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Abstract: In this paper, we propose an interactive fuzzy decision making method for multiobjective fuzzy random linear
programming problems (MOFRLP), in which the criteria of probability maximization and fractile optimiza-

tion are considered simultaneously. In the proposed method, it is assumed that the decision maker has fuzzy

goals for not only objective functions of MOFRLP but also permissible probability levels in a fractile opti-
mization model for MOFRLP, and such fuzzy goals are quantified by eliciting the corresponding membership
functions. Using the fuzzy decision, such two kinds of membership functions are integrated. In the integrated

membership space, the satisfactory solution is obtained from among a Pareto optimal solution set through the

interaction with the decision maker.

1 INTRODUCTION specifies the membership functions for the fuzzy
goals of both objective functions of MOFRLP and
In the real world decision making situations, we of- permissible probability levels. In the proposed
ten have to make a decision under uncertainty. In method, it is assumed that the decision maker adopts
order to deal with decision problems involving uncer- the fuzzy decision (Sakawa, 1993) to integrate the
tainty, stochastic programming approaches (Birge and membership functions. However, the fuzzy decision
Louveaux, 1997; Charnes and Cooper, 1959; Dantzig, can be viewed as one special operator to integrate the
1955; Kall and Mayer, 2005) and fuzzy programming membership functions. If the decision maker would
approaches (Lai and Hwang, 1992; Sakawa, 1993;not adopt the fuzzy decision, the proposed method
Zimmermann, 2011) have been developed. Recently,cannot be applied in the real-world decision situation.
mathematical programming problems with fuzzy ran- In this paper, we propose an interactive fuzzy decision
dom variables (Kwakernaak, 1978) have been pro- making method for MOFRLP to obtain the satisfac-
posed (Katagiri et al., 1997; Luhandjula and Gupta, tory solution from among a Pareto optimal solution
1996; Wang and Qiao, 1993) whose conceptincludesset. In section 2, MOFRLP is formulated by using a
both probabilistic uncertainty and fuzzy ones simul- concept of a possibility measure (Dubois and Prade,
taneously. For multiobjective fuzzy random linear 1980). In section 3, through a probability maximiza-
programming problems (MOFRLP), (Sakawa et al., tion model, theDp-Pareto optimal concept is intro-
2011) formulated and proposed interactive methods duced in order to deal with MOFRLP, and the minmax
to obtain the satisfactory solution. In their methods, it problem is formulated to obtainBy,-Pareto optimal
is required in advance for the decision maker to spec- solution, which can be solved on the basis of the linear
ify permissible possibility levels in a probability max-  programming technique. In section 4, through a frac-
imization model or permissible probability levels in a tile optimization model, thé&s-Pareto optimal con-
fractile optimization model. However, it seems to be cept is introduced and the minmax problem is formu-
very difficult for the decision maker to specify such lated to obtain &g-Pareto optimal solution. In sec-
permissible levels appropriately. From such a point of tion 5, we propose an interactive algorithm to obtain
view, (Yano and Matsui, 2011) have proposed a fuzzy the satisfactory solution from among a Pareto optimal
approach for MOFRLP, in which the decision maker solution set by solving the minmax problem on the ba-
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sis of the linear programming technique. In section 5,

Eij = ﬁ +t_iBﬁ. t; is a random variable whose dis-

in order to demonstrate the interactive processes un-tripution function is denoted b¥;(-) which is strictly
der the hypothetical decision maker, a two-objective increasing and continuous, a‘%’l, d2 al a2 Bl B2

fuzzy random linear programming problem, as a nu-
merical example, is formulated and solved by using

the proposed interactive algorithm. Finally, in section
7, we conclude this paper.

2 MULTIOBJECTIVE FUZZY
RANDOM LINEAR
PROGRAMMING PROBLEMS

In this section, we focus on multiobjective program-
ming problems involving fuzzy random variable coef-
ficients in objective functions, which is called multi-

objective fuzzy random linear programming problem

(MOFRLP).
[MOFRLP] -
minCx= (T1X,-- ,TkX)
subject to
xe X L' ixe R"| Ax< b,x > 0}

wherex = (xg, %, - - - ,xn)T is ann dimensional deci-
sion variable column vectoA is an(m x n) coeffi-
cient matrix,b = (by,--- 7bm)T is anm dimensional
column vector. G = (Tig,---,Cin),i = 1,---,k, are
coefficient vectors of objective functionx, whose

are constants. R
(Sakawa et al., 2011) transformed MOFRLP into
a multiobjective stochastic programming problem
(MOSP) by using a concept of a possibility measure
(Dubois and Prade, 1980). As shown in (Sakawa
et al., 2011), the realizatiorts(w)x becomes an LR
fuzzy number characterized by the following mem-
bership functions on the basis of the extension princi-
ple (Dubois and Prade, 1980).
() L <% y < di(w)x
He @xY) = y—di(w)X )y
R ( Blox y > di(w)x
For the realizations;(w)x,i = 1,--- ,k, it is assumed
that the decision maker has fuzzy goéls' =1-..-,k
(Sakawa, 1993), whose membership functip@issy),
i =1,--- kare continuous and strictly decreasing for
minimization problems. By using a concept of a pos-
sibility measure (Dubois and Prade, 1980), a degree
of possibility that the objective function val@ex sat-
isfies the fuzzy goaﬁi is expressed as follows (Kata-
giri et al., 1997).

