
A Security Analysis of Emerging Web Standards
HTML5 and Friends, from Specification to Implementation

Philippe De Ryck, Lieven Desmet, Frank Piessens and Wouter Joosen
IBBT-DistriNet, KU Leuven, 3001 Leuven, Belgium

Keywords: HTML5, Web Application Security, Standards, Specification.

Abstract: Over the past few years, a significant effort went into the development of a new generation of web standards,
centered around the HTML5 specification. Given the importance of the web in our society, it is essential that
these new standards are scrutinized for potential security problems. This paper reports on a systematic analysis
of ten important, recent specifications with respect to two generic security goals: (1) new web mechanisms
should not break the security of existing web applications, and (2) different newly proposed mechanisms
should interact with each other gracefully. In total, we found 45 issues, of which 12 are violations of the
security goals and 31 issues concern under-specified features. Additionally, we found that 6 out of 11 expli-
cit security considerations have been overlooked/overruled in major browsers, leaving secure specifications
vulnerable in the end. All details can be found in an extended version of this paper (De Ryck et al., 2012).

1 INTRODUCTION

The past few years, web applications have known
a significant growth in popularity. With billions of
users, applications like Facebook, Twitter, Foursquare
or anything provided by Google are omnipresent in
most internet users’ daily life. One constant in the
evolution of web pages or web applications has al-
ways been the drive towards more and better client-
side functionality, up to the level where web applic-
ations obtain privileges previously only available to
desktop applications, such as client-side storage or
easy access to peripheral devices (webcams, micro-
phones, sensors etc).

The client-side functionality available to early
web applications was limited to dynamic page con-
struction, without any explicit support for features
like client/server communication, interaction between
browsing contexts or local storage of data. The ex-
tension of the client-side platform started with XML-
HttpRequest, an explicit client/server communication
mechanism and continued with the recently proposed
Web Messaging API, which enables communication
between browsing contexts. Currently, the client-side
platform is being developed at a rapid pace, with fea-
tures like media elements, an iframe-based sandbox,
several client-side APIs (storage, system properties,
location, etc.), and many more.

Unfortunately, an extensive set of client-side fea-
tures poses an attractive target for attackers, making

the user into a potential victim. For example, insec-
urities in an API for capturing media in a web applic-
ation can lead to stolen captures. In this paper, we
report on a structured security analysis of a large sub-
set of these emerging web standards, where we not
only analyze each specification in isolation, but also
investigate potential interactions between co-existing
features of multiple specifications.

A key aspect of this security analysis is the
identification of potential security violations. Obvi-
ously, different mechanisms will have different secur-
ity goals. For instance, the sandboxing mechanism
specified in the HTML5 specification has the goal of
isolating content in the sandbox, whereas the media
capture specification aims to appropriatelyguard ac-
cessto the API to capture audio or video. It isnot
our objective to analyze each mechanism for com-
pliance with these mechanism-specific security goals.
Instead, we identify two generally applicable security
goals:preservation of security invariantsandgrace-
ful interaction of co-existing features.

From the security analysis of ten secure-by-design
W3C web standards we conclude that these new
web standards already achieve a high level of secur-
ity. This is most probably due to the fact that the
emerging standards explicitly endorse thesecure-by-
designdesign principle, taking security into account
from the beginning, and not as an afterthought. As
such, the analysis does not reveal major unconditional
security issues, we do however identify several viola-

257De Ryck P., Desmet L., Piessens F. and Joosen W..
A Security Analysis of Emerging Web Standards - HTML5 and Friends, from Specification to Implementation.
DOI: 10.5220/0004049502570262
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 257-262
ISBN: 978-989-8565-24-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



tions of one of the stated security goals under certain
application-specific circumstances.

In the remainder of this paper, we present the ap-
proach and the process of the security analysis, fol-
lowed by a selection of three security goal violations
(Section 2). We continue to discuss both related work
on web and standardization security (Section 4) and
future improvements (Section 5).

2 OVERVIEW OF THE
SECURITY ANALYSIS

The broad set of new and emerging web standards
covers an wide range of functionality and features,
from detailed HTML parsing to rich JavaScript APIs
and security design guidelines. In the analysis, we fo-
cus on the newly-added core features of HTML5 (e.g.
offline application caching and sandboxed iframes)
as well as the new features provided by JavaScript
APIs (e.g. client-side storage and cross-origin com-
munication). These JavaScript APIs are available to
any client-side script embedded in a website, either
directly coming from the website owner, or integ-
rated from a (potentially less trusted) third-party ser-
vice provider, as is the case for online advertisements,
web analytic frameworks, mashups compositions and
many more. Concretely, we have studied the fol-
lowing list of ten W3C specifications: HTML5, Me-
dia Capture API, Web Messaging, XMLHttpRequest
Level 1 and Level 2, Cross-Origin Resource Sharing,
Uniform Messaging Policy, Web Storage, Geoloca-
tion API and System Information API.

The core process of the security analysis is the in-
vestigation of each specification in isolation and in co-
existence with other specifications, based on the dis-
tilled information (fully explained in (De Ryck et al.,
2012)). The goal is to detect and identify weaknesses
in the specifications leading to an increase of attack
surface, due to a violation of one of the security goals:
preservation of security invariantsandgraceful inter-
action of co-existing features.

The first security goal states that new mechanisms
introduced in the browser should not weaken the se-
curity of existing (legacy) web applications. For ex-
ample, the security of existing web applications might
rely on the enforcement of the same origin policy in
the browser. Introducing new cross-origin commu-
nication mechanisms should not break the security of
these existing applications. Akhawe et al. (Akhawe
et al., 2010) identify the same generic security goal,
and call it thepreservation of security invariants.

