
Towards Modelling Real Time Constraints

Amir Ashamalla1, Ghassan Beydoun1, Graham Low2 and Jun Yan1
1School of Information Systems and Technology, University of Wollongong, Wollongong, Australia

2 School of Information Systems, Technology and Management, University of New South Wales, Kensington, Australia

Keywords: i* Requirement Models, Multi Agent System, Call Management Centre (CMC), Relationship Manager

(RM), Real Time Multi Agent Systems (RTMAS).

Abstract: Software agents are highly autonomous, situated and interactive software components. They autonomously

sense their environment and respond accordingly. Agents behaviours are often constrained by by real time

constraints such as the time in which the agent is expected to respond .i.e. time needed for a task to

complete. Failing to meet such a constraint can result in a task being not achieved. This possibly causes an

agent or a system to fail, depending on how critical the task is to the agent or system as a whole. Our

research aims at identifying and modelling real time constraints in the early phase of analysis which helps in

creating a more reliable and robust system.

1 INTRODUCTION AND

RELATED WORK

Agents’ key characteristics are autonomy,

interactivity, situatedness and cooperativeness

(Beydoun et al 2009; Beydoun et al 2006). They are

typically designed to meet local objectives as part of

a distributed system. A real-time agent is such an

agent with temporal restrictions in some of its

allocated responsibilities or tasks (Botti et al 2004).

This paper is motivated by the longstanding view

that the earlier you model real time requirements in

the software development life cycle, the more

reliable and robust the resultant system should be

(Boehm 1988; Sadrei et al 2007). Any future issues

and conflicts are identified and resolved in the

earlier stage of analysis rather than in later stages of

design and implementation when it is too late or too

hard to resolve. We identify a number of key real

time constraints that can be modelled during the

requirement analysis of the system. The rest of the

paper is organised as follows: We first discuss other

academics work on real time multi agent systems.

We then sketch modelling real time constrains. This

is followed by the details of the identified real time

constraints set. We then introduce a call

management system as a validation domain to

demonstrate how the identified real time constraints

set are integrated into the software development life

cycle using i* modelling. We finally conclude this

paper with a description of future work and

anticipated challenges.

Surprisingly, for MAS systems that are supposed

to be decentralised and distributed, a common

modelling approach to for ensuring realtime

constraints are met is through the use of a central

monitoring agent (master agent) (Neto 2009) which

receives completion reports from the rest of the

agents. The monitoring agent typically initiates a

redundant task if an agent charged with a task does

not report completing it within the required

timeframe (a real-time constraint) (Neto, 2009).

This approach clearly presents a single point of

failure and is contrary to the distributedness of MAS

and its engendered appeal. The approach pursued in

this research seeks to maintain distributedness,

fulfilling real time requirements identified during the

requirement analysis phase of MAS development.

Modelling real time agent interactions has been

considered in a number of real-time MAS

applications. Notable examples include: The London

Underground project Basra (2007) used agent

modelling to model messaging and actions taken by

other trains to avoid collision, a search and rescue

example (Micacchi 2008) modelled how a robot can

identify and then plan to avoid obstacles to rescue

victims in real-time, target tracking (Sabour 2008),

construction (Zhang 2009) and automated car

driving (Konrad 2006).

158 Ashamalla A., Beydoun G., Low G. and Yan J..
Towards Modelling Real Time Constraints.
DOI: 10.5220/0004064801580164
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 158-164
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

A principal requirement for real time systems is

fulfilling time constraints (Vahid 2010). When

developing a model for real time MAS, the relative

priority of the task should be taken into account, as

well as the task deadline. In another model

(Zambonelli 2001), agents broadcast their set of

tasks to agents they rely on, and negotiate these set

of tasks before they start executing their tasks. Our

work is closer to Lu (2006) who suggests task

negotiation and cooperation should happen on

regular basis to update task status. The work is

similar to ours in that it promotes a distributed

approach to monitor real-time constraints

satisfaction. However, it is based on a numerical

representation of the conditions that are quite

difficult for software engineer to use during the

analysis phase. The work actually relies on task

sampling frequency which may under some

conditions impact the overall performance (dangbing

2004).