Mex(G) = sugmin{iz, (). b5, )} (1)

Using a possibility measure, MOFRLP can be trans-

elements are fuzzy random variables (Kwakernaak, formed into the following multiobjective stochastic
1978; Puri and Ralescu, 1986; Sakawa et al., 2011), programming problem (MOSP).

nw~n

and the symbol$" and mean randomness and
fuzziness respectively.
In order to deal with the objective functions

Tx,i=1,--- .k (Sakawa et al., 2011) proposed an

[MOSP] . .
r;geaxx(nélx(el)v H) nékX(Gk)) ()

(Sakawa et al., 2011) transformed MOSP into the

LR-type fuzzy random variable which can be re- usual mu_l'giobject!ve. prqgramming problems.through
garded as a special version of a fuzzy random vari- a probability maximization model and a fractile max-

able. Under the occurrence of each elementary eventimization model, and proposed interactive algorithms
w, Gj (w) is a realization of an LR-type fuzzy random to obtain a satisfactory solution. In their methods, the
variableT;, which is an LR fuzzy number (Dubois ~decision maker must specify permissible probability

and Prade, 1980) whose membership function is de-l€vels or permissible possibility levels for the objec-
fined as follows. tive functions in advance. However, it seems to be

very difficult to specify appropriate permissible lev-

L (dgi(i?();)s) (s < dij(w) Vw), els because they have a great influence on the objec-
Mg () (s) = R(S=9i(® g v tive function values or distribution function values.
( Bij (c0) ) (8> dij (w) Vo), In the following sections, by assuming that the deci-

sion maker has fuzzy goals for permissible probabil-
where the functionL(t) = max{0,I(t)} is a real- ity levels and permissible possibility levels, we pro-

valued continuous function fror®, «) to [0,1], and pose an interactive fuzzy decision making method for
I(t) is a strictly decreasing continuous function sat- MOFRLP to obtain a satisfactory solution.

isfying 1(0) = 1. Also, R(t) dfefmax{o,r(t)} satisfies

the same conditions}; ,aij, Bij are random variables

expressed byl = df +td3, aj; = afi +taf and

def
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3 AFORMULATION THROUGH
A PROBABILITY
MAXIMIZATION MODEL

For the objective function of MOSP, if the decision
maker specifies the permissible possibility leligE
[0,1], then MOSP can be formulated as the following
multiobjective programming problem through a prob-
ability maximization model.

[MOP1(h)]
rJ(]EaXX (Pr(m | nﬁl(w)x(Gl) > hl)a Tty
Pr(m| rlf;k(w)x(Gk) > hk))

where P(-) is a probability measurd,= (hy,--- ,hy)
is a vector of permissible possibility levels.
MOP1(h), the inequalityl'la(m)x(Gi) > h; can be
equivalently transformed into the following form.
sug min{pe . (¥), K, (Y)} = hi,
& (i (00) — L1 (M) QG (60))x < kgt ()

In

where L~1(-) and R™%(-) are pseudo-inverse func-
tions. Therefore, using the distribution functi®n-)
of the random variablg, the objective functions in
MOP1(h) can be expressed as the following form.

Pr(2 | Mg W(éi) > hy)
3)

Hgt(h) — (dix—L~2(h)oix)
= T 2 -1 2
dix—L-1(h)arx

pi (X, hi)
where it is assumed thgt? — L-1(0)a?)x > 0, i =
1,--- kforanyx e X. As a result, using; (x, h;),i =
1,--- .k, MOP1(h) can be transformed to the follow-
ing simple form (Sakawa et al., 2011).
[MOP2(h)]

r)T(1€6)1(X( pl(xa hl)7 Tty pk(X7 hk))

In MOP2(h), the decision maker seems to prefer not
only the larger value of a permissible possibility level
h; but also the larger value of the corresponding dis-
tribution functionp;(x, h;). Since these values conflict
with each other, the larger value of a permissible pos-
sibility level h; results in the less value of the corre-
sponding distribution functiop;(x, h;). From such a
point of view, we consider the following multiobjec-
tive programming problem which can be regarded as
a natural extension of MORR).

[MOP3]

max
XeX,hje[0,1],i=1,-- k

def

(pl(xa h1)7 Tty pk(X7 hk)7
hla e ahk)

It should be noted in MOP3 that permissible possi-
bility levels hj,i = 1,--- ,k are not the fixed values
but the decision variables. Considering the imprecise
nature of the decision maker’s judgment, it is natu-
ral to assume that the decision maker has fuzzy goals
for pi(x,hi),i =1,--- k. In this section, we assume
that such fuzzy goals can be quantified by eliciting
the corresponding membership functions. Let us de-
note a membership function of a distribution function
aspyp, (pi(x,hi)). Then, MOP3 can be transformed to
the following multiobjective programming problem.
[MOP4]

(le(pl(xa hl))v T

Moy (PO 1)), e, -+ i)

