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Abstract: Differential Evolution (DE) has been shown to be a simple yet efficient evolutionary algorithm for solving 
optimization problems in continuous search domain. However the performance of the DE algorithm, to a 
great extent, depends on the selection of control parameters. In this paper, we propose a Replicator Dynamic 
Inspired DE algorithm (RDIDE), in which replicator dynamic, a deterministic monotone game dynamic 
generally used in evolutionary game theory, is introduced to the crossover operator.  A new population is 
generated for an applicable probability distribution of the value of Cr, with which the parameter is evolving 
as the algorithm goes on and the evolution is rather succinct as well. Therefore, the end-users do not need to 
find a suitable parameter combination and can solve their problems more simply with our algorithm. 
Different from the rest of DE algorithms, by replicator dynamic, we obtain an advisable probability 
distribution of the parameter instead of a certain value of the parameter. Experiment based on a suite of 10 
bound-constrained numerical optimization problems demonstrates that our algorithm has highly competitive 
performance with respect to several conventional DE and parameter adaptive DE variants. Statistics of the 
experiment also show that our evolution of the parameter is rational and necessary. 

1 INTRODUCTION 

The evolutionary algorithms are heuristic search 
algorithms which have been developed for over 50 
years (Friedberg, 1958); (Box, 1957); (Holland, 
1962); (Fogel, 1962). There are three main aspects 
in EAs, i.e., genetic algorithms, evolutionary 
programming and evolutionary strategies. They are 
now generally used to solve optimization problems 
in continuous search space. Differential Evolution 
(DE) algorithm, proposed by Storn and Price, is one 
of the state-of-the-art evolutionary algorithms (Storn 
and Price, 1995). DE algorithm is a simple yet 
efficient population-based stochastic method for 
global optimization problems, and it has been 
successfully applied to a whole host of engineering 
problems such as aerodynamic design (Rogalsky et 
al., 1999), digital filters design (Storn, 1996); (Storn, 
2005), power system optimization 
(Lakshminarasimman and Subramanian, 2008), etc. 

Generally, just as other evolutionary algorithms, 
there are three main operations in DE, i.e., mutation, 
crossover and selection. In these operations three 

crucial control parameters are required to be 
specified. They are the population size NP, scale 
factor F and the crossover rate Cr. These parameters 
significantly affect the optimization performance of 
the DE. In this regard, although the use of 
evolutionary algorithms to solve problems of design 
and optimization is varied, different end-users 
confront the same problem that they have to find a 
suitable parameter combination that matches the 
evolutionary algorithms before actual design or 
optimization can begin (Lobo and Goldberg, 2001); 
(Harik and Lobo, 1999). Hence, it's reasonable and 
necessary to turn parameters setting into a part of the 
algorithm itself instead of leaving it as a problem to 
the end-users. 

In the past, on the choice of parameters of all 
sorts of EAs, researchers always try to find a best 
definite value for a parameter. To achieve this, 
literature either uses a trial-and-error searching 
process, or gets the parameter adapted or self-
adapted. However, in most cases, one cannot find a 
best value for parameter configuration to optimize 
the performance, and even whether there exists such 
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a best value is doubtful. More than one value of the 
parameter may be appropriate: a value may win in a 
run while a different value may perform better in 
another run. Furthermore, there are also many cases 
that some individuals of the population use a 
parameter while the others use a different one obtain 
better results than that the whole population uses a 
definite parameter. So, unlike the previous studies, 
which focus on finding a certain value for a 
parameter, we focus on the probability distribution 
of all possible or suitable values of the parameter, a 
definite value is just a special form of the 
distribution. 

Based on the above observation, in this paper, we 
propose a Replicator Dynamic Inspired DE 
algorithm (RDIDE), in which crossover rate Cr is 
configured using replicator dynamic, a deterministic 
monotone game dynamic generally used in 
evolutionary game theory. Since the probability 
distribution of the crossover rate Cr is self-adapted 
in our algorithm, the end-users can be able to simply 
run the algorithm as a black-box without 
consideration of the parameters, which may greatly 
improve the working efficiency of the end-users. 

To sum up, this paper makes the following 
contributions: 
 We propose a new self-adaptive DE algorithm, 
with which the users can solve their problems more 
simply, with a higher success rate and a quicker 
convergence speed. 
 Replicator dynamic is introduced to the 
parameter setting of the DE algorithm. We no more 
discuss about a proper parameter, but about an 
advisable probability distribution of the parameter. 
 In the dynamic of the distribution, we design a 
new mechanism for believable success rate based on 
principle of statistics. 

The remainder of this paper is organized as follows. 
In section 2, the conventional DE is reviewed. 
Section 3 describes the proposed RDIDE and the use 
of replicator dynamic. A suite of 10 bound-
constrained numerical optimization problems is set 
to evaluate the performance of the algorithm in 
section 4. Finally, section 5 summarizes the main 
conclusions arising from this work. 

