The Test Tree

We use the countable state gra@¥i(Sts), > U %) to generate a finite set of test
cases. This set of test cases is represented by a tree caedr€e. The test tree is
composed by nodes that are sets of integer configurationsamsitions between those
nodes. A node in the test tree is a finite set of integer cordigpms(s, 7) such that
s € (N(Stg/)), 7 € Nand represents the possible current integer configuraticthe
IUT. The root is the initial configuration N (Sts:), ~ U ~%) that is(so, 7o).

The transition between one node and its successor is ldbeith a timed action
at such that € Act andr € N. A path from the root to one leaf of the tree represents
a digitization of a timed word.

Example. An example of test tree is given in fig.3. It is constructedirihe approxi-
mate model of fig.2. Each path of the test tree from the rootié@bcorresponds to an
integer computation sequences of the approximate modétéNinat is a complete test
tree, it contains all possible integer test cases belortgitige approximate model.

Fehoose 0 timeau] 2 Fchoose 1
'price 1 tim eout 2 ltimeout 2 larice 1

timeout S imegut 3
Feoin 1 Frain 2 Zcoin 1 Frain 2

Ireturncoih 2 returncaif 2 returncoif 2 Ireturncein 2

laccept 2 laccept 2 lzccept 2 Thgcept 2

deliver 'deliver B deliver Ideliver(3

Iresurn |3 Ireturn lreturn B ‘return

Fig. 3. The test tree.

4 Generating Tests with Respect to Coverage Criteria

Here, we introduce our approach to generating test casetufation systems that is
based on the approximation method and with respect to cogeeréteria.

4.1 Coverage Criteria

In practice, generating a complete test case cannot betexiiola finite time. The aim

10

of the tester is to generate a set of test cases that coveathgsaph of the specification
model.

This implies that the tester should apply a strategy of telgtcsion that allows to
choose the adequate test cases to be applied on the imp&ioeninder test. Coverage
criteria are a measure used to select test cases accordingocriteria. A large suite
of coverage criteria has been proposed in the literatuféel@nt coverage criteria have
been proposed such as location coverage, edge coverage andls].

We present here two types of coverage criteria that we useléotdest cases from
the state graph of a DVTG-1O model:

e State coverage : A set of test cases satisfies the state gevaiterion if, when exe-
cuted on the model, they visit every state of the state gragdetnin other words, every
state is covered by some test case. Notice that the set e§ s&ihfinite. A set of test
cases covering states also covers transitions. Howewegyitnot cover all transitions
of the model.

eTransition coverage : test cases satisfy the transitioerame criterion if, when exe-
cuted on the model, they traverse every transition of theifipation model. We can
distinguish here between discrete transition and timetsitian.

4.2 Algorithm of Coverage Generating Test Tree

We adapt the test generation algorithm of [13] in order tectdkst cases. The following
algorithm considers only the test cases that satisfy therage criteria. These test cases
are represented by a test tree. The coverage criteriondmygsi in this algorithm is the
state coverage of the state graph of the approximate model.

Algorithm 1: Coverage Generating Test Tree.

1 Input:N(Gg) = (N(Stg),~ U %)

2 Output :Test Tree T

3 T=T ={(so,0)} theone-node tree
4 whileT" #T

5 T:=T
6
7
8

for each leal” of T distinct frompass
Out(C) ; In(C)
if Out(C) U In(C) = 0 then

9 C = pass

10 else

11 for eachar € Out(C) U In(C)
12 C' = C after ar

13 if not existC’, T")

14 append edg€ ¥ C' to T
15 End while

16 End

The coverage generating test tree algorithm operates lasvéol initially the test
tree contains one node that is the initial configuratioof (sg,0). For every lealC'
of the tree distinct fronpass, the algorithm calculates the set of integer timed actions
(In(C) andOut(C)) that can be taken when the system i€inFor each timed action

11

at belonging toOut(C) | J In(C) the algorithm claculate§” = C' after ar, the set
of configurations obtained wheir is executed.

The edge”’ “% ' is appended to the test tree(if does not belong to the test tree.
The algorithm can stop branching a path of the tree by appgrilie node pass in the
leaf that has not any timed actiofv{(C) | Out(C)=2).

Example. To illustrate the above algorithm, we consider the appratéamodel of the
vending machine. A possible test tree, respecting the staterage criterion, is given
in fig.4.