In order to elicit the membership functions
Mg (pi(x,hi)),i = 1,--- ,k appropriately, we suggest
the following procedures. First of all, the decision
maker sets the intervaldi = [himin, himax| for per-
missible possibility levels, whefgmnin is @ maximum
value of an unacceptable levels amgax is a mini-
mum value of a sufficiently satisfactory levels. For
the intervalH;, the corresponding interval gk (x, h;)
can be defined & (Hi) = [Pimin, Pimad = {pPi(X, hy) |
x € X, h; € Hi}. pimax can be obtained by solving the
following optimization problem.

max
XeX,hj€[0,1],i=1, k

(4)

In order to obtairpimin, We first solve the optimization
problems maxex pi(X, himax),i = 1,--- ,k, and denote
the corresponding optimal solutionsxags = 1,--- ,k.
Using the optimal solution,i = 1,--- K, pimin can
be obtained as the following minimum value.

pi dﬁfmaxp' (X, Rimin)
imax = T8XP; (X, Nimin

min
(=1, K (£

(5)

For the membership functionsgl, (pi(x,hi)),i =
1,--- ,kdefined or (H;), we make the following as-
sumption.

Assumption 1.

Mg (Pi(%, hy)),i = 1,--- Kk are strictly increasing and
continuous with respect tg;(x,h;) € R(H;), and
Hp; (Pimin) = 0, Hp, (Pimax) = 1.

It should be noted here thag, (pi(x, h;)) is strictly
decreasing with respect tg € H;. If the decision
maker adopts the fuzzy decision (Sakawa, 1993) to
integratep, (pi(x,hy)) and hj, MOP4 can be trans-
formed into the following form.

[MOP5]

Pi (X¢, himax)

def
Pimin =

XEX,hiLTLiaﬁ(:l,--- K (qul (Xa hl)a e 7quk (Xa hk))

where

Moy, (% h) Emin{hi, up (R H))}  (6)
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In order to deal with MOP5, we introducég-Pareto
optimal solution concept.

Definition 1.

x* e X,hf e Hj,i=1,--- kis said to be &,-Pareto
optimal solution to MOPS5, if and only if there does
not exist anothex € X, h; € H.,i = 1,--- ,k such that
Hop, (X, i) > po,, (X, h*) i =1,--- ,k with strict in-
equality holdlng for at least orie

For generating a candidate of a satisfactory so-

lution which is alsoD,-Pareto optimal, the decision

Therefore, MINMAX1(i) can be reduced to the
following minmax problem.
[MINMAX2(' (]

min A (13)
XeX AeN
subject to
Mg (B —A) = (dix—L (B = A)aix)
T M (B = M) - (@Px— L4 ([ — Mapx),
i=1---,k (14)

maker is asked to specify the reference membership
values (Sakawa, 1993) in membership space. Oncelt should be noted here that the constraints (14) can be

the reference membership valyes {f, - - -, (k) are
specified, the correspondir@,-Pareto optimal so-
lution is obtained by solving the following minmax
problem.

[MINMAX1( @]

min A @)
XeX hieH;,i=1,-- kKAeA
subject to
Pi—up(pi(x ) < A i= ...7k (8)
where
A= [maXM 1 m|n M] (10)

i=1
From Assumption 1, the mequallty constraints (8) can
be transformed into the following form.

i — Hp (Pi(x. i) <A

& HgH(hi) > (dix+ T (p (B —A))dPx)
—L () (o x+ T (g (B — M) o x)
(11)

In (11), because ofy — A < h; and Assumption 1,
it holds thatps'(h) < pg'(fs —A) and L~ (hy) <

(s —N). Since it is guaranteed thqti'x +
T Myt (B — A)) a?x) > 0, the following inequalities
can be derived.

(Ax+ T (i (R — A))dx)

—L () (o Ty (5 — A))ax)
(dix+ T (i (B — A))dPx)
LYy —A)(a-lxﬂ (0 —
(dix—LY(f —Nafx)

T (B =) - (A% L~ Mafx)
(12)

Y]

))afx)

From (11) and (12), it holds that

Mg (B —2) > kg ()

(dix— LY — Natx)

T (B = A) - (A% = L (0 = Mafx).

>
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reduced to a set of linear inequalities for some fixed

valueA € A. This means that an optimal solution

(x*,A*) of MINMAX2(7) is obtained by combined

use of the bisection method with respechta A and

the first-phase of the two-phase simplex method of

linear programming. The relationships between the

optimal solution(x*,A*) of MINMAX2() and Dp-

Pareto optimal solutions can be characterized by the

following theorem.

Theorem 1.

(1) If x=€ X,A* € Ais a unique optimal solution of

MINMAX2(1), thenx* € X,fs —A* e Hj,i=1,--- Kk

is aD,-Pareto optimal solution.