2 DIFFERENTIAL EVOLUTION 
ALGORITHM 

Without loss of generality, in this paper, DE is 
aiming to minimize an objective function. Let S be 

the search space of the optimization problem, DRS 
. The population of DE includes NP individuals and 
each of them is a D-dimensional solution particle. At 
any certain generation G, the individuals are of the 

form NP,1,2,i ,321  )
G
i,Dx

G
i,,x

G
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G
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where i indicates the index of the particle. The 
particles develop from one generation to another 
constraint by the search space. At each generation, 
every particle goes through the operations of 
mutation, crossover and selection, and a trial particle 
will be generated for each target particle. The 
evolution processes as follows. 

2.1 Initialization 

DE algorithm starts with an initial population
}XX,X,X{ NP

00
3

0
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0
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 , these particles are expected to be 

initialized filling the entire search space as much as 
possible. For this purpose, generally, the initial 
population is generated within the boundary 
constraints at random 
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where L

jX  and U

jX  are the lower and upper boundary 

of j-th component respectively, and ),N( 10  denotes 

a uniformly distributed random value within the 
range [0, 1]. 
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operation at each generation G. Several mutation 
methods could be used to generate G

iY
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, and a 

conventional one is like this: 
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where index iii randrr 321 ,  are random integers from 

the range [1, NP], mutually different, and each is 
different from the base index i. F is a scaling factor 
for differential vectors. 

2.3 Crossover 

Crossover operation comes after mutation. The trial 
vector ),,,,( ,3,2,1,
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where randj  is a random index chosen from [1, D] to 

ensure at least one component is different from G
iU


 

and G
iX


, and the parameter Cr is within the range [0, 

1], indicating the crossover rate of the generation. If 
any component of the trial vectors is beyond the 
search space, they will be reinitialized randomly and 
uniformly within the search space. 

2.4 Selection 

In this phase, we determine which vector is going 
into the next generation and which should be 
deleted. The procedure is done following rule for the 
function minimization: 
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Every trial vector is only compared with its target 
vector, and the one with better fitness is kept. Hence, 
all the individuals of the next generation are going to 
get better or remain the same, thus the whole 
population evolves. 

3 REPLICATOR DYNAMIC 
INSPIRED DE ALGORITHM 

Being a crucial factor of the DE algorithm, control 
parameters selection determines the performance of 
the algorithm directly. Hence, a good deal of 
research on the parameters selection of DE has been 
done. Storn (1995) suggested that F within the range 
[0.5,1], Cr in [0.8,1] and NP = 5D or 10D. Gämperle 
et al. (2002) suggested that NP be between 3D and 
8D, F= 0.6, and Cr between [0.3,0.9]. At the same 
time, several adaptive and self-adaptive mechanisms 
have been proposed to dynamically change the value 
of the parameters. Zaharie (2003) used a 
multipopulation method for the parameter adaptation 
(ADE). Omran et al. (2005) proposed a mechanism 
to self-adapt the scaling factor F (SDE). Later on, 
Brest et al. (2006) encoded F and Cr into individuals 
and modulate them by two parameters. In the same 
year, Teo (2006) proposed a DE algorithm with a 
dynamic population sizing strategy based on self-
adaptation (DESAP). Lately, Qin et al. (2009) 
proposed SaDE, in which both generation strategy 
and the parameters are adapted. 

In our paper, we focus on the adaptation of Cr 
during the evolution, as Cr is an especially 
significant parameter. The suitable choice of Cr can 
lead to good result while an improper one may result 

in the failure of the algorithm (Price et al., 2005). 

3.1 Inspired by Replicator Dynamic 

The main idea of this paper is to self-adapt the 
probability distribution of the crossover rate, so that 
the parameter could be more suitable to various 
kinds of problems. At the same time, different 
distributions of Cr may perform better at different 
generations for a certain problem, so the distribution 
of Cr is expected to be fit for every moment of the 
evolution as well. To achieve this, a mechanism of 
multiple evolutions is proposed: the first evolution 
refers to DE algorithm itself, and the second one 
means that the probability distribution of Cr value is 
evolving independently with the idea of evolutionary 
game theory. 

We build a candidate set (CRSet), containing 
several possible values of Cr. Whenever the 
crossover operation is executed, each individual 
choose one value from the set via a particular 
probability distribution. The value of Cr is a real 
number within the range [0, 1], and the set is 
expected to cover the range uniformly. In our 
proposal, we let CRSet  ,,,{ 321 CRCRCR }, 54 CRCR , 

where iCR  is set to (0.2×i-0.1). For each iCR , a iP  

is assigned to indicate the probability to choose it, 
the distribution of iP  is P


