
SimCore: A Library for Rapid Development of Large Scale Parallel
Simulations

Sunil Thulasidasan1, Lukas Kroc2 and Stephan Eidenbenz1

1Computational & Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, U.S.A.
2Claremont College, Claremont, CA, U.S.A.

Keywords: Discrete-event Simulation, Parallel Simulation Library, Python Simulation.

Abstract: We present the SimCore parallel simulation library, an object-oriented framework for developing parallel
distributed discrete-event simulation applications, implemented in C++ with a Python front-end. SimCore
is designed to scale to thousands of processors but is simple enough to use for application programmers,
an outcome of its fast C++ core and message passing routines integrated with the full expressive power of
Python. We discuss the design philosophy of SimCore including the software architecture and the C++/Python
interface implementation that allows applications to be written in pure Python or a hybrid of Python and C++
or even pure C++. We also provide real world examples of the scalability and briefly describe a few diverse
applications that have been deployed using SimCore.

1 INTRODUCTION

SimCore is a generic library for designing simu-
lation applications for large-scale, parallel discrete
event simulations. Scalable simulations are an impor-
tant tool in the modeling of complex systems where
simulating the behavior of millions of entities and
their interactions demand significant computational
resources. SimCore has been designed with the pri-
mary goals of flexibility and scalability, and has al-
lowed us to construct a suite of various domain spe-
cific simulators that can be run independently, or inte-
grated with each other. For instance, we have been
able to integrate a parallel transportation simulator
with an agent-based activity generator and simulator
(both SimCore applications) that allows us to gener-
ate realistic activity schedules for millions of intel-
ligent agents, route the tens of millions of vehicu-
lar trips generated from these activities, and observe
how traffic conditions and the variations they cause in
expected travel times impact activity scheduling and
vice versa.

SimCore, is in general, designed to be usable in
any scenario where discrete-event simulation tech-
niques are a suitable modeling paradigm. In this pa-
per, we focus on the the motivation and design princi-
ples in developing SimCore and give examples of its
usage and performance in diverse application areas.

2 MOTIVATION

SimCore has been designed to be a general purpose
simulation library for developing parallel and dis-
tributed simulation applications that use a discrete-
event simulation paradigm with conservative syn-
chronization (Fujimoto, 1990). The goal of SimCore
is to enable domain researchers to rapidly develop
simulation applications and deploy it on large clusters
without having to get bogged down by the intricacies
of parallel programming, managing MPI communi-
cation or worry about issues such as load balancing.
The Python front-end of SimCore provides an intu-
itive and easy to use interface to the simulation library
that makes use of the full expressive power of Python;
this also enables easy integration of SimCore applica-
tions with other numerous scientific packages avail-
able for Python including visualization and numerical
computation.

The need for computational performance, how-
ever, dictates that a large-scale simulation code im-
plemented in pure Python will inevitably run into per-
formance issues. At this point, the traditional route is
to port the initial prototypes to a performance oriented
language such as C, C++ or Fortran. While SimCore
has been written as a tool for research – where devel-
oper cycles are significantly more valuable than pro-
gram execution time – the decision was made to im-
plement the most general and frequently used parts of

71
Thulasidasan S., Kroc L. and Eidenbenz S..
SimCore: A Library for Rapid Development of Large Scale Parallel Simulations.
DOI: 10.5220/0004063700710076
In Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2012),
pages 71-76
ISBN: 978-989-8565-20-4
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



the library – message passing, synchronization, log-
ging and file I/O – in pure C++. This hybrid approach
provides a reasonable balance between performance
and ease of use. Further, any computationally inten-
sive bottle-neck can be re-written in pure C++, but it
has been our experience that performance optimiza-
tion is best done after the many iterations that are usu-
ally needed for the model and design to stabilize.

Multiple simulation applications have been previ-
ously developed using SimCore (see Section 6); many
of these applications were implemented in pure C++.
Indeed the decision to develop a Python front-end for
ease of application development was based on our
observation that domain researchers often spend sig-
nificant amounts of time learning how to write ad-
vanced C++ code. While a full detailed description
of the SimCore library is outside the scope of the pa-
per, in what follows, we discuss the salient architec-
tural features of the library and the Python integration
aspects. We also briefly describe some of the appli-
cations that have been developed using SimCore and
provide some performance results of large scale sim-
ulations.