(2 fxeXh eH,i=1,--

optimal solution, therx € X, A* = —hf = —

Mg (Pi(X*,hi)),i = 1,--- ,k is an optimal solution of

MINMAX2(1) for some reference membership val-

uespi= (fi, - , f)-

(Proof)

(1) From (14) it holds thay™— A* < pp, (pi (X", i —

)\))l_ -, k. Assume thax* € X, —A* e Hj,i=
,k is not aDp-Pareto optimal solution. Then,

there exisk € X, h; € Hj,i =1,--- 'k such that

Hog, (X, hi) min{hi, tp (pi (%, hi)) }
l—lei (X*a':li _)\*)
B—Ai=1-- k

with strict inequality holding for at least orie Then
it holds that

,k is a Dp-Pareto

>

“pi(pi(xahi)) 2 ﬂl_)\*vlzlvvk (16)
From Assumption 1, (3) and—1(hj) < L=1({y — A*),

(15) and (16) can be transformed as follows.
M) < MmN =1k
bgih) > (=L - A

F (S (ER)
(A= L7 = A")afx),
|—17 -,k

>
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As a result, there existse X such that
Mgt (B — ) — (dix— LY@ —A)atx)
> T (B = A) - (dx— LM ([ = A)adx),
i=1,--k
which contradicts the fact that € X,A\* € A'is a
unigue optimal solution to MINMAX2(J.
(2) Assume that* € X,A* € Ais not an optimal solu-
tion to MINMAX2({) for any reference membership
valuesy’= (flu,- - -, i), which satisfy the equalities

&_)\*:hr:“p|(pl()(*vhr))vl:13ak (17)

Then, there exists somes X, A < A* such that
Mg (B —A) = (dix—L (i — A)aix)
> T (Mg (R = A)) - (dPx— L3 — M)arPx),
< upl(pl(x7ﬁ|_)\))2ﬁl_)\7|:177k (18)
Because of (17),(18)and = A > —A*i=1,--- K,
the following inequalities hold.

Mo (P hi)) > W (Pi(X5, 0E)), 1= 1,00 K
whereh; = [ —A € Hi. Then, because df; > hy,
there existx € X, h; € Hj,i = 1,--- ,k such that

Hoy, (X, hi) > o, (X*,h),i=1,--- k.

This contradicts the fact that* € X,h € H;,i =
1,--- kis aDp-Pareto optimal solution.

4 A FORMULATION THROUGH
A FRACTILE OPTIMIZATION
MODEL

If we adopt a fractile optimization model for the ob-
jective functions of MOSP, we can convert MOSP to
the following multiobjective programming problem,

where the decision maker specifies permissible prob-

ability levelsp;,i = 1,-- - ,kin his/her subjective man-
ner (Sakawa et al., 2011).

[MOP6(p)] A A o
1
XeX.hy er[g,?]),(izl,---,k( o5 (19)
subject to
pi(X,hi)Zﬁi,izl,"',k (20)

where p"= (fp1,---,P«) is a vector of permissible
probability levels. Since a distribution functid(-)

is continuous and strictly increasing, the constraints
(20) can be transformed to the following form.

pi < pi(x,hi)
& Hghh) > (dix—L Y (h)aix)

+T74(B) - (dPx— L H(h)afx) - (21)

Let us define the right-hand side of the inequality (21)
as follows.

fioxhi, p) &

(dix— L~ (hi)arx)
+T,7H(Bi) - (dPx— L (hi)afx)
(22)

Then, MOP§p) can be equivalently transformed into
the following form.

[MOP7(p)]
hi.---.h 23
XeX,h er-[rg,%ﬁzl,._‘,k( 1, s k) ( )

subject to
Mg, (ficxhi, Bi)) > hii=1,-- Kk (24)

In MOP7(p), let us pay attention to the inequal-
ities (24). fi(x,hi, i) is continuous and strictly in-
creasing with respect tty for any x € X. This
means that the left-hand-side of (24) is continuous
and strictly decreasing with respecttiofor anyx €
X. Since the right-hand-side of (24) is continuous and
strictly increasing with respect tig, the inequalities
(24) must always satisfy the active condition, that is,
Hg, (fi(x,hi, Bi)) =hi,i=1,--- kat the optimal solu-
tion. From such a point of view, MORB) is equiva-
lently expressed as the following form.

[MOP8 (p)]

(l‘lél(fl(xv hlv pl))a T
Mg, (fi(X; hie, i)

max
XeX,h€[0,1],i=1, k
(25)

subject to
bg, (fi(xhi, pi)) =hi,i=1,--- .k  (26)

In order to deal with MOP{)), the decision
maker must specify permissible probability levgls ~
in advance. However, in general, the decision maker
seems to prefer not only the larger value of a permis-
sible probability level but also the larger value of the
corresponding membership functiopg (-). From
such a point of view, we consider the following mul-
tiobjective programming problem which can be re-
garded as a natural extension of MQPBB
[MOP9]

= (f1(x,hy, p
Xex,hie[o,l]fgizz(o,l),izl,---,k(uel( 106, Pr)),

o a“ék(fk(x7 hk7 pk))7 p17 Tty pk)
subject to
pGNi(fi(thiaﬁi)):hiai:17"'ak (27)
It should be noted in MOP9 that permissible proba-
bility levels are not the fixed values but the decision
variables.

Considering the imprecise nature of the decision
maker’s judgment, we assume that the decision maker
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has a fuzzy goal for each permissible probability
level. Such a fuzzy goal can be quantified by elic-
iting the corresponding membership function. Let us
denote a membership function of a permissible prob-
ability level g aspp, (fi). Then, MOP9 can be trans-
formed as the following multiobjective programming
problem.