Object Management Group (OMG) and IBM

have developed a new improved profile, called the

UML Profile for Modelling and Analysis of Real-

time and Embedded Systems (MARTE) (OMG,

2008). MARTE models the analysis and design of

real time systems based the following four

fundamental pillars: QoS-aware Modelling,

Architecture Modelling, Platform-based Modelling,

and Model-based QoS Analysis. MARTE has been

integrated into IBM rational rhapsody version 7.5.

Another modelling and analysis suite is UML-

MAST (Modelling and Analysis Suite for Real-Time

Applications).UML-MAST distributes the load

based on the cpu, memory and network utilization,

and not on the task priority or deadlines. The suit

uses equations and experience to calculate and

predict the tasks load or cpu, memory and network

usage and then load balanced the tasks based on it.

e.g. task data size based on parameter data types

indicates network traffic as well as the number of

nodes (routers) that are exchanged between the

sender and receiver, this enabled predicting traffic

on the node, though data size and number of

messages/tasks (Vahid 2009). These modelling suits

do not have graphical representations for the real

time constraints, especially not for multi agent

systems which is the focus of our research.

2 MODELLING AGENT

REAL-TIME CONSTRAINTS

In this section, we introduce fundamental concepts

that underpin modelling of agent real time

constraints. This includes an elaboration on the

difference between real time constraints, error

handling and fault tolerant systems.

A task taking too long to complete may be regarded

as a failed task when a real-time constraint applies.

Receiving the right answer too late becomes the

wrong answer (Gokhale 2004). Run time error and

exception handling in the development phase;

typically require a different set of tasks to be

initiated when an error occurs (Westley 2004). If the

task is mission-critical and takes too long to

complete, it can lead to unwanted consequences e.g.

dialling a number then having to wait long for an

answer cannot be regarded as successful- although

the phone rang. The fact that the response time was

too long means the task failed, as it did not meet its

time constraint. This is different from fault tolerance

where the latter focuses on the behaviour of the task

following a failure. This may include starting an

alternate task to fulfil the application goals. Our

research regards tasks taking longer than an

expected/accepted time period as “failed” to meet

the design goals, regardless of their eventual

outcome.

Accurate identification of the violation of a real-

time constraint can be complicated. It often requires

taking into account task dependencies. For instance,

a task A may take too long simply because it is

waiting for its required input from another task B.

The problem may lie with Task B rather than Task

A. In the context of agents within a MAS, this kind

of dependency may be compounded and take the

form of a chain of dependencies of tasks and agent

goals (Neto 2009). In other words, all agent features

must be considered and modelled (Cabri 2003) with

their time related features. Our research aims at

providing a knowledge representation to facilitate

identifying a sufficient set of activities to be carried

out by requirement analysts to later be able to

identify which task has failed to meet its time

constraints. We aim to be able to identify the

available and the proper behaviour set for the agent

to be notified, and to model the required recovery

behaviour when a task fails. In other words, two

types of knowledge have to identified and modelled:

the knowledge to identify the success or failure of

the task to meet its real time constraints and the

knowledge describing behavioural actions associated

with a failed task. It is worth noting that modelling

the behaviour criteria alone can lead to modelling a

fault tolerant system (Kopetz 2000), as the research

focus would be on what actions are needed to

recover from a task failure.

Towards Modelling Real Time Constraints

159

Our research will enable better planning to avoid

future problems that might arise as a result of not

meeting real time constraints. There has been some

focus in recent years on message exchange,

negotiation and MAS fault tolerance while not much

has been done on modelling the real time MAS in

the analysis phase. Our goal is not to address fault

tolerance issues. We synthesize a reliable and

precise analysis process to ensure that we capture

the real-time constraints and the concomitant

required agent’s behaviour. As part of formulating

this process, we identify a set of constraints that

guide analysts in modelling the real time component

of a task in the analysis phase of the software

development life cycle. This will facilitate

identifying alternative actions to be taken once a

task has been identified as failing to meet its real

time constraints. This set of behaviour actions can

range from logging an error to starting an alternate

task. Identifying these constraints in the analysis

phase can assist in identifying bottlenecks and better

distributing work load between agents. Our approach

highlights a higher level of proposed behavioural

tasks/ goals to be taken in case the task fails to meet

its real time constraints, as identifying the problem is

the first step towards fixing or avoiding it.

