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Abstract: Wireless sensor networks involve a set of spatially distributed sensors and a fusion center. Three methods for
finding models of the sensors and the fusion center are proposed.

1 INTRODUCTION

Wireless sensor networks (WSNs) have recently
emerged as a promising technology for a wide range
of multimedia applications (Vaseghi, 2007). A related
scenario involves a set of spatially distributed sensors
making local observationsy j correlated with a signal
of interestx. Due to some external and instrumental
factors, observations are noisy. Each sensorQ j trans-
mits information about its measurements to a fusion
centerP whose primary goal is to recover the original
signal within a prescribed accuracy. Fig 1 illustrates
the case.

Figure 1: Block diagram of the WSN. Here,N designates a
noisy environment,̃x1, . . . , x̃p are estimations ofx1, . . . ,xp.

It is widely recognized that efficient transmission
strategies should reduce (compress) the amount of in-
formation transmitted by sensors. In this paper, the
above-mentioned efficient transmission strategies are
studied. We propose a novel approach based on a
reduction of the multidimensional signal processing
problem in WSNs to the new optimization problem.

We adopt a transform-based approach to deter-
mine the optimal transmission strategies in WSNs.

More precisely, each sensor applies a suitable linear
transformQ j to its random observation vectory j with
n j components so as to reduce its dimensionality tor j
components. The fusion center applies a linear trans-
form P to reconstruct the random source vector of
interestx with m components. Thus,Q j andP are
given by matricesQ j ∈R

r j×n j andP∈R
m×r , respec-

tively, wherer j ≤ n j , r = r1+ . . .+ rp andr ≤ m.
Let us write(Ω,Σ,µ) for a probability space. For

i = 1, . . . , p, let xi ∈ L2(Ω,Rmi ) be a random signal
with realizationsxi = xi(ω) ∈ Rmi . We denote

x =




x1
...

xp


 and ‖x(·)‖2

Ω =

∫
Ω
‖x(ω)‖2

2dµ(ω)

(1)
wherex∈L2(Ω,Rm), m=m1 = . . .+mp and‖x(ω)‖2
is the Euclidean norm ofx(ω) ∈ Rm. We also denote

y =




y1
...

yp


 whereyi ∈ L2(Ω,Rni ) andn= n1+ . . .+

np.
Let us define a sensor modelQ i by the relation

[Q i(yi)](ω) = Qi [yi(ω)] (2)

whereQ i : L2(Ω,Rni ) → L2(Ω,Rr i ) andQi is a ma-
trix, Qi ∈ R

r i×ni . For

r = r1+ . . .+ rp, (3)

a fusion center model,P : L2(Ω,Rr)→ L2(Ω,Rm), is
defined similarly to (2), by matrixP∈ R

m×r .

Problem 1. For j = 1, . . . , p, let x j andy j be refer-
ence signals and observed data, respectively. Find
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models of the sensors,Q 1, . . . ,Q p, and a model of the
fusion center,P , that provide

min
P ,Q 1,...,Q p

∥∥∥∥∥∥∥
x−P




Q 1(y1)
...

Q p(yp)




∥∥∥∥∥∥∥

2

Ω

. (4)

2 MAIN RESULTS

2.1 First Method: WSN Equipped with
Orthogonal Data Convertors

Let us extend the original problem (4) to the problem
equipped with additional data converters,G1, . . . ,G p,
such that they transform observationsy1, . . . ,yp to
vectors with the special property given by Definition 1
below. This property allows us to determine solution
in a quite simple way.

Forx andy presented by

x = [x(1), . . . ,x(m)]T and y = [y(1), . . . ,y(n)]T

with x(ℓ) ∈ L2(Ω,R) andy(q) ∈ L2(Ω,R) whereℓ =
1, . . . ,mandq= 1, . . . ,n, respectively, we write

E[xyT ] = Exy =
{〈

x(ℓ),y(q)
〉}m,n

ℓ,q=1
∈R

m×n

and
〈

x(ℓ),y(q)
〉
=

∫
Ω x(ℓ)(ω)y(q)(ω) dµ(ω).

Definition 1. For i = 1, . . . , p, let

ui = G i(yi)

whereG i : L2(Ω,Rni ) → L2(Ω,Rni ). The data con-
vertersG1, . . . ,G p are called pairwise orthogonal if

Euiu j =O when i6= j, (5)

whereO is the zero matrix.