. At each generation, 

every individual choose a Cr from the CRSet via the 
distribution of iP , and the distribution P


 is evolving 

according to the fitness of each iCR  of the current 

and previous generations with replicator dynamic.  
Probability distribution to choose values for Cr is 

very similar to mixed strategy equilibrium of a game 
theory, and a definite value of Cr corresponds with a 
pure strategy. Our attention is on the dynamically 
changing of the distribution, thus a method of 
evolutionary game theory is introduced. We assume 
that a new population of plentiful individuals is 
generated to seek a reasonable probability 
distribution for iCR  with the idea of evolution. Any 

individual in the population is called replicator, 
choosing a certain value in the CRSet and passing its 
choice to the descendants without modification. Let 

 tni  be the number of individuals choosing iCR  at 

time point t, then the total population size is

   tntN ii 
5

1 , and the proportion of individuals to 

choose iCR  is      tNtntpcr ii / . The population 

state is the distribution of  tpcri , i.e.,    ,( 1 tpcrtPcr 


. 

       ),,, 5432 tpcrtpcrtpcrtpcr , Let   and   be the 
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background per capita birth and death rates in the 
population. Then the rate of change of the number of 
individuals choosing iCR  ( in  ) and rate of change of 

total population ( N ) can be described as follows: 
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where   


5

1
)()(

i
ii pcrCRfitnessCRfitness  is the 

average fitness. 

Since      tNtntpcr ii / , we take derivative to 

both sides: iii pcrNnrcpN   . So 

  iii pcrCRfitnessCRfitnessrcp  )()(
 (7)

 

(7) gives the replicator dynamic that will be used to 
adjust distribution of ipcr , increasing rate of the 

proportion of the individual choosing iCR  is 

independent of the background per capita birth rate(
 ), death rate(  ) and the size(  tN ) of the 

population. In another word, the evolution of crP


 is 

only dependent on the fitness of each Cr, which is 
very simple to execute. We let the possibility of one 
particle (an individual in DE) to choose iCR  equal 

the proportion of individuals (in Cr evolution) to 
choose iCR , i.e., crii PPpcrP


 , , to ensure that the 

proportion of individuals in DE to choose different 
Cr is approximate to crP


. )( iCRfitness  can be 

indicated by the success rate of the trial vectors 
generated by iCr  iCrT and successfully entering the 

next generation  iCrW . So, (7) changes into the form 

below: 

i

ii CrT
CRSuccRateCRfitness iCrW

)()(   (8)

  pcrCRSuccRateCRSuccRateP ii  )()(  (9)

  51,2i ,)()(
5

1
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i
ii PCRSuccRateCRSuccRate  (10)

The distribution P


 changes by (8), (9) and (10) 
succinctly, thus the evolution of Cr is achieved. 

3.2 Design of Believable Success Rate 

When we use the replicator dynamic for the 
evolution of Cr, there is still a problem in (8), that if 
the total quantity of individuals using iCR  is not 

enough, the corresponding fitness is trustless. 

So we have to determine the minimum of iCrT  

to ensure the trustiness of )( iCRfitness  with high 

confidence level and narrow confidence interval. 
From de Moivre–Laplace theorem, we learn that if 

iCrT  is big, approximately 

  
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where  1 0,N  denotes the standard normal 
distribution and indexes are omitted. Thus we have: 
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Equation can be transformed into another form:
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The solutions of the equation 
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where CrTCrWCRssefitn /)(ˆ  , denotes the value of 

fitness that will be used in the algorithm， 2/u is a 

corresponding constant to   in  1 0,N , A takes 
negative sign and B takes positive sign. 

 1  is the confidence level and  BA,  is the 

confidence interval for )(CRfitness . Since 

1)(ˆ0  CRssefitn ,   4/1)(ˆ1)(ˆ  CRssefitnCRssefitn

. When we assume   4/1)(ˆ1)(ˆ  CRssefitnCRssefitn , 

the width of  BA,  equals to 2
2/2/ /  uCrTu  . Let 

05.0  and 2.0widththe , we have 96.12/ u  and 

the minimum of CrT is 93. This is to say, CrT must 
be at least 93, )(ˆ CRssefitn  is trusted.   

However, CrT could not be big enough in one 
generation, so two extra methods are introduced to 
RDIDE. First we build memories to store the 
numbers of individuals choosing iCR  and those 

successfully entering the next generation within the 
last M generations. With this method, 

 MGCrTCrWCrTCrWCRssefitn
G
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g
i
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g
iiii 
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where G is the current generation, and respectively, 

g
iCrT  and g

iCrW  denote the number of vectors 
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choosing iCR  in generation g and the number of 

those successfully entering the next generation. 
During the first M generations, we simply let the 
value of iP  be 0.2 (i = 1, 2, 3, 4, 5), and add g

iCrT  

and g
iCrW  to the memories. In the following 

generations, iP  is dynamically changing with (9), 

while g
iCrT and g

iCrW replace Mg
iCrT  and Mg

iCrW  . 