3 RELATED WORK

There are a number of non-hybrid simulation li-
braries available for parallel discrete event simula-
tion (PDES). PrimeSSF (PRIME, 2012), originally
known as DaSSF, is a parallel simulation frame-
work, developed originally for network simulation,
that supports both distributed and shared-memory im-
plementations. It uses the Entity-Message simula-
tion paradigm; in a distributed memory setting, mes-
sages are passed via MPI, and causality is maintained
via barrier synchronization. SimCore initially used
PrimeSSF for message passing and synchronization,
and can still be compiled with PrimeSSF as one of
the options. OMNET++ (OMNET++, 1996) is a
component-based C++ simulation library and frame-
work, primarily focussed on the domain of network
simulation. OMNET++ also supports parallel simu-
lations. ClusterSim (Ramos and Martins, 2004) is a
Java-based parallel discrete-event simulation tool for
cluster computing. ClusterSim supports visual mod-
eling and simulation of clusters and their workloads
for performance analysis. µsik (Perumalla, 2005) is a
micro-kernel for PDES that supports both conserva-
tive and optimistic parallel simulations.

On the Python side, SimPy (SimPy, 2012) is an
object-oriented, process-based discrete-event simula-
tion language written in pure Python and provides
the modeler with classes for both active and passive

components in a simulation. Parallel support was
later added to SimPy, but the parallelism remains non-
transparent to the user. In the hybrid-approach cate-
gory, PCSim (Pecevski et al., 2009) is a C++ based
neural network simulator with a python front-end,
that supports both sequential and distributed memory
simulations. NS-3 (NS-3, 2012) is another example
of a hybrid C++/Python approach for network simu-
lation. We note that most of the simulation libraries
mentioned here were developed for a specific domain.
SimCore, on the other hand, aims to be as generic as
possible; it can be used in any environment that can be
modeled as a collection of interacting entities, using
discrete event simulation. Thus, our main contribu-
tion is the development of a hybrid general purpose
library for parallel discrete event simulation that of-
fers a good trade-off between ease of use and scala-
bility

4 ARCHITECTURE OVERVIEW

SimCore provides the application (an end simula-
tion, such as a network Simulator) with APIs for eas-
ily developing a simulation application and hides the
complexity of message passing, event synchroniza-
tion and domain partitioning from the application de-
veloper. For message passing and synchronization,
SimCore also includes its own simulation engine built
on top of the MPI library. However, a compile-time
switch will allow SimCore to use PrimeSSF as the
underlying event engine. An overview of the software
architecture and library stack is illustrated in Figure 1.
The simulation library classes are all implemented in
C++, using Boost (Boost, 2012) for templated con-
structs and pointer management, and MPI for commu-
nication. Applications can be written entirely in C++
on top of SimCore, or written as Python modules. For
the latter facility, a subset of SimCore classes are ex-
ported to Python using the Boost.Python interface li-
brary to produce a module PySimCore that can then
be imported inside Python.

SimEngine
(Messaging & Synchronization)

Boost.Python

libSimCore (C++)

MPI

PySimCorePython

Boost

Figure 1: Software architecture of SimCore.

SIMULTECH�2012�-�2nd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

72



4.1 SimCore Classes

There are three major SimCore constructs that form
the basis of a simulation application. These are:

� Entity: This is the primary active element of the
simulation (an agent, a network device etc.); an
entity has associated properties and behaviors that
are implemented using services (below)

� Service: A service on an entity determines the be-
havior of entities, i.e responses to events.

� Info: These are the events in the simulation which
include timer events, control events and messages
passed between entities in the simulation. Info’s
are passed and received between services living
on entities. For distirbuted memory applications,
SimCore serializes and packs the data, before in-
voking the MPI communication routines. A re-
ception of an info at a service triggers the handling
routine for that particular type of message.

Let us consider a Network Simulator for an
example: the entities would model devices (e.g.
computers), interfaces (e.g. network cards) and
media (e.g. network cable or a frequency as a
wireless medium). Entities, therefore, correspond to
hardware. Services would model various protocols
(e.g. FTP, TCP, IP on a network device and a “signal
transmission functionality” for a communication
medium). Thus services correspond to software
in this context. Packets travelling between various
devices are implemented using Info’s and appropriate
packet-handlers. The interaction of the various
services living on an entity will then determine the
overall behavior of an entity. The most important
properties of each SimCore construct are given below:

Entity
� Models objects in a simulation
� Uniquely identified throughout the simula-

tion system (by an EntityID).
� Has general features (e.g location, capacity,

status, etc.)
� Has its own services. Each service lives at

a Service address
� Forwards events to an appropriate event

handler.
� Entities might reside in different memory

spaces depending on the partitioning logic,
but this is transparent to the user.