The determination of the pairwise orthogonal data
convertersG1, . . . ,G p is given in Lemma 1 below.

Let us now extend problem (4) by including data
convertersG1, . . . ,G p.

Problem 2. For i = 1, . . . , p, find models of the sen-
sors,Q 1, . . . ,Q p, and a model of the fusion center,P ,
that provide

min
P ,Q 1,...,Q p

∥∥∥∥∥∥∥
x−P




Q 1G1(y1)
...

Q pG p(yp)




∥∥∥∥∥∥∥

2

Ω

. (6)

Let us denote byM† the Moor-Penrose pseudo-
inverse of a matrixM.

First, we give the models of orthogonal data con-
vertersG1, . . . ,G p that satisfy (5) as follows.

Lemma 1. Let ui = G i(yi) for i = 1, . . . , p and let
G1, . . . ,G p be such that

G1(y1) = y1 and G i(yi) = yi −
i−1

∑
k=1

Z ik(uk) (7)

for i = 2, . . . , p with Z ik : L2(Ω,Rmi ) → L2(Ω,Rmi )
defined by

Zik = EyiukE
†
ukuk

+Mik(I −EukukE
†
ukuk

) (8)

with Mik ∈ R
n×n arbitrary. Then theG1, . . . ,G p are

pairwise orthogonal data converters.

Next, to find a solution of Problem 2, we write
P = [P 1 . . . P p] where, forj = 1, . . . , p, P j is defined
by matrixPj ∈ R

m×r j . Then

∥∥∥∥∥∥∥
x− [P 1 . . . P p]




Q 1G1(y1)
...

Q pG p(yp)




∥∥∥∥∥∥∥

2

Ω

=
∥∥x− [F 1, . . . ,F p](u)

∥∥2
Ω , (9)

where

F i = P iQ i and u = [uT
1 , . . . ,u

T
p]

T . (10)

Thus, problem (6) is reduced to the equivalent prob-
lem of findingF 1, . . . ,F p that solve

min
F 1,...,F p

∥∥x− [F 1, . . . ,F p](u)
∥∥2

Ω (11)

subject to

rankF 1 ≤ r1, . . . , rankF p ≤ rp. (12)

To find a solution of problem (11)–(12) we write

∥∥x− [F 1, . . . ,F p](u)
∥∥2

Ω

= ‖E1/2
xx ‖2−‖Exu(E

1/2
uu )†‖2+ ‖Exu(E

1/2
uu )†−FE1/2

uu ‖2.

Here, the only term that depends onF1, . . . ,Fp is

‖Exu(E
1/2
uu )†− [F1, . . . ,Fp]E

1/2
uu ‖2

= ‖A− [F1, . . . ,Fp]C‖
2 (13)

whereA = Exu(E
1/2
uu )† and C = E1/2

uu . Due to the
property (5), matrixEuu is block-diagonal,

Euu =




Eu1u1 O . . . O

O Eu2u2 . . . O

. . . . . . . . . . . .
O O . . . Eupup.




Therefore, matrixC is also is block-diagonal,

C=




C11 O . . . O

O C22 . . . O

. . . . . . . . . . . .
O O . . . Cpp.



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If we write A= [A1 . . .Ap] where, for j = 1, . . . , p,
A j ∈ R

m×n j , then it follows from (13) that

‖A− [F1, . . . ,Fp]C‖
2 =

p

∑
j=1

‖A j −FjCj j ‖
2.

Thus, problem (11)–(12) is reduced top individ-
ual problems of findingFj , for j = 1, . . . , p, that solves

min
Fj

‖A j −FjCj j ‖
2 with rankFj ≤ r j . (14)

The solution has been given in (Torokhti and
Friedland, 2009) as follows.

2.1.1 Best Rank-constrained Matrix
Approximation

Let Cm×n be a set ofm×n complex valued matrices,
and denote byR (m,n, r) ⊆ Cm×n the variety of all
m×n matrices of rankr at most. FixA= [ai j ]

m,n
i, j=1 ∈

Cm×n. ThenA∗ ∈ Cn×m is the conjugate transpose of
A. Let the singular value decomposition (SVD) ofA
be given by

A=UAΣAV∗
A , (15)

whereUA ∈ Cm×m, VA ∈ Cn×n are unitary matrices,
ΣA := diag(σ1(A), . . . ,σmin(m,n)(A)) ∈ Cm×n is a gen-
eralized diagonal matrix, with the singular values
σ1(A)≥ σ2(A)≥ . . .≥ 0 on the main diagonal.