3 IDENTIFIED REAL TIME

CONSTRAINTS

The set of real-time modelling units we pursue

should be sufficient to do the following: model tasks

time constraints, identify when they are not met and

model their behaviour at that time. If the task takes

too long (exceeding the real time constraint) then the

agent would identify that this task has failed and

initiate a suitable behaviour to ensure that this

failure does not propagate and cause one or more

system goals to fail. We therefore propose two

categories of modelling units: one group identifying

if the constraint has been met or not and another

group describing what actions/behaviour to be taken

when a constraint is not met. We propose 2 units in

the first category and 10 for the second category.

The modelling units will describe if the constraint is

soft/hard, its priority, its criticality, estimated

duration, warning percentage, error percentage, tier

number, periodic occurrences and real time order.

Moreover, if the task should be retired or which

alternative task should be tried. For a given RT

constraint, there is no limit on the number of

behavioural criteria imposed. E.g. when a task fails

the model should indicate all possible alternate tasks

and arrange them according to a priority sequence.

The developer can identify the task priority

sequencing during analysis. These identified twelve

units are not exhaustive. The developer can always

add any new constraints and their graphical

representation to the diagrams. The constraints set is

summarised below with Identifying or Behaviour

indicating the category it belongs to and then a brief

explanation of the constraint and the symbol to

represent it as follows:

1- Identify if an RT constraint exist at all, then the

next 11 constraints can be used and the RT

constraint presence is marked using a table symbol

. Other constraints can be marked on top of

this.

2- Identify if the constraint is a Soft or Hard

constraint is identified. A hard RT constraint

enforces that the task must complete within the

specified time frame and if not is unacceptable or

of no value. The value of a task with a soft RT

constraint declines steadily after the deadline

expires. Tasks completed after their respective soft

RT deadlines have less value than those whose

deadlines have not yet expired (Vahid 2010).

3- Identify Constraint Priority Priority . This is the

importance of the task to be completed, the lower

the number the higher the priority i.e. P1 is the

highest priority task which should be completed

first, if at all possible.

4- Identify constraint Criticality
Critical

. This is an

indication of how critical a task is i.e. the effect a

failure of this task would have on the whole

system. If a highly critical task fails to meet its real

time requirement, the criticality level is directly

related to the priority level but they do not have to

be equal. As tasks can have a high priority level,

it’s important to complete on time. But if it fails,

the system in total might not be affected. While in

other cases a task failure can cause the whole

system to fail.

5- Identify Estimated Duration
Estimated Duration

, to

be used as a guideline to identify if the task has

met its real time requirement or not.

6- Identify Warning Percentage
Warning%

,to be

proactive in identifying the tasks that are unlikely

to meet their real time constraint and help them

fulfil these constraints by providing them with

more resources, or starting the alternate task.

(Brazier 2000).

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

160

Figure 1: Representing the identified constraints in a table like diagram.

7- Identify Error percentage
Error%

 is used to

identify when a task has failed to meet its real time

constraints. If the percentage is exceeded, the task

has failed to meet its real time requirements. In

most cases this would be 100% but this could vary.

E.g. if there is a lag or lap time between 2 tasks i.e.

the time between one task ending and another

dependent task starting (Brazier 2000).

8- Identify Tier Number , this identifies the

affected agent if the task fails to meet its real time

constraints (Konrad 2006).

9- Identifying periodic occurrences (PER)
Loop Limit PER

, i.e. the schedule on which the task happens on

(Konrad 2006).

10- Identify Real time order (RTO) is denoted by
+2 sec

. This represents the time lag between

instances of the same task or between one task and

another dependent task starting (Konrad 2006).

This helps in identifying the time buffer required

to repeat a sequence of tasks before the system is

affected.

11- Behaviour Retry attempts
5

 is the number

of times to Retry/restart the task before starting the

Alternate task.

12- The Alternate task (if any) to start in case the

initial task could not meet its real time constraint is

denoted by AT . This emphasis the robustness

characteristic of the MAS and ensures the system

reliability.

4 CALL MANAGEMENT

Beyond a one-to-one communication tool, telephony

is a tool for marketing, gathering information,

purchasing, selling and recently advertising.