Service
� Models behavior of entities
� Identified using an Entity ID and a service

address
� Processes incoming messages.
� All Services living on the same entity are

forced to reside in the same memory space
i.e. on the same computing node.

Info
� Data and messages to be exchanged be-

tween Entities
� Destination address is a tuple of ¡EntityID,

Service address¿
� Can be packed with user defined content.

Having a clear distinction between objects (en-
tities) and their behavior (services) allows us to
easily extend or modify the behavior of an entity;
adding new functionality to an entity amounts to
adding a new service to it, without having to change
existing code. Interaction between different entities
is (mostly) restricted to message passing though com-
munication between services on the same entity can
be made via regular function calls. The parallelism
and partitioning in the simulation is completely
transparent to the end user (simulation application
developer). Thus the same logic can be executed on
a single processor or a handful of compute nodes
or a large-scale cluster consisting of thousands of
processors without making any changes to the code.

4.2 Managing SimCore Objects

Each of the main SimCore object types – Entities,
Services and Info’s – has an associated object man-
ager that handles the task of object creation and main-
tenance. No SimCore object is created directly by
the application; rather, they are created via calls to
methods of the managers. SimCore uses the smart
pointer (implemented via reference counting) func-
tionality provided by the Boost library to manage ob-
ject creation and destruction. This only adds a small
amount of overhead to the code, while greatly reduc-
ing, if not completely eliminating, the occurrence of
pointer related bugs.

� The Entity Manager is responsible for creating
entities, and letting user code access them later, if
needed. In the current model, Entities are created
inside logical processes (LP) and are uniquely
identified in the simulation. Before creating an

SimCore:�A�Library�for�Rapid�Development�of�Large�Scale�Parallel�Simulations

73



Entity, it is necessary to decide which LP it will
live at, based on the partitioning strategy used. An
LP represents a single running thread of the sim-
ulation with a common clock value; in SimCore,
each LP is mapped to a distinct physical process.

� The ServiceManager is responsible for creating
the services on the entities, as well as reading in
the service related data before creating the ser-
vices.

� The InfoManager is responsible for mapping
Info types to Info objects and calling the appropri-
ate Info handler object when an info is received.

4.3 Partitioning and Load Balancing

Entities are mapped to LPs by a placement function.
The same function is later used to find which LP each
entity lives on, while sending messages. The user may
use any function and register it with a call to the Entity
Manager. The default placement function is a modulo
function based on the entity identifier, though differ-
ent placement schemes that map entities to LPs can
also be used. Entity placement and partitioning is one
of the crucial factors in the performance of a parallel,
discrete event simulation. We provide a detailed dis-
cussion of the performance of different partitioning
strategies from a load balancing perspective in (Thu-
lasidasan et al., 2010) and (Thulasidasan et al., 2009).

5 PYTHON INTEGRATION

To enable construction of simulation applications in
Python, we export the APIs from the three main Sim-
Core classes (Entity, Service, Info) to the Python
space. For the Python interface generation we use
the Boost.Python (Abrahams and Grosse-Kuntsleve,
2003) library which provides fairly seamless operabil-
ity between C++ and Python. Boost.Python provides
comprehensive mapping between C++ and Python
constructs, and supports advance templated meta-
programming techniques. There is support for excep-
tion handling, iterators, operator over-loading, stan-
dard template library (STL) containers and Python
collections, smart pointers and virtual functions that
can be over-ridden in Python. This feature makes the
interface bidirectional i.e user-extensions in Python
can be also invoked from C++.

Since each class and function has to be manu-
ally wrapped in Boost.Python code, to make this pro-
cess less cumbersome we use the Py++ (Py++, 2012)
automatic code generation utility that wraps input
C++ code inside Boost.Python constructs. Py++ is

based on the GCC-XML (GCC-XML, 2012), a GCC
based parser that generates XML representation of
C++ code. Using the XML output and user gen-
erated rules regarding API export, Py++ generates
the Boost.Python interface. This is then compiled
and linked against the Boost.Python and SimCore li-
braries to produce a module that can be imported in-
side Python. A schematic of the build-chain is shown
in Figure 2.