However, it is not difficult to replace this criterion withatisition coverage. An
algorithm was also implemented to generate test casesctegpthe coverage of tran-
sitions. In this algorithm, the transitiafi ~> C” is added to the tree testd¥ does not
already exist.

?ch%timeoué 2 \?choose 1
< st [y
&#) W W,

/

/
Iprice 1/

it

Itimeout /3

/
lreturnc:y‘ﬁ 2

/
O O

laccept 2

!deliver|2

Ireturn3

N

\
N o

Fig. 4. DVTG-IO of a vending machine.

Now, we demonstrate that a path in the test tree obtainedébZtlverage Gener-
ating Test Tree Algorithm corresponds to a timed word thatdsgitization of the one
timed word of the specification model describing a duratigstem.

Proposition 2: Let w € L(S) be a timed word andlw]. € L(95’) its digitization for
e € [0,1[,if 3 a € Act and37’ € N such thafw]..am’ € L(S’) thenvVr €]r’ — 1 +
€, 7 + ¢] we havev.ar € L(9).

The test generation from the approximate specification incategive to the tester
the action and the integer time value of its execution on thEih discrete time. The
above proposition shows that if the tester executes thera@tiput or output) within a

12

real-time interval, defined by the proposition 2, then thefoonance of the observation
recorded on the IUT is preserved according to the approximaidel.

Proposition 3: Letw = aymias7s...a,7, be a timed word that corresponds to a path
from the root to a leaf if's, thend w’ € L(S) such thafw']e = w

Proof: We proceed by a recursive proof on the sizevoketw; = ay11a27s...a;7; With

1 < n be the timed word obtained in the leviebf the test tree, we have, = w. For

i = 0, wo = () the proposition is true because) = @) wj € L(S) and we have
[whle = wo.

Fori < n, we suppose that the proposition is true f@nd we try to demonstrate
fori + 1,3 w; € L(S) such thatlw!]. = w;. Givenar € Out(S’" after w;) U
In(S" after w;), we havev;.ar € L(S’). Fromthe proposition /7" €] 7 — 1 + e,
T+ €] we havevl.ar’ € L(S).

So[w}.at'le = w;.at .

A path in the test tree is a discrete timed word obtained frioendountable state
graph(N(StS/),vle U %) associated to the approximate modél=_App(S). In
proposition 3, we demonstrate that a path in the test treesponds to a digitization
of a timed word belonging to the initial model S.

By considering this result and the result obtained in thepsition 2, we can use
the test tree to generate a discrete test case, then we canne&pt it by considering
continuous time. For generating an input timed action thaukl be executed on the
IUT, the tester chooses one integer timed actioifirom the test tree. By proposition 2,
the action a can be applied within the real-time intefvat 1 + ¢, 7 + €].

5 Conformance Relation

5.1 Definition of the Dioco Relation

In this section we present a conformance relation to showttieagenerated test cases
from the approximate model are sound, including those tlestiihe coverage criteria.

We recall the definition of the duration input output confammue relation (dioco
for short) first introduced in [12] and which is in turn insgir from the untimed con-
formance relation (ioco) of [16].

Let S be the DVTG-IO representing the specification of a domatystem and Imp
be a DVTG-IO representing the implementation under tese diration input output
conformance relation, denoted dioco, is defined as :

Imp dioco S <= gey ¥V w € L(S) Out(Imp afterw)C Out(S afterw).

The dioco relation states that an implementatierp conforms to its specification
S if and only if for any observation of S, the set of observable timed output actions
obtained after the application afon Imp must be a subset of the set of possible timed
output actions obtained after the applicationuadn S.

5.2 Soundness Coverage Test Cases

Soundness test cases mean that if an implementation camtorits specification, it
will pass all test cases (timed words) belonging to the sé&tsifcases. In other words,

13

if the implementation fails at least one test case (timedivtiren the implementation
does not conform to its specification.

It is well known that soundness property is achievable farcpcal testing. It is
shown in [3] that it is theoretically possible to produce anptete test case (i.e. sound-
ness and exhaustiveness test cases) but in practice itpessible to execute an infinite
number of tests in a limited period of time. We prove that testes satisfying coverage
criteria and generated from the test tree are sounded bydesimgy the conformance
relation dioco.

First, let us define the digitization of the operafait, given a digitization quantum
e € [0, 1 andforC C C; is a set of configurations.