[MOP10]

(Mg, (f1(x,he, P)),

max
XeX,hij€[0,1],p€(0,1),i=1,- .k
o 7“G~k(fk(xa hka F’jk))a upl(pl)a e a“ﬁk(pk))

subject to
%i(fi(xahiapi)):hhi:11"'1k (28)

In order to elicit the membership functions appro-
priately, we suggest the following procedures. First
of all, the decision maker sets the intervdds=
[Pimin; Pimax);1 = 1, - - , K, wherepimin is an unaccept-
able maximum value of; ‘and pimax is a sufficiently
satisfactory minimum value of;.” Throughout this
section, we make the following assumption.
Assumption 2.

Mg (Bi),i = 1,--- Kk are strictly increasing and con-
tinuous with respect t@ € R, and pg (Pimin) = 0,
Hp; (Pimax) = 1.

Corresponding to the intervB), the interval oth;,
which is defined a$li(R) = [himin, himax, can be ob-
tained as follows. The maximum valingnax can be
obtained by solving the following problem.

xExmiIQ[o,l] fi (X, hi, Pimin) (29)
subject toh = g, (fi (X, i, Pimin)) (30)
This is equivalent to the following problem.
himax def max_h; (31)
XeX,hi€[0,1]
subject to
bl = (@x—L M (h)aix)
+T (Pimin) - (dPx— L~ (h)afx)
(32)

The optimal solutiorx*,hf,i = 1,---  k of the above
problem can be obtained by combined use of the bi-
section method with respecttpe [0, 1] and the first-
phase of the two-phase simplex method of linear pro-
gramming. In order to obtaihnin, we first solve the
following k linear programming problems.

[ fi(x, hi, pi 33
Xexmilg[o,l] i (X, hi, Pimax) (33)
subject toh = pg, (fi (X, hi, Pimax)) (34)
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Let(xf,h¥),i=1,--- ,kbe the above optimal solution.
Using the optimal solution&¢', hf),i =1,--- K, himin
can be obtained as follows.

Z:lml,rlz,f%i pGNi (fl (XZ ) h[v pimax)) (35)

def
imn —
It should be noted here thapig (fi(x.hi, i) is
strictly decreasing with respect . 1f the decision
maker adopts the fuzzy decision (Sakawa, 1993) to
integratep, (fi(x, hi, Bi)) andpg (Bi), MOP10 can be
transformed into the following form.
[MOP11]

max
XeX,pieR hieH;i(R),i=1, k

(Mo, (N1 Ba),: -+ Hog, (X, B)) (36)

subject to

péi(fi(x,hi,f)i)):hi,i:1,---,k (37)

where

Hog, (hi, ) = min{us (B1), b, (fi(x,hi, Bi))}

(38)

In order to deal with MOP11, we introduceRg-
Pareto optimal solution concept.
Definition 2.
X e X,pf € B,h € Hi(R),i =1,--- ,k is said to
be aDg-Pareto optimal solution to MOP11, if and
only if there does not exist anothere X, f €
R.hi € Hi(R),i =1,--- k such thatupg, (x,hi, fi) =
HDg, (x*,hf, pf).i = 1,--- )k with strict inequality
holding for at least ong wherepg (fi(x",hf, f;)) =
hy, uéi(fi(x,hi, Bi))=h,i=1-- k

For generating a candidate of a satisfactory solu-
tion which is alsoDg-Pareto optimal, the decision
maker is asked to specify the reference membership
values (Sakawa, 1993). Once the reference member-
ship valueu= (fu,-- -, ) are specified, the corre-
spondingDg-Pareto optimal solution is obtained by
solving the following minmax problem.
[MINMAX3( @]

min A (39)
XeX,pieR,hieHi(R),i=1,--- KAeA
subject to
ﬂl_“@(ﬁl) < )\aizlv"'aka (40)
l]i_hi < )\,i:].,"',k, (41)
Uéi(fi()@hiaﬁi)) = hi7i:11"'7k' (42)
where
A= [i:nlwfpfku -1 i:”f,!.'.‘,k“]' (43)
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In the constraints (41) and (42), it holds that
hi = g, (fi(x,hi, i) = i = A,
& gkt = oo, B) < gkl — )
& Hgh(hy) = (dix—L (o)
+THp) - (d2x— L (hi)adx)
Mg (B = M) (44)

In the right hand side of (44), becauselof!(h;) <
“L(fy —A) andatx+ T 1(pi)a?x > 0, it holds that

(dix— L Y(h)ailx)
+TH(B) - (dPx— LY (hy)aPx)
> (dix+ T (p)dx)
(- A) (aix+ T (p)a?
Using (44) and (45), it holds that
Mg (B =)
(dix+T,7H(P)dPx)
- A) (ofx+ T (P )adx)
= (dix— L — Moix)
TP - (dPx—L ([ — M)afx). (46)
M), (46) can be

X) . (45)

Y]

Moreover, because qf; > Hp, (
transformed into the foIIowmg form

) (uG (B~ )~ (- L —A)a%x))

d2x — L-1(fs — N)a?x
> B > W (R — M),
S Mg (=) > (dix—L (@ —Maix)
T g (B =) - (dPx— L (P — Nafx)
(47)

Therefore, MINMAX3(1) can be reduced to the fol-
lowing minmax problem.
[MINMAX4( 0]

min A (48)
XeX e
subject to
MM (B =) > (dix—L 1 ([ — Ao

T (Mg (B = M) - (dix— L4 — Mafx),
i=1---k (49)
It should be noted here that MINMAXg4Y is equiva-

lent to MINMAX2([). The relationships between the
optimal solution(x*;A*) of MINMAX4(1) andDg-

Pareto optimal solutions can be characterized by the

following theorem.

