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Abstract: Wireless sensor networks involve a set of spatially distributed sensors and a fusion center. Three methods for
finding models of the sensors and the fusion center are proposed.

1 INTRODUCTION More precisely, each sensor applies a suitable linear
transformQ; to its random observation vectpy with
Wireless sensor networks (WSNs) have recently nj components so as to reduce its dimensionality to
emerged as a promising technology for a wide range components. The fusion center applies a linear trans-
of multimedia applications (Vaseghi, 2007). Arelated form 2 to reconstruct the random source vector of
scenario involves a set of spatially distributed sensorsinterestx with m components. Thus; and? are

making local observations correlated with a signal  given by matrice®; € R"1*" andP € R™", respec-
of interestx. Due to some external and instrumental tjvely, wherer; <nj,r=ri+...+rpandr <m.

factors, observations are noisy. Each sengptrans- Let us write(Q, 2, ) for a probability space. For
mits information about its measurements to a fusion j = 1,... p, letx; € L2(Q,R™) be a random signal
center? whose primary goal is to recover the original  with realizationsg = x; (w) € R™. We denote

signal within a prescribed accuracy. Fig 1 illustrates

the case. X1
X=1: and HX(-)H%:/QIIX(w)H%du(w)
Xp
1)
wherex € L2(Q,R™), m=my = ... +mp and||x(w)||2
is the Euclidean norm of(w) € R™. We also denote
Y1
y=| : | wherey;€L?(QRM)andn=m+...+
Yp
Figure 1: Block diagram of the WSN. Hend,designates a p: . .
noisy environmentyy. ..., Xp are estimations oy, ..., Xp. Let us define a sensor modg| by the relation
[Qi(yi)](w) = Qilyi(w)] )

It is widely recognized that efficient transmission ] , , .
strategies should reduce (compress) the amount of in—W.herer : I;i(n,Q’Rn') — L*(Q,R") andQ; is a ma-
formation transmitted by sensors. In this paper, the trix, Q € R, For
above-mentioned efficient transmission strategies are r=ri+...+rp, (3)
studied. We propose a novel approach based on a i 2 ; ) o
reduction of the multidimensional signal processing & fusion center modef: L (QR") — '—mx(f)’R ). is
problem in WSNs to the new optimization problem. ~ defined similarly to (2), by matrif € R™.

We adopt a transform-based approach to deter-Problem 1. For j =1,...,p, letx; andy; be refer-
mine the optimal transmission strategies in WSNs. ence signals and observed data, respectively. Find
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models of the sensorQ,, ..., Q,, and amodel of the  Lemma 1. Letu; = G;(y;) fori =1,...,p and let

fusion center®, that provide G1s---, G be such that
Qa(Y1)
min X— P : ] (4) gl(yl) =Y1 and g yl z Zlk uk (7)
?,Q1,--Qp .
Qo) 1llg fori =2,...,p with Zy : L2(Q,R™) — L?(Q,R™)
defined by
2 MAIN RESULTS Zic= Eyu Bt Mic(l - By Bl)  (©)

with My € R™" arbitrary. Then theg,,..., G, are
2.1 First Method: WSN Equipped with pairwise orthogonal data converters.
Orthogonal Data Convertors Next, to find a solution of Problem 2, we write
P=[Py ... Pp)where,forj=1,...,p, P; is defined
Let us extend the original problem (4) to the problem by matrixP; € R™'i. Then
equipped with additional data convgrteqf;g,, Gy
such that they transform observatiops....y, to Q1G1(y1) 2
vectors with the special property given by Definition 1

below. This property allows us to determine solution X=[P1 ... Pyl :
in a quite simple way. QpG,(Yp) |l
Forx andy presented b 2
o yp(m) T @ T P a7l &
x:[x ceens, XV and  y =y Ly WY aiete
with x( € L2(Q, R) andy € L2(Q,R) wherel = Fi=2Q and u=[ul,...,ul]". (10)
1,...,mandq=1,...,n, respectively, we write , TR
© @\ Thus, problem (6) is reduced to the equivalent prob-
T _ 4 q ’ mxn c i
Exy' | =Exy= {<x R >}£,q:1 eR lem of finding ¥ 4, ..., ¥ o that solve )
min |[X—[F1,...,Fp](u 11
and(x(0,y@ ) = ox( @)y (0) dp). i =Ty FlWllg @
Definition 1. Fori=1,...,p, let subject to
ui = G;(y;) rankF(<rg, ..., rankF,<rp. (12)
where G, : L(Q,R") — L?(Q,R™). The data con- To find a solution of problem (11)—(12) we write
vertersG,,..., G, are called pairwise orthogonal if
2
Euu =0 when i |, ) [} = [Fr.-. Fol()q
whereQ is the zero matrix. = | E612 - | E(EXD) 12+ | Ew(EXD) T - FEXZ)2