Besides, we assign a constant ( minP ) to constrain the 

minimum of iP , when iP < minP  and iP  is going to 

decrease, the value of iP  remains the same. The 

expected value of CrT, MPNPCrTE )( . In this 
paper, )(CrTE is expected to be equal or greater than 
100 to ensure the trustiness of )(CRfitness , and we 
achieve this by assuming a small P such as 0.1, and 

 NPPM //100 . 

3.3 The Algorithmic Description 

The algorithmic description of the RDIDE is 
presented in Table 1. 

Table 1: Algorithmic description of the RDIDE. 

 
 

Step 1: Initialization 
  Set the generation counter G=0.  
  Initialize a population of NP individuals according to (1). Evaluate the 

population. Store  with best fitness as  and its fitness . 

  Initialize the distribution of , , and establish two 

memories, , (i=1 to M, j=1 to 5).  
Step 2: Evolution 
  WHILE Termination Criterion is not satisfied 
 Step 2.1 renovate  and  

      Replace and by  and  

      Set ,  
 Step 2.2 Mutation, Crossover and Selection 
  FOR i=1 to NP 

   Choose a  from CRSet due to  
   FOR j=1 to D 

       

   END FOR 
   WHILE the variable is outside the search region 

     Regenerate  

   END WHILE 

   Evaluate the trial vector.  

   IF  

    ,  

    IF  

         
    END IF 

   ELSE  
   END IF 
  END FOR 

 Step 2.3 Dynamic Change of Distribution  
  IF G>M 
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Table 2: Benchmark functions. 
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F6:cond(M)=1;   F8:cond(M)=3;   F10:cond(M)=2

 

4 EXPERIMENTS AND RESULTS 

4.1 Test Problems and Experimental 
Conditions 

In this paper, in order to assure a fair comparison, 
the experimental conditions, the parameters setting 
and the benchmark problems are the same to SaDE. 
10 benchmark problems (F1-F10) were set to 
evaluate the performance of our algorithm. Six 
functions (F1, F2, F4, F5, F7, F9) are shifted and 
three (F6, F8, F10) are further rotated. Among these 
functions, F1-F4 are unimodal functions and F5-F10 
are multimodal functions. All the functions are listed 
in Table 2. 
In our experiment, RDIDE is compared with 5 
conventional DE and 4 adaptive DE variants. In 
order to ensure reliability, the statistics of the 
experiment with these 9 DE algorithms are results 
found in literature (Qin et al. 2009). The conditions 
of the experiment are as follows: 
1) Population size NP=50,  Scaling factor F=0.5; 
2) Dimension D=10/30 for all problems: 

FEs=100 000 with 10-D problems, 
FEs=300 000 with 30-D problems. 

3) Parameters for RDIDE, 1.0,20 min  PM .  

4) Comparison DE, 5 conventional DE: 
DE/rand/1(F=0.9,Cr=0.1), 
DE/rand/1(F=0.9,Cr=0.9), 

DE/rand/1(F=0.5,Cr=0.3), 
DE/rand-to-best/1(F=0.5,Cr=0.3), 
DE/rand-to-best/2(F=0.5,Cr=0.3). 

4 adaptive DE variants: 
SaDE, ADE, SDE, jDE. 

5) All experiments were run 50 times, 
independently. 

4.2 Results and Analysis 

1) In this section, we compare RDIDE with the 9 
other DE. Two groups of comparison are conducted 
to show the highly competitive performance of 
RDIDE. In the first comparison, we concentrate on 
the mean and standard deviation of the functions as 
well as the success rates. The success rate refers to 
the proportion that the success runs divided by the 
total runs. The success of a run means that it results 
in a value no worse than the pre-specified optimal 

value, i.e., 5
min 10f  with the number of FEs less 

than the pre-specified maximum number in this run. 
In the second comparison, we focus on the average 
number of function evaluations (NFE) required to 
find the optima, as it’s a direct reflection of the 
convergence speed. Table 3 and Table 4 report the 
statistics of the first comparison, and Table 5 shows 
the results of the second comparison. All best results 
are typed in bold. 

From the results of the first comparison, we can
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Table 3: Results for 10-D problems. 