6 SimCore APPLICATIONS

In this section we briefly present some of the simula-
tion applications that have been developed at LANL
using the SimCore library. These applications were
built to model the large scale behavior and complex
interdependencies between various socio-technical
systems, and have been used in numerous real world
simulation studies to analyze the dynamics of vari-
ous national infrastructure The interested reader is re-
ferred to the relevant publications that describe these
applications in more detail.

� FastTrans Described in (Thulasidasan and Eiden-
benz, 2009; Thulasidasan et al., 2009), FastTrans
is a scalable, parallel microsimulator for trans-
portation networks that can simulate and route
tens of millions of vehicles on real-world road net-
works in a fraction of real time. Vehicular trips are
generated using agent-based simulations that pro-
vide realistic, daily activity schedules for a syn-
thetic population of millions of intelligent agents.
In FastTrans, simulation entities are the fixed ele-
ments of the road network – road links and traffic
intersections. All the properties of the network –
capacity, flow rate, etc – are members of the rel-
evant entity class. The scheduling logic at a traf-
fic intersection is implemented as a service on the
traffic-node entity. The modular design allows the
scheduling policy to be easily changed by simply
replacing one scheduling service with another.
The mobile elements of the simulation (vehicles)
are represented using messages. Vehicle objects
(messages) are created and destroyed during the
start and end of a trip, respectively. Since Fast-
Trans uses a distributed-memory model, different
entities of the road network are created in different
memory spaces during simulation start-up. Each
simulation process (also known as Logical Pro-
cess, or LP) in the Entity creation, partitioning
and LP set up are all, as described before, handled
seamlessly by the SimCore layer.

� MIITS (Multi-Scale Integrated Information

SIMULTECH�2012�-�2nd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

74



XML	
  
Source	
  

PySimCore	
  
SimCore 
C++ Source 

GCC-XML 
Boost.Python 
SimCore 
Source 

Py++ Compile/Link 

Figure 2: Python integration chain.

and Telecommunications System), introduced
in (Waupotitsch et al., 2006) tool is a scalable,
end-to-end simulation environment for repre-
senting and analyzing communication networks
including cellular networks, public switched tele-
phone networks (PSTNs), the Internet, and ad hoc
mesh networks. offering network representation
at several resolutions, ranging from packet-level
simulation to flow-based approaches.

� ActivitySim, introduced in (Galli et al., 2009) is
another SimCore module, that implements agent-
based models combining traditional agent tech-
nology from the artificial intelligence commu-
nity and numerical methods for activity schedule
calculations. The simulation entities in Activi-
tySim are individuals and locations; generic agent
classes are used to implement entities with intelli-
gent behavior. The behavior of a person in Ac-
tivitySim is modeled using services that imple-
ment cognitive functionality which allows people
to change and adapt their activity schedules. A
more detailed description of the ActivitySim ar-
chitecture is provided in (Galli et al., 2009).

7 SimCore APPLICATION
PERFORMANCE

In this section, we briefly present some scaling and
execution performance results from two SimCore ap-
plications, FastTrans and ActivitySim, running seper-
ately and also coupled together. For the experiments,
we simulate two real world scenarios – an entire day’s
worth of road traffic for New York City (for the Fast-
Trans runs), and activities and road-trips for the Twin
Cities region. The Twin Cities road network consists
of approximately 300;000 road links and 150;000 in-
tersections; the New York graph consists of half a
million intersections and about 1:1 million road links.
The experiments were conducted on an HPC cluster
for different processor configurations, ranging from
32 to 1024 processors.

Figure 3 shows the scaling performance in terms
of execution time for FastTrans for the two scenar-
ios, and exhibits strong scaling. Figure 4 show the
scaling behavior performance of the integrated sim-

ulation in the Twin Cities scenario, compared to the
performance of the modules when run separately. The
performance of the integrated simulation follows the
performance of the dominant module. All simulations
for both cities run significantly faster than real-time
even on 32 processors. The high speed-ups over real-
time allow us to simulate multiple scenarios and pro-
vide timely feedback and analysis in real-world sit-
uations. More detailed performance results are de-
scribed in (Thulasidasan et al., 2009).