Generally, business telephony needs are either

outbound calls to customers (e.g. telemarketing

products) or inbound calls (e.g. for customer

support, handling sales or enquiries). Companies

favour outsourcing their call management to

dedicated Call Management Centres (CMC) since

they tend to have the latest telephone technology and

equipment together with additional value-adding

software. The CMC’s specialized personnel and

training saves the client company time and money.

A typical CMC may have a number of corporate

clients (e.g. banks, insurance companies) and a few

thousand relationship managers (RM) attending to

phone calls to end-customers of its corporate clients

(Ashamalla et al 2009). To validate the

representational adequacy of the above constraints,

we model a call centre support MAS. We propose

using an intelligent distributed system (known as

Multi Agent Systems) to assist in customer

relationship management by routing calls and

allocate calling duties to the most appropriate

relationship manager (in terms of knowledge/skills

and availability) to maximize effectiveness.

The goal of this system is to match the

relationship managers (RM) (call centre workers

receiving and making calls) with the end customers

(EC) (the person on the other end of the phone line).

ECs receive/make calls to the call centre to receive

the service or product the call centre is offering. The

proposed MAS will mix and match the skills and

available RMs to increase call centre sales, customer

satisfaction and profits (Ashamalla 2009). The

system routes the calls to the appropriate RMs based

on the EC and RM skills, background, demographics

and performance. We will only present one agent

(Outbound calling system) due to space

requirements, as per below:-

The outbound calling system represents the

agent responsible for dialling numbers, detecting call

answers and routing calls to the available and

appropriate RM, the outbound calling system tasks

are:-

1- Dial number: The Calling system dials EC’s

numbers from the available pre loaded calling list.

2- Detect call answer: Detecting that a real person

answered the call and not an answer machine or a

busy line.

3- Start voice recording: Once an answer is detected

the calling system needs to start voice recording.

4- Detect available RM: The calling system detects

available RM’s in order to route calls to them.

Towards Modelling Real Time Constraints

161

5- Route call to matched RM: Once an available

RM is detected, the call should be routed to

him/her.

6- Retrieve EC details: EC details are retrieved and

displayed for the RM.

7- Retrieve script: The sale script and offers are

retrieved and displayed on the screen, for the RM.

8- Detect Call outcome: RM logs the call outcome

as sale, No sale, do not call or Call back.

9- Stop voice recording: Once the call has ended,

voice recording for that call should be stopped.

10- Reroute call for call back: The system

redials/recalls call back calls on the set date/time.

11- Reroute unanswered calls: Unanswered calls

are logged as a “no answer” call, to be recalled

later.

The first phase of developing the CMC MAS is

articulating the requirements in order to undertake

an appropriate agent oriented analysis. We perform

RE activities informally with i*(Yu 1995),

beginning with stakeholder requirement analysis and

rationale for the new system. We use the i* (Yu

1995) modelling framework to represent MAS

agents and the relationships between different

agents. Our early requirement phase generates a high

level description of system goals and roles expressed

in the i* model. In a MAS, agents depend on each

other to achieve goals and perform tasks. The

resultant i* model consists of two components: The

Strategic Dependency (SD) model which models the

different agents and the relations between them and

the Strategic Rationale (SR) model which models

the different tasks each agent has and the different

proposed alternatives to accomplish these tasks

(Ashamalla 2009). The choice of i* as a modelling

language is based on previous experience (Bresciani

2004) which has shown that i* is a good language to

express MAS requirements. In particular, the i*

‘actor’ lends itself to readily model the actors and

agents in a call management centre, our proposed

system is composed of a number of Actors (Agents

and Roles) (Beydoun et al 2009). OME3 tool was

originally used to model the MAS call centre as part

of our case study, however when we needed to

represent the proposed real time modelling units we

preferred using Microsoft Visio. As Visio stencil’s

provided a more efficient way to visually present our

proposed real time modelling units. The values

represent each individual task’s real time criteria,

e.g. The alternate task (AT) for the above task is to

log an error, the affected agent (TN) is the Matcher

agent which has the following soft constraints: the

warning level is 80%, the tolerable error level is

100%, the Real time order (RTO) is +2 minutes

between this task and the successive task, the

periodic occurrences (PER) is on a daily rate, the

Retry (R) attempts is 3 times, the task estimated

duration (ED) is 2 minutes, the task critical level (C)

is 3 and its Priority level (R) is also 3.