Algorithm 
D=10 

F1 F2 F3 F4 

Mean Std SRate Mean Std SRate Mean Std SRate Mean Std SRate 

CDE-1 0 0 100% 8.89E-01 4.96E-01 0% 9.01E-01 7.94E-01 0% 2.41E+01 1.28E+01 100% 

CDE-2 4.95E-13 5..27E-13 100% 1.44E-05 1.13E-05 43% 7.11E-03 2.74E-02 0% 2.42E-04 1.38E-04 100% 

CDE-3 0 0 100% 9.63E-09 5.99E-09 100% 1.76E+00 1.54E+00 0% 5.42E-06 4.44E-06 83% 

CDE-4 0 0 100% 0 0 100% 2.57E+00 1.86E+00 0% 0 0 100% 

CDE-5 0 0 100% 9.45E-13 9.90E-13 100% 2.37E+00 2.23E+00 0% 1.04E-08 1.20E-08 100% 

SaDE 0 0 100% 0 0 100% 0 0 100% 0 0 100% 

ADE 0 0 100% 1.44E-04 2.48E-04 3% 1.56E+00 2.64E+00 0% 7.00E-02 5.84E-02 0% 

SDE 0 0 100% 0 0 100% 2.05E+00 1.68E+00 0% 0 0 100% 

jDE 0 0 100% 0 0 100% 1.34E-13 7.32E-13 100% 0 0 100% 

RDIDE 0 0 100% 0 0 100% 5.78E-07 2.05E-06 100% 0 0 100% 

Algorithm 
D=10 

F5 F6 F7 F8 

Mean Std SRate Mean Std SRate Mean Std SRate Mean Std SRate 

CDE-1 0 0 100% 3.81E-05 1.30E-05 90% 0 0 100% 1.22E-01 2.77E-02 0% 

CDE-2 4.59E-07 2.41E-07 100% 6.86E-07 3.89E-07 100% 3.05E-01 2.02E-01 0% 2.41E-01 2.00E-01 0% 

CDE-3 0 0 100% 3.32E-15 9.01E-16 100% 0 0 100% 1.60E-01 3.75E-02 0% 

CDE-4 4.97E-15 1.77E-15 100% 4.26E-15 1.45E-15 100% 4.67E-03 8.13E-03 70% 2.91E-01 3.14E-01 0% 

CDE-5 3.55E-15 1.87E-15 100% 3.55E-15 0 100% 0 0 100% 1.44E-01 3.97E-02 0% 

SaDE 0 0 100% 0 0 100% 0 0 100% 1.37E-02 1.18E-02 20% 

ADE 0 0 100% 0 0 100% 2.55E-07 1.40E-06 100% 7.93E-02 4.24E-02 0% 

SDE 0 0 100% 0 0 100% 7.39E-03 7.59E-03 40% 3.81E-02 3.06E-02 0% 

jDE 0 0 100% 0 0 100% 5.75E-04 2.21E-03 93% 2.26E-02 1.77E-02 7% 

RDIDE 0 0 100% 0 0 100% 0 0 100% 0 0 100% 

Algorithm 
D=10 

F9 F10 Index of test functions with 100%  success rate 
  Mean Std SRate Mean Std SRate 

CDE-1 0 0 100% 1.33E+01 3.00E+00 0% 1, 4, 5, 7, 9 

CDE-2 8.71E+00 5.53E+00 0% 1.63E+01 2.02E-01 0% 1, 4, 5, 6 

CDE-3 0 0 100% 1.65E+01 2.99E+00 0% 1, 2, 5, 6, 7, 9 

CDE-4 6.63E-02 2.52E-01 93% 1.00E+01 2.32E+00 0% 1, 2, 4, 5, 6 

CDE-5 0 0 100% 1.63E+01 3.36E+00 0% 1, 2, 4, 5, 6, 7, 9 

SaDE 0 0 100% 3.80E+00 1.35E+00 0% 1, 2, 3, 4, 5, 6, 7, 9 

ADE 0 0 100% 9.41E+00 2.20E+00 0% 1, 5, 6, 7, 9 

SDE 6.96E-01 8.72E-01 50% 7.79E+00 3.18E+00 0% 1, 2, 4, 5, 6, 9 

jDE 0 0 100% 5.78E+00 3.18E+00 0% 1, 2, 3, 4, 5, 6, 9 

RDIDE 0 0 100% 0 0 100% 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

 
observe that, for 10-D problems, RDIDE can find 
the global optimal value for all test functions with 
100% success rate while other DE algorithms can 
achieve 4-8 functions only. It outperforms most of 
other algorithms, and is only with a little worse 
mean value in F3 compared with SaDE and jDE. For 
30-D problems, except a success rate of 90% in F3, 
success rates of all other functions reach 100%. At 
the same time, jDE succeeds in 6 functions, which is 
the second best of all algorithms while CDE-2, 
CDE-4 and ADE fail in all functions. The mean 
value of RDIDE in F5, F6 and F9 is a little worse 
than some other algorithms, yet despite all this, the 
corresponding mean values are 5.91E-15, 4.25E-15 
and 3.30E-14 which are still very close to the optima. 

And in F4, F8 and F10, the results of RDIDE 
surpass the other algorithms completely. For both 
10-D and 30-D problems, F8 and F10 are so difficult 
that most algorithms fail to find the global optima 
while RDIDE achieves with 100% success rate.  

From Table 5, we can observe that the 
convergence speed of RDIDE is outstanding as well. 
For 10-D problems it holds 4 best NFE values while 
for 30-D problems it holds 6 best NFE values. In 
contrast, CDE-4 for 10-D problems and SaDE for 
30-D problems, which are the second fastest from 
the result, holds only 2 best NFE values and 4 best 
NFE values respectively. 

2) The main idea of the proposed algorithm is to 
self-adapt the crossover rate, which is reflected by 
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Table 4: Results for 30-D problems. 