Theorem 2.

(1) If x* € X,A* € A'is a unique optimal solution
of MINMAXA4(), thenx* € X, B = pa (i —A*) €
RP.hf =0 —A* e Hi(R),i=1,--- kis aDg-Pareto
optimal solution.

(2) IfxreX,prebh,heH(R),i=1--,kisa
Dg-Pareto optimal solution, thexi € X, A* = [ —
Moy (BF) = B — g, (i (X", b, 7)), i =1, Kis an op-
timal solution of MINMAXA4({l) for some reference
membership valugs= (i, , k).

(Proof)

(1) From (49), it holds that

B — A" < Hg, (i (X, B = M g (B = A1),

and it is obvious thap™— \* = ppl(ugll(ﬂ. ).

Assume thak” € X, i —A* € Hi(R), 1, Y —a) e
P,i=1,--- ,k is not aDg-Pareto opt|mal solution.
Then,thereeX|steX pieP,hieH(R),i=1---,k
such that

'JDGi (X7 hia ﬁl) mln{uﬁ(p') l‘lG ( (X h|7 pl))}
> HD(;i (X aw_)\*7u§ (M_)\*>)
= p-Ai=1- 0k

with strict inequality holding for at least onie and

Hg (fi(x,hi, i) = hi,i=1,--- .k Then it holds that
Hg(Bi) > Pi—A%i=1--- Kk (50)
“éi(fi(x7hiaﬁi)) Z ﬂl_)\*aI:]n,k (51)

From Assumption 2 and (22), (50) and (51) can be
transformed as follows.

B> Hpt—A)i=1 k

. Mg (B =A%) — (dix— LY (h)alx)

b < Ti( ' Px— L1 (hy)ox >,
i—1... k

Because oE 1 (hj) <L Y(y —A*),i=1,--- Kk, there

existsx € X such that

) (dix— LY (h)ax)

> T (g (3 M) - (@Px— L (o),
)
(

=1k
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This contradicts the fact that € X,A* ¢ Ais a
unigue optimal solution to MINMAX4(J.
(2) Assume thax* € X,A* € Ais not an optimal solu-
tion to MINMAX4({) for any reference membership

valuesii= (fl, - , i) which satisfy the equalities
fi—A" = l.lpl(f)l*) =Hg (fi(x*, i, B)),
i=1--,k (52)

Then, there exists somes X,\ < A* such that

Mg (B —A) — (dhx— L ([ - Malx)
> T (B =) - (dPx— L4 ([ — o),
A uG~|(f|(Xaﬂl_)\7u51(ﬂl_)\))2ﬂ|_

i=1---,k (53)
Because of (52), (63)ang=A > [ —A*i=1,--- )k,
the following inequalities hold.

Mo (Bi) > Hp(B).i =1 K
Mg (ibohi b)) > bg (fi(x, by, B7)),
i=1,---.,k

Wherep. SH—A) €R, = —A e Hi(R),i

k. Th|s means that there exists soreX, pI
h.eH( ),i=1,--- ksuch thaluDG (X, hl,p.)
Hog, (X", 0, B),i =1,--- k. This contradicts the fact
thatx® € X, p; € Phhi* € Hi(P.),i =1---,kisaDg-
Pareto optimal solution.

5 AN INTERACTIVE
ALGORITHM

In this section, we propose an interactive algorithm
to obtain a satisfactory solution from amondog-
Pareto optimal solution set. From Theorem 2, it
is not guaranteed that the optimal solutiot,A*)

of MINMAX4(1) is Dg-Pareto optimal, if it is not
unigue. In order to guarantee thgs-Pareto op-
timality, we first assume thdt constraints (49) of
MINMAXA4(w) are active at the optimal solution
(X*,A\%),i.e

He (b —2") = (dix
T (B —A))
(6B =L =N o),
i=1-- .,k

RURISLEY

(54)

If the j-th constraint of (49) is inactivé.e.,
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et (B =A%) — (dix* — LYy — A%)aix?)
S )
(@ — Ly~ A%)adx)
gl ) > 6060 A B X)),
(55)

we can convert the inactive constraint (55) into the
active one by applying the bisection method for the
reference membership valug & [A* A" +1].

For the optimal solution (x*,A*) of
MINMAX4(1), where the active conditions (54)
are satisfied, we solve tHag-Pareto optimality test
problem defined as follows.

[Dg-Pareto Optimality Test Problem.]

Xex s.T(ﬁXL 7W Zs. (56)
subject to
Tflmfl(u- — X)) - (dPx— L — A)ax)
(Oll - )0( X)+8|
= Tk ( = N)) - (dfx = L[ = A)afx”)
(d%*— (B — Ao ix*>,i=17---,k (57)

For the optimal solution of the above test problem, the

following theorem holds.

Theorem 3.