Let UA = [u1 u2 . . .um] andVA = [v1 v2 . . .vn] be
the representations ofU andV in terms of theirmand
n columns, respectively. Let

PA,L :=
rankA

∑
i=1

uiu
∗
i ∈ C

m×mand PA,R :=
rankA

∑
i=1

viv
∗
i ∈ C

n×n

(16)

be the orthogonal projections on the range ofA
and A∗, correspondingly. Define a truncated SVD,
{A}r , of matrixA by

{A}r :=
r

∑
i=1

σi(A)uiv
∗
i =UArΣArV

∗
Ar ∈ C

m×n (17)

for r = 1, . . . , rankA, where

UAr = [u1 u2 . . .ur ], ΣAr = diag(σ1(A), . . . ,σr(A))

and VAr = [v1 v2 . . .vr ]. (18)

For r > rankA, we write {A}r := A (or{A}r =
{A}rankA). For 1≤ r < rankA, the matrix{A}r is
uniquely defined if and only ifσr(A)> σr+1(A).

Recall thatA† := VAΣ†
AU∗

A ∈ Cn×m is the Moore-
Penrose generalized inverse ofA, where Σ†

A :=

diag

(
1

σ1(A)
, . . . ,

1
σrankA(A)

,0, . . . ,0

)
∈ C

n×m.

Henceforth‖ · ‖ designates the Frobenius norm.
Theorem 1 below provides a solution to the prob-

lem of finding a matrixF that solves

min
F∈R (p,q,r)

||A−BFC||. (19)

Theorem 1. (Friedland and Torokhti, 2007)Let A∈
Cm×n, B∈Cm×p andC∈Cq×n be given matrices. Let

LB = (Ip−PB,R)S and LC = T(Iq−PC,L) (20)

where S∈ Cp×p and T∈ Cq×q are any matrices, and
Ip is the p× p identity matrix. Then the matrix

F = (Ip+LB)B
†{PB,LAPC,R}rC

†(Iq+LC) (21)

is a minimizing matrix for the minimal problem(19).
Any minimizing F has the above form.

2.1.2 Determination of Models of Sensors and
Fusion Center that Satisfy (6)

It follows from (19), (21), that a solution of the prob-
lem in (14) is a particular case of Theorem 1.

Indeed if, in (19)–(21), we writeA j , Fj , Cj j andr j
instead ofA, F , C andr, respectively, and setn= n j ,
p=m, q= n j andB= I then (14) coincides with (19).
Its solution follows from (21) in the form

Fj = {A jPCj j ,R}r j
C†

j j (In j +LCj j ), (22)

where similarly toLC in (20), LCj j = Tj(In j −PCj j ,L)
with Tj to be anyn j ×n j matrix. The solution of prob-
lem (11)–(12) is given by (22) as well.

Since (11)–(12) is equivalent to (6), it remains to
show that models of sensors,Q 1, . . . ,Q p, and a model
of the fusion center,P , that satisfy (6), follow from
(22). To this end, we recall that by (10),

F j = P jQ j

whereF j , P j andQ j are defined by matricesFj ∈

R
m×n j , Pj ∈ R

m×r j and Q j ∈ R
r j×n j , respectively,

whereFj = PjQ j . The matricesPj andQ j are deter-
mined as follows. Let us write the SVD ofFj in (22)
as

Fj =UFj ΣFjV
T
Fj

(23)

where matrices

UFj = [u j1, . . . ,u jm] ∈ R
m×m,

ΣFj = diag(σ1(Fj), . . . ,σmin(m,n j )(Fj)) ∈R
m×n j

and VFj = [v j1, . . . ,v jn] ∈ R
n j×n j

are similar to matricesUA, ΣA andVA for the SVD of
matrix A in (15), respectively. In particular,σ j1, . . . ,
σ j min(m,n j ) are the associated singular values. Let

UFj r j = [u j1, . . . ,u jr j ] ∈ R
m×r j , (24)

ΣFj r j = diag(σ1(Fj), . . . ,σr j (Fj)) ∈R
r j×r j (25)

and VFj r j = [v j1, . . . ,v jr j ] ∈R
n×r j . (26)
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ThenFj in (22) can be written in formFj = PjQ j
where, for j = 1, . . . , p,

Pj =UFj r j ΣFj r j , Q j =VT
Fj r j

, (27)

or

Pj =UFj r j ∈R
m×r j , Q j = ΣFj r jV

T
Fj r j

. (28)

Thus, we have proved the following.