[Out(C)). ={o7’,0 € Actou, ™ € N|FT € RT o7 € Out(C)andr|. = 7'}.
Proposition 4: V w € L(S), if Out(Imp afterw)C Out(S afterw) then fore € [0, 1],
[Out(Imp afterw)]. C [Out(S afterw) |..

Proof: Let or’ € [Out(Imp afterw)]., We remember the definition of the digitization of
the operatoOut ; 37 € RT, or € Out(Imp afterw) and|or].=07’. From the hypothesis
of this proposition we have that-o= Out(S afterw). The definition of the digitization
of the operator Out ensures that|. € [Out(Imp afterw)].. So o’ € Out(S afterw).

Then we conclude thaDut(Imp afterw)]. C [Out(S afterw) |..

We deduce from this result and propsition 3 thatp dioco S <= gef Vw €T V€
€10, I [Out(Imp afterw)]. C [Out(S afterw)]e.

6 Conclusions

We have introduced a method for generating test cases veleceto coverage criteria
for duration systems. First, we used the DVTG-IO as a forsmalio model specifica-
tion. Second, we presented the approximation method. Thihad extends a given
DVTG-IO to another called approximate model that contairesinitial test cases as
well as their digitizations.

Then, we proposed an algorithm that generates a set of tess gmesented in a
tree by considering a predefined coverage criteria. Therageecriterion, considered
in this paper, is the state coverage. We demonstrated #tatases generated from the
approximate model correspond to the digitization of timeatdg of the specification
model. At the end, we showed that those test cases are sowmhbiglering the dioco
conformance relation.

In the future work, we plan to implement this algorithm witlferent coverage
criteria and to apply this approach to other systems suakeddime systems and hybrid
systems.

References

1. Alur R., Courcoubetis C., and Dill D., Model-Checking fReal-Time Systems, 5th Symp.
on logic in Computer Science, 1990.

2. Alur R.and Dill D., A Theory of Timed Automata, Theoretiddomputer Science, 126 :
183-235, 1994.

14

w

10.

11.

12.

13.

14.

15.

16.

Bouajjani A., Echahed R., Robbana R., Verifying InvacerProperties of Timed Systems
with Duration Variables, Formal Techniques in Real-Timd &ault Tolerant Systems, 1994.

. Cassez F, Larsen K.G, The Impressive Power of StopwatEhes. Conference on Concur-

rency Theory CONCUR’00, Penssylvania, USA, 2000

. Cerans K., Decidability of Bisimulation Equivalence fearallel timer Processes, In Proc.

Computer Aided Verification (CAV'92), Springer-Verlag,9®, LNCS 663.

. En-Nouaary A., Dssouli R., Khender F., and Elqortobi Ama&d Test cases generation based

on state characterisation technique, In RTSS’98. IEEE§199

. Henzinger T., Manna Z., and Pnuelli A., What good are digiiocks?, In ICALP’92, LNCS

623, 1992.

. Hessel A., Pettersson P., A Test Case Generation Algofith Real-Time Systems, In Proc.

4th international Conference on Quality software, pp. 288; 2004.

. Krichen M, Tripakis S., Black-Box Conformance Testing Real-Time Systems, SPIN’'04

Workshop on Model Checking Software, 2004.

Majdoub L. and Robbana R., Testing Duration SystemsyusimApproximation Method,
Depcos-RELCOMEX, pp.119-126, Szklarska Poreba, Polamd 2007.

Majdoub L. and Robbana R., Testing Duration systemsndblEuropéen des Systemes
Automatisés, vol 42 18/2008, pp. 1111-1134, November 2008.

Majdoub L. and Robbana R., Test cases generation foretemdinistice duration systems,
7th MSVVEIS, pp.14-23, Milan, Italy, May 2009.

Robbana R, Verification of Duration Systems using an Axipnation Approach, Journal
Computer Science and Technology, Vol 1§,2Npp. 153-162, March 2003.

Springintveld J., Vaandrager F., and D’Argenio P., ingsTimed Automata, Theoretical
Computer Science, 254, 2001.

Tretmans J, Testing Concurrent Systems : A Formal Ambro@ ONCUR’'99 , 10th Int,
conference on Concurrency Theory, pages 46-65, 1999.

Zhu H, Hall P, May J, Software unit test coverage and aaequACM Computing Surveys,
29(4), 1997.