For the optimal solutionx€,i = 1,--- .,k of the

test problem (56)-(57), ifv = 0 (equivalently,§ =

0,i=1--,k), X" € X, (li —A*) € P, fs — A" €

Hi(R),i=1,--- ,kis aDg-Pareto optimal solution.
Now, following the above discussions, we can

present the interactive algorithm in order to derive a

satisfactory solution from amondas-Pareto optimal

solution set.

[An Interactive Algorithm.]

Step 1: The decision maker sets the membership

functionspg (y),i =1,--- kfor the fuzzy goals of the

objective functions i |n MOFRLP

Step 2: The decision maker sets his/lher membership

functionpg, (pi).

Step 3: Set the initial reference membership values

asi=1i=1,---,k

Step 4: Solve MINMAX4(f1) by combined use of

the bisection method € A and the first-phase of the

two-phase simplex method of linear programming,

and obtain the optimal solutiofx*,A*). For the op-

timal solution(x*,A*), The correspondinBg-Pareto

optimality test problem (56)-(57) is formulated and

solved.

Step 5: If the decision maker is satisfied with

the current values of th®g-Pareto optimal solu-

tion pog (X*, 17, B7),i=1,--- ,kwhereg! = s (s —
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Table 1: The parameters for LR-type fuzzy random vari- R p1 —0.401066
ablessij. Me(P1) = (5714968~ 0401066
d%j 2 1 3 d%j 1.3 1.1 1.2 (0.812859— 0.213304
d%j 7 -7 9 d%j 1.1 1.2 11 Set the initial reference membership values as

3 (fu, ) = (1,1) (Step 3), and solve MINMAX4Y) by

T 7 * combined use of the bisection method with respect to
O?J 82 8: 82 qgl 882 88‘51 88) A and the first-phase of the two-phase simplex method
Bl' oo B%i : : : (f of linear programming to obtain the corresponding
B;|0.4 0.5 0.5B5;|0.06 0.06 0.0% Dg-Pareto optimal solutiotx*, \*) (Step 4).

s (f1(x*,h1,B7)) = Wp,(P;) =0.564271

A),h = —Ai=1,--- Kk then stop. Otherwise, “?l(fl( ‘ hi E)i)) _ “pl(?i) B

the decision maker updates his/her reference member- “Gz( 20,02, P2)) = Hp(P2) = 0564271

ship valuess,i = 1,---,k, and return to Step 4. The hypothetical decision maker is not satisfied with
the current value of théDg-Pareto optimal solu-
tion (x*,A*), and, in order to improveip, (-) =

6 ANUMERICAL EXAMPLE min{iig, (). ip,(1)} at the expense ofig, (-) =
min{pg, (). Hp, ()}, he/she updates his/her reference

We consider the following two-objective fuzzy ran- membership values &$u, ) = (0.5,0.6) (Step 5).
dom linear programming problem to demonstrate the Then, the correspondingg-Pareto optimal solution
feasibility of the proposed method under the hypo--is obtained by solving MINMAX4f)) (Step 4).

a};[0.5 0.4 0.5a3[0.05 0.04 0.05

thetical decision maker. ¥k Ak .
s (f h = Wp =0.514421
[MOFRLP] “Gl( 1(X*, i’ f-ji)) p—pl(?i)
min E X — E X +:6 X —|—E I"léz(fz(x ah27 pZ)) = “ﬁz(pZ) =0.614421
XeX X G Ea2Xe T Lasks For the current value of thBg-Pareto optimal solu-
min ToX = Cp1Xq + CooXo + CoaXa tion, the hypothetical decision maker updates his/her

XeX reference membership valugs;, i) = (0.52,0.59)
where X = {(x1,X2,X3) > 0 | 2X; + 6X; + 3x3 < in order to improvelp, (-) at the expense qfpg, (-)
150,6x; + 3%o + 5xg < 1755x; + 4% + 2X3 < slightly (Step 5). The correspondirigs-Pareto op-
160,2x; + 2x + 3xg > 90}, and it is assumed that a timal solution is obtained by solving MINMAX4)
realizationt;j (w) of an LR-type fuzzy random vari- (Step 4).

ableTj is an LR fuzzy number whose membership Hg, (fL(X",h1, 1)) = MHp,(P1) =0.529412
function is defined as follows. b, (f2(X",15,5)) = g, (P3) = 0.599412
1.+ 2 —
%‘*’)dié(zs) (s< dij(w)), Then, since the hypothetical decision maker is satis-
TNCE iif (@) N fied with the current value of thBg-Pareto optimal
i (©) R S*fii*_ti“*’)gij > (s> dij (), solution, stop the interactive processes (Step 5). The
B} +i (w)Bf interactive processes under the hypothetical decision

maker are summarized in Table 2.

In order to compare our proposed approach with the
previous ones, let us obtain one of the Pareto optimal
solutions of MOP8p), which is defined in member-
ship spacej.e,, Héi(fi (x,hi,f)),i=1,--- k. Simi-

| lar to MINMAX3(1y), we can formulate the following

I- minmax problem to obtain the Pareto optimal solution
of MOPg(p).
[MINMAX5 (f, 1]

whereL(t) = R(t) = max{0,1—t}, and the parame-
tersd},d?, af,af,Bh, B are given in Table 1.
Moreover,t;,i = 1,2 are Gaussian random variables
defined agj ~ N(0,1).