 100

 200

 300

 400

 500

 600

10245122561286432

E
xe

cu
tio

n 
T

im
e 

(M
in

ut
es

)

Number of CPUs

FastTrans - Twin Cities
FastTrans - New York

Figure 3: Execution time of FastTrans as a function of
#CPUs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

10245122561286432

E
xe

cu
tio

n 
T

im
e 

(M
in

ut
es

)

Number of CPUs

FastTrans - Twin Cities
ActivitySim - Twin Cities

Integrated Simulation - Twin Cities

Figure 4: Comparison of execution times of FastTrans, Ac-
tivitySim, and the integrated simulation as a function of
#CPUs.

8 CONCLUSIONS AND FUTURE
WORK

We presented SimCore, a generic library for develop-
ing scalable, parallel discrete-event simulations using

SimCore:�A�Library�for�Rapid�Development�of�Large�Scale�Parallel�Simulations

75



a hybrid language approach that offers a balance be-
tween development time and performance. The com-
mon framework and modular software architecture
employed in building SimCore applications systems
allows us to easily combine different modules for in-
teracting systems. Experiments on HPC clusters have
shown near-linear scaling, and we are currently per-
forming studies to calibrate the performance of the
Python layer for large scale simulations. Efforts are
also currently under way to make the SimCore source
code freely available for simulation application devel-
opers.

REFERENCES

Abrahams, D. and Grosse-Kuntsleve, R. (2003).
Building hybrid systems with boost.python.
http://www.boostpro.com/writing/bpl.html.

Boost (2012). Boost c++ libraries. http://www.boost.org.
Fujimoto, R. M. (1990). Parallel discrete event simulation.

Commun. ACM, 33(10):30–53.
Galli, E., Eidenbenz, S., Mniszewski, S., Teuscher, C., and

Cuellar, L. (2009). Activitysim: Large-scale agent-
based activity generation for infrastructure simulation.
In Proceedings of the 2009 Spring Simulation Confer-
ence.

GCC-XML (2012). Gcc xml parser.
http://www.gccxml.org.

NS-3 (2012). http://www.nsnam.org.
OMNET++ (1996). http://www.omnetpp.org.
Pecevski, D., Natschlager, T., and Schuch, K. (2009). Pc-

sim: a parallel simulation environment for neural cir-
cuits fully integrated with python. Frontiers in Neu-
roinformatics, 3(0).

Perumalla, K. (2005). µsik - a micro-kernel for paral-
lel/distributed simulation systems. In Workshop on
Principles of Advanced and Distributed Simulation.

PRIME (2012). Parallel Real-time Immersive net-
work Modeling Environment. Available at
http://prime.mines.edu/.

Py++ (2012). Py++ automatic code generator.
http://sourceforge.net/projects/pygccxml.

Ramos and Martins (2004). Clustersim: a Java-based par-
allel discrete-event simulation tool for cluster comput-
ing. In Proceedings of IEEE International Conference
on Cluster Computing.

SimPy (2012). http://simpy.sourceforge.net.
Thulasidasan, S. and Eidenbenz, S. (2009). Accelerat-

ing traffic microsimulations: A parallel discrete-event
queue-based approach for speed and scale. In Pro-
ceedings of the Winter Simulation Conference.

Thulasidasan, S., Kasiviswanathan, S., Eidenbenz, S., Galli,
E., Mniszewski, S. M., and Romero, P. (2009). De-
signing systems for large-scale, discrete-event simu-
lations: Experiences with the fasttrans parallel mi-
crosimulator. In HiPC’09, pages 428–437.

Thulasidasan, S., Kasiviswanathan, S., Eidenbenz, S., and
Romero, P. (2010). Explicit spatial scattering for load
balancing in conservatively synchronized parallel dis-
crete event simulations. In Proceedings of ACM/IEEE
Workshop on Principles of Advanced and Distributed
Simulation (PADS).

Waupotitsch, R., Eidenbenz, S., Smith, J., and Kroc,
L. (2006). Multi-scale integrated information and
telecommunications system: First results from a large-
scale end-to-end network simulator. In Winter Simu-
lation Conference, volume 0, pages 2132–2139. IEEE
Computer Society.

SIMULTECH�2012�-�2nd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

76