Algorithm 
D=30 

F1 F2 F3 F4 

Mean Std SRate Mean Std SRate Mean Std SRate Mean Std SRate 

CDE-1 0 0 100% 3.62E+03 8.22E+02 0% 3.39E+01 1.51E+01 0% 1.24E+04 2.15E+03 0% 

CDE-2 4.50E-02 6.15E-02 0% 1.73E+03 1.40E+03 0% 1.04E+02 6.25E+01 0% 8.98E+03 5.74E+03 0% 

CDE-3 0 0 100% 1.38E+03 2.53E+02 0% 2.14E+01 1.98E+00 0% 5.19E+03 1.24E+03 0% 

CDE-4 1.90E-07 1.04E-06 97% 1.92E+01 2.27E+01 0% 6.37E+01 4.01E+01 0% 2.36E+00 5.47E+00 0% 

CDE-5 0 0 100% 1.04E+02 8.25E+01 0% 2.08E+01 1.19E+01 0% 1.51E+03 2.07E+02 0% 

SaDE 0 0 100% 0 0 100% 3.99E-01 1.22E+00 90% 3.37E+00 1.37E+01 0% 

ADE 0 0 100% 3.04E+02 6.86E+01 0% 4.69E+01 2.64E+01 0% 6.75E+04 1.02E+04 0% 

SDE 4.56E-01 2.08E+00 50% 1.58E+00 4.48E+00 0% 7.73E+03 3.27E+04 0% 4.67E+02 5.09E+02 0% 

jDE 0 0 100% 8.91E-11 1.27E-10 100% 5.57E-01 1.38E-00 40% 2.15E-01 4.91E-01 0% 

RDIDE 0 0 100% 0 0 100% 2.90E-01 2.04E+00 90% 3.85E-09 1.50E-08 100% 

Algorithm 
D=30 

F5 F6 F7 F8 

Mean Std SRate Mean Std SRate Mean Std SRate Mean Std SRate 

CDE-1 0 0 100% 3.81E-05 1.30E-05 90% 0 0 100% 9.12E-02 3.08E-02 0% 

CDE-2 3.86E-02 2.18E-02 0% 7.64E-02 5.11E-02 0% 1.52E-01 1.15E-01 0% 9.01E-01 1.40E-01 0% 

CDE-3 4.03E-15 1.23E-15 100% 3.67E-15 6.49E-16 100% 0 0 100% 2.24E-05 1.19E-04 93% 

CDE-4 3.10E-02 1.76E-01 93% 4.82E-03 2.64E-02 97% 1.08E+01 1.00E+01 0% 1.82E+02 5.47E+01 0% 

CDE-5 7.58E-15 1.80E-15 100% 7.34E-15 1.30E-15 100% 0 0 100% 3.97E-03 1.85E-02 37% 

SaDE 0 0 100% 0 0 100% 2.38E-03 5.03E-03 80% 8.54E-03 0.09E-03 40% 

ADE 0 0 100% 0 0 100% 0 0 100% 2.93E-03 5.65E-03 10% 

SDE 2.19E-01 3.87E-01 40% 1.01E-01 3.04E-01 63% 1.59E+00 2.23E+00 13% 1.39E+00 4.24E+00 13% 

jDE 0 0 100% 0 0 100% 0 0 100% 5.17E-03 6.64E-03 57% 

RDIDE 5.91E-15 1.79E-15 100% 4.25E-15 8.52E-16 100% 0 0 100% 0 0 100% 

Algorithm 
D=30 

F9 F10 Index of test functions with 100%  success rate 
 Mean Std SRate Mean Std SRate 

CDE-1 0 0 100% 1.68E+02 1.43E+01 0% 1, 5, 7, 9 

CDE-2 8.54E+01 3.30E+01 0% 2.45E+02 2.20E+01 0% None 

CDE-3 3.10E+01 3.24E+00 100% 1.87E+02 1.09E+01 0% 1, 5, 6, 7, 9 

CDE-4 9.58E+00 3.88E+00 93% 1.44E+02 2.09E+01 0% None 

CDE-5 4.03E+01 3.73E+00 100% 1.88E+02 7.15E+00 0% 1, 5, 6, 7, 9 

SaDE 0 0 100% 1.67E+01 5.26E+00 0% 1, 2, 5, 6, 9 

ADE 2.32E-01 5.01E-01 100% 1.21E+02 1.28E+01 0% None 

SDE 1.09E+01 4.23E+00 50% 3.63E+01 6.78E+00 0% 1, 5, 6, 7, 9 

jDE 0 0 100% 3.65E+01 8.29E+00 0% 1, 2, 5, 6, 7, 9 

RDIDE 3.30E-14 2.83E-14 100% 3.07E-14 2.86E-14 100% 1, 2, 4, 5, 6, 7, 8, 9, 10 

 
the dynamically change of the distribution of the 
probabilities to choose different Cr value. So we 
discuss about the property of RDIDE via the 
changes of the distributions in this section. Figure 1 
illustrates changes of P


 in RDIDE for all functions 

with both D=10 and D=30. In the Figure, x-axis 
represents different values of Cr, y-axis represents 
generations of the algorithm and z-axis represents 
the probabilities to choose different values of Cr.  