Theorem 2. The models of the sensors and the fu-
sion center that satisfy (6) are given by matrices
Q1, . . . ,Qp and P= [P1, . . . ,Pp], respectively, deter-
mined by (27) or (28).

2.2 Second Method: Direct Solution of
WSN Problem (4)

Here, we consider a way to determine models of the
sensors,Q1, . . . ,Qp, and the fusion center,P , for the
case when the orthogonal data converters,G1, . . . ,G p
(see (6), Definition 1 and Lemma 1), are not used, i.e.
whenQ1, . . . ,Qp andP should satisfy (4).

In this case, similar to (9) and (10), we have
∥∥∥∥∥∥∥
x− [P 1 . . . P p]




Q 1(y1)
...

Q p(yp)




∥∥∥∥∥∥∥

2

Ω

= ‖E1/2
xx ‖2−‖Exy(E

1/2
yy )†‖2

+‖Exy(E
1/2
yy )†−FE1/2

yy ‖2,

where, as before, forj = 1, . . . , p, Fj = PjQ j . Here,
the only term that depends onF1, . . . ,Fp is

‖Exy(E
1/2
yy )†− [F1, . . . ,Fp]E

1/2
uu ‖2 = ‖A− [F1, . . . ,Fp]C‖

2

whereA = Exy(E
1/2
yy )† andC = E1/2

yy . Thus, problem
(4) is reduced to findingFj , for j = 1, . . . , p, that solve

min
F1,...,Fp

‖A− [F1, . . . ,Fp]C‖
2 (29)

subject to

rankF1 ≤ r1, . . . , rankFp ≤ rp. (30)

A difference from (13) is that in (29), matrixC is
not block-diagonal. In this general case, a solution
to problem (29)–(30),F1, . . . ,Fp, follows from the ex-
tension of Theorem 1. This result will be provided at
the conference. Then, forj = 1, . . . , p, each matrixFj
that satisfies (29)–(30) is presented in the form (27)
or (28).

Thus, in this case, the models of the sensors and
the fusion center that satisfy (4) are given by matrices
Q1, . . . ,Qp and P = [P1, . . . ,Pp], respectively, deter-
mined by( 27) or (28) provided thatF1, . . . ,Fp solve
(29)–(30).

2.3 Third Method: Approximate
Solution of WSN Problem (4)

Here, we consider a method which represents a com-
promise between the first and second methods. In
(29), matricesA = [A1, . . . ,Ap] andC can be repre-
sented in the form

A= Ã1+ . . .+ Ãp and C= [CT
1 , . . . ,C

T
p ]

T , (31)

respectively, wherẽA1 = [A1,O, . . . ,O], . . ., Ãp =
[O, . . . ,O,Ap] and, for j = 1, . . . , p, Cj ∈ R

n j×n is a
block ofC. Then

‖A− [F1, . . . ,Fp]C‖
2 ≤

p

∑
j=1

‖Ã j −
p

∑
j=1

FjCj‖
2. (32)

The latter motivates finding models of the sensors,
Q1, . . . ,Qp, and the fusion center,P= [P1, . . . ,Pp], in
the formF1 = P1Q1, . . . ,Fp = PpQp, whereF1, . . . ,Fp
are determined fromp individual problems of finding
Fj , for j = 1, . . . , p, that solves

min
Fj

‖Ã j −FjCj‖
2 with rankFj ≤ r j . (33)

A direct comparison with (14) shows that the problem
in (33) is different from that in (14). This is because,
for j = 1, . . . , p, matricesA j , Cj j andÃ j , Cj are dif-
ferent. Nevertheless, formally, the problems in (14)
and (33) are similar. Therefore, the solution of (33))
is given in the form (22) where the notation should be
changed in accordance with that in (31)–(33).

As a result, the following theorem is true.

Theorem 3. The models of the sensors and the fu-
sion center of the WSN that approximate the opti-
mal models are given by matrices Q1, . . . ,Qp and
P= [P1, . . . ,Pp] determined by (27) or (28), where Aj

and Cj j must be replaced with̃A j andCj , respectively.
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