The determination of the pairwise orthogonal data ~ Here, the only term that depends®n...,Fp is
convertersyy, ..., G is givenin Lemma 1 below. 12,1

Let us now extend problem (4) by including data [Exu(But”) " — [Fr- -,
convertersyy, ..., G = |A~[Fa,....FplC|I? (13)
Problem 2. Fori =1,...,p, find models of the sen- 1/2
sors,Qy, - - -, Qp, and a model of the fusion centgt,

FolEl’?

whereA = EXU(El/Z) and C = E}{,". Due to the
property (5), matrixe,, is block- dlagonal,

that provide
Ewuy, O ... 0)
2 E
Ql gl(yl) Euu = 0 t2tiz 0
T,QT-I-IT].Qp X—P : . (6) (@) O Eupup-
ngp(yp) Q Therefore, matrixC is also is block-diagonal,
Let us denote byMT the Moor-Penrose pseudo- Ci O ... O
inverse of a matrisM. 0O Cp ... 0
First, we give the models of orthogonal data con- C=
vertersg,,..., G, that satisfy (5) as follows. @ @ ... Cpp
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If we write A= [A1...Ap] where, forj=1,...,p,
Aj € R™"  then it follows from (13) that

p
|A—[Fy,....FlClI? = 5 [|A — FiCjj %
=1
Thus, problem (11)—(12) is reduced pandivid-
ual problems of findingj, for j =1,..., p, that solves
min||Aj - FCjj |2 withrankFj <rj.  (14)
j
The solution has been given in (Torokhti and
Friedland, 2009) as follows.

2.1.1 Best Rank-constrained Matrix
Approximation

Let C™" be a set ofn x n complex valued matrices,
and denote byR (m,n,r) € C™" the variety of all
mx n matrices of rank at most. FixA = [a;j]{’,; €
C™MN, ThenA* € C™Mis the conjugate transpose of
A. Let the singular value decomposition (SVD)Af
be given by

A=UaSaVS,

whereUa € C™™M V4 € C™"  are unitary matrices,
Zp:=diago1(A),...,Ominmn) (A)) € C™"is a gen-
eralized diagonal matrix, with the singular values
01(A) > 02(A) > ... > 0 on the main diagonal.

LetUp = [ul u ... um] andVp = [Vj_ Vo .. .Vn] be
the representations bf andV in terms of theimand
n columns, respectively. Let

(15)

rankA rankA
Zl Ui € C™MandPag = 21 vivi e C™N

- . (16)

PaL =

be the orthogonal projections on the rangefof
and A*, correspondingly. Define a truncated SVD,
{A},, of matrixA by

r

{A}, = zicri (AU =UparZaVa, € C™" (17)
i=
forr=1,...,rankA, where
Uar = [U]_ uz . ] 2Ar = dia(‘ZKCI]_(A)7 ...,0Or (A))
and Var = [Vj_ Vo ...V ] (18)

Forr > rankA, we write {A}, := A (or{A}, =
{A}anka)- For 1<r < rankA, the matrix{A}, is
uniquely defined if and only i, (A) > o;11(A).

Recall thatAT := VAZLU; € C"™M s the Moore-
Penrose generalized inverse #f where Z;& =

1 1
dia ey ,0,...,0] eC™m,
g(cl(A) Oranka(A) )
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Henceforth|| - || designates the Frobenius norm.
Theorem 1 below provides a solution to the prob-
lem of finding a matri¥ that solves
min ||A—BFC]||.
FeR(p.a,r)
Theorem 1. (Friedland and Torokhti, 200T0)et A€
C™" Be C™PandCe C%"be given matrices. Let

LB=(|p—PB,R)S and IQZTUq—Pc’L) (20)

where S= CP*P and T € C%*9 are any matrices, and
I is the px p identity matrix. Then the matrix

F=(p+Lg)B{Ps ARR},C(Ig+Le)  (21)

is a minimizing matrix for the minimal proble(d9).
Any minimizing F has the above form.

(19)

2.1.2 Determination of Models of Sensors and
Fusion Center that Satisfy (6)

It follows from (19), (21), that a solution of the prob-
lemin (14) is a particular case of Theorem 1.

Indeed if, in (19)—(21), we writd;, F;j, Cj; andr;
instead ofA, F, C andr, respectively, and set= nj,
p=m, g=nj andB =1 then (14) coincides with (19).
Its solution follows from (21) in the form

Fi={AP,r}, ,cJTj (I +Lle;),  (22)

where similarly toLc in (20), Le; = Ti( In Pe;; L)
with Tj to be anyn; x nj matrix. The solution of prob—
lem (11)—(12) is given by (22) as well.