In MOFRLP, let us assume that the hypothetica
decision maker sets the membership functions as fo
lows (Step 1, 2).

. 96.42857— f1(x,hy, p min
Hél(fl(x, hi,p1)) = 3 428517(— 7; P1) xex,hie[o,l],ilzl,---,k.)\e/\
' R bject to
) . (=285 — fa(x,ha, P2) su
b, (Ta(x e, p2)) - = (—285)— (—332143 B— g (i hi, p) < Ai=1,--- .k

“éi(fi(xahivpi)) = hi,i:l’...7k_
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Table 2: Interactive processes. REFERENCES
@ 1 2 3 Birge, J. R. and Louveaux, F. (1997)lIntroduction to
fu 1 0.5 0.52 Stochastic ProgrammingSpringer.
o 1 0.6 0.59 Charnes, A. and Cooper, W. W. (1959). Chance constrained
uoel(x*,hi, p;) 0.564271 0.514421 0.529412 programming.Management Scienc6(1):73-79.
“Dez (x*,h3, ﬁ*é) 0.564271 0.614421 0.599412 Dantzig, G. B. (1955). Line.ar programming under uncer-
B 0578193 0562545 0.567250 tainty. Management Scienc#(3-4):197-206.

0.551616 0.581684 0.572685 Dubois, D. and Prade, H. (1980Fuzzy Sets and Systems:
. . . Theory and ApplicationsAcademic Press.

Kall, P. and Mayer, J. (2005)Stochastic Linear Program-
ming Models, Theory, and ComputatidBpringer.

Katagiri, H., Ishii, H., and Itoh, T. (1997). Fuzzy random

P>
fi(x*,h;,p;) 84.3370 85.4053 85.0840
fa(x*,h5, p5) -311.601 -313.966 -313.258

In MINMAX5 (f,{1), it is assumed that the linear programming problem. IRroceedings of Sec-
decision maker sets his/her permissible probabil- ond European Workshop on Fuzzy Decision Analysis
ity levels aspi = P, = 0.75, and the reference and Neural Networks for Management, Planning and
membership values ag; = f = 1. = Then, the Optimization Dortmund.

corresponding Pareto optimal solution is obtained Kwake"l?‘ak's"'.' (19§%j 1':;';23’ random variabledffor-

as fi(x*,h,0.75) = 94.0338 fo(x*,h3,0.75) = " ARG AR _

—290269 i (fi(x*,h*,0.75)) =0.11176i =1,2. In Lai, V. and Hwang, C. (1992).Fuzzy Mathematical Pro-
- ) | b) (IS * r | L b) M

- ] gramming Springer.
our proposed algorithm, by solving MINMAX4) Luhandjula, M. and Gupta, M. (1996). On fuzzy stochastic

for the reference membership valugg = [l = optimization.Fuzzy Sets and SysterBg:47-55.

1, the D(A;-Pareto optimal 50'““9” is obtained as Puri, M. and Ralescu, D. (1986). Fuzzy random variables.
f1(x*,hi, p7) = 84.337Q fo(x*,h5, p5) = ~311601 Journal of Mathematical Analysis and Applications
p; = 0.578193p; = 0.551616 (see the first iteration 14:409-422.

of Table 2). This means that a proper balance betweensakawa, M. (1993)Fuzzy Sets and Interactive Multiobjec-
permissible probability levels and the corresponding tive Optimization Plenum Press.

objective functions in a fractile optimization model is Sakawa, M., Nishizaki, 1., and Katagiri, H. (2011uzzy
attained in membership space. Stochastic Multiobjective Programmin@pringer.

Wang, G.-Y. and Qiao, Z. (1993). Linear programming with
fuzzy random variable coefficientsFuzzy Sets and
Systemsb7:295-311.

Yano, H. and Matsui, K. (2011). Fuzzy approaches for mul-
tiobjective fuzzy random linear programming prob-

7 CONCLUSIONS

In this paper, we have proposed an interactive fuzzy lems through a probability maximization model. In

decision making method for multiobjective fuzzy ran- Lecture Notes in Engineering and Computer Science:
dom linear programming problems to obtain a satis- Proceedings of The International MultiConference

factory solution from among a Pareto optimal solu- of Engineers and Computer Scientists 20phges

1349-1354, Hong Kong.

Zimmermann, H.-J. (2011)Fuzzy Sets, Decision-Making
and Expert SystemsKluwer Academic Publishers,
Boston.

tion set. In the proposed method, the decision maker
is required to specify the membership functions for
the fuzzy goals of not only objective functions but
also the permissible probability levels. Pareto optimal
concepts calle®p-Pareto optimal anBg-Pareto op-
timal are introduced. The satisfactory solution can be
obtained by updating the reference membership val-
ues and solving the corresponding minmax problem
based on the linear programming technique. At the
optimal solution of MINMAX2({1) or MINMAX4 (),

it is expected that a proper balance between permis-
sible possibility levels for a probability maximization
model and permissible probability levels for a fractile
optimization model is attained. In general, in order to
deal with MOFRLP, the decision maker must specify
many parameters in advance. Fuzzy operators such as
the fuzzy decision will lighten his/her burden to spec-
ify such parameters as fixed values.
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