From the figure, it can be observed that the 
distribution is evolving as the DE algorithm goes on. 
Different values of Cr are suitable for different 
problems, and generally, a proper choice of Cr value 
is 0.1 and 0.9. Besides, even for a certain problem, 
the proper probability distribution of Cr value may 

change with the process of the algorithm. And we 
discover that this kind of change is regular, as for 
each problem, experiment was run 50 times 
independently, and the corresponding changes of the 
distribution are exceedingly similar. In F1, F7 and 
F8, Cr should be constant 0.1, and in F2, Cr should 
be constant 0.9. However in all other test problems, 
the distribution should be changing as the algorithm 
goes on, e. g., in F3 with D=30, the value of Cr 
should be 0.1 with high probability at the beginning 
of evolution, then it should change to 0.9 and be 
back to 0.1 finally; in F5 with both D=10 and D=30, 
the change of the distribution is complex at the 
beginning, each value of Cr dominates for a short 
time and 0.9 turns into the best choice finally; case  
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Table 5: Comparison of NFE. 

10D CDE-1 
NFE SRate

CDE-2 
NFE SRate 

CDE-3 
NFE SRate

CDE-4 
NFE SRate

CDE-5 
NFE SRate

SaDE 
NFE SRate 

RDIDE
NFE SRate

F1 16770 100% 53298 100% 10291 100% 6318  100% 10058 100% 8357  100% 10370 100% 

F2 --    0% --   43% 72436 100% 23383 100% 53658 100% 14867 100% 14847 100% 

F3 --    0% --    0% --    0% --    0% --    0% 42446 100% 64525 100% 

F4 --    0% --    0%  --   83% 30925   0% 71278 100% 15754 100% 9433  100% 

F5 25335 100% 82919 100% 15157 100% 9436  100% 15045 100% 12123 100% 12729 100% 

F6  --     90% 85272 100% 16682 100% 9923  100% 16980 100% 12244 100% 15794 100% 

F7 41247 100% --    0% 29961 100% --    70% 59205 100% 35393 100% 54942 100% 

F8 --    0% --    0% --    0% --    0% --    0% --    0% 54561 100% 

F9 19200 100% --    0% 23155 100% --   93% 30621 100% 23799 100% 26007 100% 

F10 --    0% --    0% --    0% --    0% --    0% --    0% 24288 100% 

30D        

F1 66339 100% --    0% 34687 100% --   97% 31470 100% 20184 100% 32346 100% 

F2 --    0% --    0% --    0% --    0% --    0% 118743 100% 117799 100% 

F3 --    0% --    0% --    0% --    0% --    0% --   90%    --     90% 

F4 --    0% --    0% --    0% --    0% --    0% --    0% 191469 100% 

F5 92941 100% --    0% 49822 100% --   93% 45948 100% 26953 100% 28594 100% 

F6 --    0% --    0% 55108 100% --   97% 49961 100% 33014 100% 46740 100% 

F7 80741 100% --    0% 39436 100% --    0% 41314 100% --   80% 39056 100% 

F8 --    0% --    0% --    0% --    0% --    0% --    0% 45708 100% 

F9 90391 100% --    0% --    0% --    0% --    0% 58732 100% 147483 100% 

F10 --    0% --    0% --    0% --    0% --    0% --    0% 134735 100% 

 
in F6 is similar to F5, yet 0.1 takes a more 
dominating place initially. From later period in F9 
and F10 with D=10, we see that probability of 0.1 
and probability of 0.9 are equal, neither of the value 
can surpass the other one. 

So we conclude that an appropriate probability 
distribution of the value of Cr is not only related to 
the problem and the algorithm, but also the stage of 
the evolution as well. Thus assuming a constant 
value of Cr in conventional DE is not befitting, and 
so does using a trial-and-error process to find the 
parameter combination. Based on the analysis above, 
RDIDE, which uses the probability distribution 
instead of a definite value while the distribution is 
self-adapted, is more rational for global optimization. 

5 CONCLUSIONS 

In this paper, to make DE algorithm more practical 
to various kinds of optimization, we proposed a 
RDIDE algorithm, in which replicator dynamic is 
introduced to the crossover operator. With this 
method, the end-users can simply run the algorithm 
without considering the setting of the parameters. 
The algorithm involves multiple evolutions: the first 
evolution refers to DE algorithm, and the second one 
means that the parameter Cr is evolving 

independently with replicator dynamic. A new 
population is assumed to find an advisable 
probability distribution of Cr, and an extra technique 
is designed for a believable success rate. The final 
process according to the evolution is rather succinct. 