The case study has found that the matcher and

outbound calling system were relatively loaded with

rt constraints (13 and 11 rt constraints respectively)

making their work load in need to be redistributed,

or broken down to multiple agents. While the rm

agent has a relatively small number of rt constraints

(4 rt constraints).with only one monitoring agent

exits for the system, distributing the tasks among

agents resulted in a more balanced model. This has

identified alternative agents and tasks in the sr

diagram, in case the task does not meet its real time

constraint. It also highlights the affected agent where

bottlenecks might occur and the effects on the

system in general .i.e. If all affected agent (tn) links

point to one agent. This indicates that the agent has a

high probability of failing in case any of the linked

tasks fail. The tasks could be the agents or another

agent’s task that have a direct effect on the agent.

this model has led to 2 monitoring agents as not to

have a single point of failure. We identified 77 agent

tasks for the call centre mas. examining these tasks

using the real time constraint set results in

identifying 66 of the 77 mas tasks as potentially real

time. we will only present the outbound calling

agent agent’s tasks due to space requirements.

5 CONCLUSIONS AND FUTURE

WORK

This paper is part of our ongoing research aimed at

identifying and modelling real time constraints in the

early analysis stage of the development life cycle. It

also helps in identifying future bottle necks that

could arise as a result of overloading an agent with

too many real time constraints in the early analysis

phase. I.e. having all arrows point to a single agent

indicates that this agent is a potential bottle neck

and/or it is highly likely to fail. Our research aims to

enhance the performance of agent systems to meet

any real time constraints requirement. 12 modelling

units to represent real time constraints have been

identified based on academics and researches

recommendations (Brazier 2000, Konrad 2006,

Vahid 2010, Tran et al 2006) and others discussed in

Section 2 and 3. We also developed a case study and

some industry recommendations and we are

currently validating these constraints using expert’s

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

162

reviews and recommendations. The preliminary

results are so far encouraging. This result is very

dynamic in representing Real time constraints,

allowing any newly identified constraints to be

added to the model with the appropriate graphical

representation. Our next step in this research is to

propagate our real time constrains to agent goal

models. Further case studies and modelling tools to

further validate our results and research outcomes

will be needed. Expert reviews in the call centre and

MAS domains will be first contacted to review the

outcome, before extending to another domain of

collaborative e-Learning (Beydoun 2009).

REFERENCES

Ashamalla, A., Beydoun, G. and Low, G. (2009). 'Agent

Oriented Approach to a Call Management System',

18th International Conference on Information Systems

Development (ISD 2009), Nanchang, China,

September 16-19

Beydoun, G., Low, G., Mouratidis H. and Henderson-

Sellers B. (2009). 'A security-aware metamodel for

multi-agent systems (MAS)', Information and

Software Technology, 51(5): 832-845

Beydoun, G., Gonzalez-Perez, C., et al. (2006).

“Developing and Evaluating a Generic Metamodel for

MAS Work Products“. Software Engineering for

Multi-Agent Systems IV: Research Issues and

Practical Applications. A. Garcia, R. Choren, C.

Lucenaet al. Berlin, Springer-Verlag. LNCS 3914:

126-142.

Beydoun, G. (2009). "Formal concept analysis for an e-

learning semantic web". Expert Systems with

Applications 36(8).

Basra, R., Lu, K. and Skobelev, P. (2007). "Resolving

scheduling issues of the London Underground using a

multi-agent system." International Journal of

Intelligent Systems Technologies and Applications

2(1): 3-19.

Boehm, W. (1988). "A spiral model of software

development and enhancement." Computer 21(5).

Botti, V. and Julian, V. (2004). "Developing real-time

multi-agent systems." Integrated Computer-Aided

Engineering 11(2): 135-149.

Brazier, F., Cornelissen, F., Jonker, C., and Treur, J.

(2000). "Compositional Specification and Reuse of a

Generic Cooperative Agent Model." International

Journal of Cooperative Information Systems 9(3): 171.

Brazier, F., Mobach, D., Overeinder, B. and Wijngaards,

N. (2002). "Supporting Life Cycle Coordination in

Open Agent Systems." IIDS Group, Department of

Artificial Intelligence, Faculty of Sciences, Vrije

Universiteit Amsterdam.