Since (11)—(12) is equivalent to (6), it remains to
show that models of sensoidy, ..., Q,, and amodel
of the fusion center?, that satisfy (6), follow from
(22). To this end, we recall that by (10),

=PjQ;
where ¥, P and Q; are defined by matricel; €
R™MN, P e R™" and Q; € R"I*"i, respectively,
whereF; = P;Q;. The matrice; andQ; are deter-

mined as follows. Let us write the SVD & in (22)
as

Fij =UrZr (23)
where matrices
U|:j = [Uj17... ,ujm] S Rmxm’
ZFj = diag(oy(Fj), ... aomin(m,nj)(Fj)) e R™M
and Vg = [Vj1,...,Vjn] € RN

are similar to matriceda, 2a andVa for the SVD of
matrix A in (15), respectively. In particulagjs, ...

Ojmin(mn;) &re the associated singular values. Let
UFJrJ :[UJ1,7UJ|'J] eRmer7 (24)

3k, = diag(oy(F),...,or, (Fj)) e R (25)

and Ve, = [Vj1,...,Vjr;] € R™I (26)
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ThenF; in (22) can be written in fornfr; = P;Q;

where, forj =1,...,p,
Pi=Urr;Zrr,  Qj :VI;I;rja (27)
or
PJ — UFjrj c Rmxl’j , Q] = szrJVI;[J-r] . (28)

Thus, we have proved the following.

Theorem 2. The models of the sensors and the fu-
sion center that satisfy (6) are given by matrices
Q1,...,Qp and P= [Py,...,Py], respectively, deter-
mined by (27) or (28).

2.2 Second Method: Direct Solution of
WSN Problem (4)

Here, we consider a way to determine models of the

sensorsQys, ... ,Qp, and the fusion centef, for the
case when the orthogonal data convertgts, .., G,
(see (6), Definition 1 and Lemma 1), are not used ie.

whenQy,. .., Qp and? should satisfy (4).
In-this case, similar to (9) and-(10), we have
Qu(yr) 1P
Qp(yp) Q

1/2 1/2\t+
= |EXC)% — |Ex(Ey ) T2
+|Eg(Ey )T —FER?|?,

where, as before, fof =1,...,p, Fj = P;Qj. Here,
the only term that depends &1, ...,Fp is

1/2
| Ex(Eyy)" FolEuil’|* = | A= [Fy.....
whereA = Exy(El/z) andC = E%Z. Thus, problem

—[Fy-y FolClI?

(4) is reduced to finding;, for j = 1,..., p, that solve
min ||A—[Fy,...,Fp]C||? (29)
F1o:Fp
subject to
rankFy <rg, ..., rankFp <rp. (30)

A difference from (13) is that in (29), matri@ is
not block-diagonal. In this general case, a solution
to problem (29)—(30)1, . . ., Fp, follows from the ex-
tension of Theorem 1. This result will be provided at
the conference. Then, fgr=1,..., p, each matrix;

2.3 Third Method: Approximate
Solution of WSN Problem (4)

Here, we consider a method which represents a com-
promise between the first and second methods. In
(29), matricesA = [Aq,...,Ap] andC can be repre-
sented in the form

A=A;+...+A, and C=[C],....C]]", (31)
respectively, wheréd; = [A,0,...,0], ..., Ap =
[0,...,0,Ap] and, forj=1,...,p,C; e R"*"is a
block of C. Then
P _ P
FCI? < Y IIA = Y FiGil%. (32)
=1 =1

[IA—=1[Fy, .

The latter motivates finding models of the sensors,
Q1,...,Qp, and the fusion centeP, = [Py, ...,Py|, in
the formFy = P1Qq, ... ,Fy = PpQp, whereFy, ..., Fp
are determined frorp individual problems of finding
Fj, forj=1,...,p, that solves

n;in||ﬂj ~FiGj|[?  with rankFj <r;. (33)

J
A direct comparison with (14) shows that the problem
in (33) is different from that in (14). This is because,
for j =1,...,p, matricesAj, Cj; andA;, Cj are dif-
ferent. Nevertheless formally, the problems in (14)
and (33) are similar. Therefore, the solution of (33))
is given in the form (22) where the notation should be
changed in accordance with that in (31)—(33).
As a result, the following theorem is true.

Theorem 3. The models of the sensors and the fu-
sion center of the WSN that approximate the opti-
mal models are given by matrices; Q..,Qp and
P=[Py,...,Pp] determined by (27) or (28), wherg A
and G must be replaced withj and G, respectively.
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