We then compare RDIDE with 9 other DE 
algorithms over a suite of 10 bound-constrained 
numerical optimization problems and RDIDE 
produced highly competitive results in both success 
rate and the convergence speed. Furthermore, the 
statistics of the experiment show that a good choice 
of Cr not only rests with different problems but also 
with different stages of the detailed evolution 
process. Finally we conclude that RDIDE is a more 
effective and simple DE algorithm to obtain the 
global optima with a higher success rate and a 
quicker convergence speed.  
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Figure 1: Dynamic change of distributions of P


. 

REFERENCES 

Friedberg, R. M., (1958). A learning machine: Part I. IBM 
Journal of Research and Development, 2, 2–13. 

Box, G. E. P., (1957). Evolutionary operation: A method 
for increasing industrial productivity. Applied 
Statistics, 6, 81–101. 

Holland, J. H., (1962). Outline for a logical theory of 
adaptive systems. Journal of the Association for 
Computing Machinery, 3, 297–314. 

Fogel, L. J., (1962). Autonomous automata. Industrial 
Research, 4, 14–19. 

Storn, R. and Price, K., (1995). Differential evolution: a 
simple and efficient adaptive scheme for global 

optimization over continuous spaces. Technical Report 
TR-95-012, International Computer Science Institute, 
Berkeley. 

Storn, R., (1996). Differential evolution design of an IIR-
filter. In Proceedings of IEEE International 
Conference on Evolutionary Computation (pp. 268–
273).  

Storn, R., (2005). Designing nonstandard filters with 
differential evolution. IEEE Signal Processing 
Magazine, 22, 103–106.  

Lakshminarasimman, L. and Subramanian, S., (2008). 
Applications of differential evolution in power system 
optimization. Studies in Computational Intelligence, 
143, 257-273. 

       
                         F1, 10-D                                   F1, 30-D                                    F2, 10-D                                      F2, 30-D 

       
                        F3, 10-D                                   F3, 30-D                                    F4, 10-D                                      F4, 30-D 

       
                          F5, 10-D                                 F5, 30-D                                    F6, 10-D                                     F6, 30-D 

       
                          F7, 10-D                                  F7, 30-D                                   F8, 10-D                                     F8, 30-D 

       
                           F9, 10-D                                 F9, 30-D                                  F10, 10-D                                  F10, 30-D 

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

142



 

Lobo, F. G. and Goldberg, D. E., (2001). The parameter-
less genetic algorithm in practice. Technical Report 
2001022, University of Illinois at Urbana-Champaign, 
Urbana, IL. 

Harik, G. R. and Lobo, F. G. (1999). A parameter-less 
genetic algorithm. In Banzhaf et al. (Eds.), 
Proceedings of the 1999 genetic and evolutionary 
computation conference (vol. 1, pp. 258–265.), 
Morgan Kaufmann: Orlando. 

Gämperle, R., Müller, S. D. and Koumoutsakos, P., 
(2002). A parameter study for differential evolution. In 
Grmela, and Mastorakis (Eds.), Advances in 
Intelligent Systems, Fuzzy Systems, Evolutionary 
Computation (pp. 293–298). WSEAS Press: Interlaken. 

Omran, M. G. H., Salman, A. and Engelbrecht, A. P., 
(2005). Self-adaptive differential evolution. In Lecture 
Notes in Artificial Intelligence (pp. 192–199), 
Springer-Verlag: Berlin. 

Brest, J., Greiner, S., Boskovic, B., Mernik, M. and 
Zumer, V., (2006). Self-adapting control parameters in 
differential evolution: A comparative study on 
numerical benchmark problems. IEEE Transactions 
on Evolutionary Computation, 10, 646–657. 

Teo, J., (2006). Exploring dynamic self-adaptive 
populations in differential evolution. Soft Computing-
A Fusion of Foundations, Methodologies and 
Applications, 10, 637–686. 

Qin, A. K., Huang, V. L, and Suganthan, P. N., (2009). 
Differential Evolution Algorithm With Strategy 
Adaptation for Global Numerical Optimization. IEEE 
Transactions on Evolutionary Computation, 13, 398 – 
417. 

Price, K., Storn, R., and Lampinen, J., (2005). Differential 
Evolution—A Practical Approach to Global 
Optimization. Springer-Verlag: New York. 

Rogalsky, T., Derksen, R. W., and Kocabiyik, S., (1999). 
Differential evolutionin aerodynamic optimization. In 
Proceedings of the 46th Annual Conference of the 
Canadian Aeronautics and Space Institute (pp. 29–36), 
Montreal. 

Zaharie, D., (2003). Control of population diversity and 
adaptation in differential evolution algorithms. In 
Matousek and Osmera (Eds.), Proceedings of 9th 
International Conference on Soft Computing (pp. 41–
46), Brno. 

Replicator�Dynamic�Inspired�Differential�Evolution�Algorithm�for�Global�Optimization

143