Bresciani, P., Perini A., Giorgini P., Giunchiglia F. and

Mylopoulos J. (2004). Tropos: An agent-oriented

software development methodology. Autonomous

Agents and Multi-Agent Systems 8(3): 203-236.

Cabri, G., Leonardi, L. and Zambonelli, F. (2003).

BRAIN: A Framework for Flexible Role-Based

Interactions in Multiagent Systems. On The Move to

Meaningful Internet Systems 2003: CoopIS, DOA,

and ODBASE, Springer Berlin / Heidelberg. 2888:

145-161.

Conitzer V.(2007). AWESOME: A general multiagent

learning algorithm that converges in self-play and

learns a best response against stationary opponents.

Machine Learning 67 (1-2/may 2007): 23 - 43

Danbing S., John L., Lui S. and Kang S. (2004). "Trade-

Off Analysis of Real-Time Control Performance and

Schedulability." Real-Time Systems 21(3): 199-217.

Gokhale, S., Natarajan, B., Schmidt, C. and Cross, K.

(2004). "Towards real-time fault-tolerant CORBA

middleware." Cluster Computing 7(4): 331-346.

Horkoff, J. (2007 Thursday 24 of May, 2007 23:13:15).

"Visio." Retrieved 26/04/2011, 2011, from http://

tanne.informatik.rwth-aachen.de:7777/.

Konrad, J. (2006). Model-driven development and

analysis of high assurance systems. Department of

Computer Science. Michigan, Michigan State

University. Doctor of Philosophy: 443.

Kopetz, H. (2000). Software engineering for real-time: A

roadmap. Proc. 22nd Int. Conf. Software Eng,

Citeseer.

Lu, Roman G. and Shourong (2006). "Modeling

distributed real-time applications with specification

PEARL " Real-Time Systems 35(3): 181-208.

Micacchi, C. and Cohen, R. (2008). "A framework for

simulating real-time multi-agent systems." Knowledge

and Information Systems 17(2): 135-166.

Neto, A., Sartori, F., Piccolo, F., Vitelli, R., De Tommasi,

G., Zabeo, L., Barbalace, A., Fernandes, H., Valcárcel,

F. and Batista, N. (2009). MARTe: a Multi-Platform

Real-Time Framework. Proc. of the 16th IEEE NPSS

Real-Time Conference, Beijing, China.

Object Management Group (OMG). (2008). "UML profile

for modeling and analysis of real-time and embedded

systems (MARTE)" Retrieved 2-12-2010, from

http://www.omg.org/.

Sabour A., Faheem M. and Khalifa E. (2008). "Multi-

Agent Based Framework for Target Tracking Using a

Real Time Vision System." International Conference

on Computer Engineering and Systems, ICCES 2008

355-363

Sadrei, E., Aurum, A., Beydoun, G., and Paech, B. “A

Field Study of the Requirements Engineering Practice

in Australian Software Industry”, International Journal

Requirements Engineering Journal 12 (2007), pp.

145–162.

Tran, QNN, Low, GC and Beydoun, G., “A Method-

ological Framework for Ontology Centric Agent

Oriented Software Engineering”, International Journal

of Computer Systems Science and Engineering, 21,

117-132, 2006.

Vahid, G. (2010). "Experience and challenges with UML-

driven performance engineering of a Distributed Real-

Towards Modelling Real Time Constraints

163

Time System." Information and Software Technology

52(6): 625-640.

Vahid, G., Y. Labiche, et al. (2009). "A UML-based

quantitative framework for early prediction of resource

usage and load in distributed real-time systems."

Software and systems modeling 8(2): 275-302.

Westley, W. and George, N. (2004). "Finding and

preventing run-time error handling mistakes."

SIGPLAN Not. 39(10): 419-431.

Yu, E. (1995). Modelling strategic relationships for

process reengineering. Computer Science. Toronto,

Canada, University of Toronto. Doctor of Philosophy:

131.

Zambonelli F., Jennings N. and Wooldridge, M.

(2001)."Organisational Abstractions for the Analysis

and Design of Multi-agent Systems " International

Journal of Software Engineering & Knowledge

Engineering 11(3): 1.

Zhang, C., Hammad, A. and Bahnassi, H. (2009).

"Collaborative Multi-Agent Systems for Construction

Equipment Based on Real Time Field Data

Capturing.” Electronic Journal of Information

Technology in Construction 14.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

164