The second security goal states that separately
specified mechanisms meant to co-exist and to be

used together should interact gracefully. The intro-
duction of one newly proposed mechanism should not
break or weaken the security of another newly pro-
posed mechanism. We call this second goal thegrace-
ful interaction of co-existing features. For example, a
newly proposed mechanism for cross-origin commu-
nication should be able to handle new kinds of origins
(such as theuniqueorigin in sandboxes).

Scope and Attacker Model. The ten studied W3C
specifications form a representative subset of the
emerging web standards, and are per category depic-
ted in an abstract model of modern web standards.
Central in the abstract model is the window object,
which provides access to the page (via the document),
as well as all JavaScript functionality. Within the win-
dow are event handlers and the DOM tree, which we
do not include explicitly, unless used by other parts of
the model. The window can be restricted by a sand-
box, which is part of HTML5. The building blocks
around the window offer a tremendous amount of
functionality to a web application, such as communic-
ation between components, embedding and capturing
media, requesting information from the device, com-
municating with external services, storing data on the
client-side and caching an entire application or com-
ponent. Note that for “Client-side storage” we fo-
cus on the Web Storage specification, which contains
most of the complexity with regard to storage areas
and their access rules, compared to other client-side
storage specifications.

In order to keep the analysis focused, we con-
sidered the UI to be out of scope (with the exception
of end-user interactions for user consent). Similarly,
we discarded parts of the HTML5 specifications de-
scribing the HTML parsing and rendering, usability
guidelines and API development guidelines.

We consider both theweb attackerand thegad-
get attackerto be valid attacker models (Barth et al.,
2008). The former is a malicious principal who
owns one or more machines on the network where
the user gets and renders content from, whereas the
latter has one additional ability: the integrator em-
beds a gadget of the attacker’s choice. Concretely,
we assume that a user visits honest sites, honest sites
unknowingly incorporating malicious content (gadget
attacker) or malicious sites (web attacker), using an
honest, specification-compliant browser.

3 RESULTS OF THE SECURITY
ANALYSIS

Performing the security analysis as described before

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

258



has revealed 45 security issues, of which the major-
ity, i.e. 31 issues, relates to under-specification and
inconsistencies across the specifications. A smaller
fraction, i.e. 12 issues, increases the attack surface
by breaking one of our two security goals, namely the
preservation of security invariantsor thegraceful in-
teraction of co-existing features. These violations are
weaknesses in the specifications that, depending on
the specific application, potentially increase the attack
surface. Additionally, we identify several cases where
browsers fail to comply with specific security consid-
erations stated in the specifications.

In the remainder of this section, we discuss three
examples of an increased attack surface. The full re-
port (De Ryck et al., 2012) contains more examples,
as well as issues with under-specification and non-
compliance with explicit security considerations.

[Example #1] HTML5: Injection of Submission
Controls. The HTML5 specification enables the
use of form controls outside of aform element, to
overcome the lack of support for nested forms. Such
a form-associated element can appear anywhere, but
is associated with a form within the document. The
associated form is either the nearest ancestor form,
or the form with the ID explicitly referenced by the
control using theform attribute (see Listing 1, line
6). Additionally, the specification allows submission
controls to provide attributes that change the form be-
havior when this specific submission control is used.
Examples arenovalidate that disables form valida-
tion andformaction that changes a form’s destination
(see Listing 1, line 4 and 7).

1 <form id =” one ”> . . .< / form>

2 <form id =” two ” > . . .< / form>

3 <!−− A s s o c i a t e d wi th n e a r e s t form ” two ”−−>

4 <i n p u t t ype =” submi t ” . . . n o v a l i d a t e />

5 <!−− A s s o c i a t e d wi th form wi th i d ” one ”−−>

6 <i n p u t form =” one ”

7 t ype =” submi t ” . . . f o r m a c t i o n =” h t t p : / / . . . ” />

Listing 1: Use of the newly introduced form attributes.

The combination of both new features creates a
new attack vector that allows an attacker to inject a
form submission control, associated with an existing
form on the page. By changing the form’s destination
using theformaction attribute, an attacker can trick
the user into submitting a form located anywhere on
the page to an attacker-controlled destination. After
having captured the form’s parameters, the attacker
can automatically resubmit the form to the original
destination, making the attack fairly stealthy.

One simple attack scenario is the stealing of an
auto-completed form, such as a login form, for which

the browser automatically enters the appropriate val-
ues, even if the user had no intention of logging in to
the site. If the attacker can trick the user into click-
ing the injected submission control, the form will be
submitted to the attacker’s website. Tricking the user
into clicking an oddly placed button may be difficult,
but submission controls can also be styled with cus-
tom images, allowing full integration into the victim
website. A second, more complex attack scenario in-
volves the stealing of hidden security tokens from a
form. The de facto countermeasure against cross-site
request forgery (CSRF) attacks is the use of a unique
token to authenticate a future request (Zeller and Fel-
ten, 2008). The security model of this countermeas-
ure depends on the attacker not being able to extract
such tokens from the page of the victim site, due to
the same-origin policy separation, an assumption vi-
olated in this attack scenario.

Note that these attack scenarios do not require to
execute any injected JavaScript, but only require the
possibility to inject a previously harmless form con-
trol. This means that sites without cross-site scripting
(XSS) vulnerabilities or sites deploying explicit de-
fenses against injection attacks, such as Content Se-
curity Policy (Sterne and Barth, 2011), can still be
vulnerable. Additionally, traditional form stealing us-
ing HTML injection (Zalewski, 2011) either depends
on the position of the vulnerability within the page
or the capability to inject a form element in front of
another form. The attack presented here is not de-
pendent on script execution nor on a specific position
of the injection vulnerability.

Web developers can protect their sites by making
sure that input validation filters prevent the injection
of submission controls. It suffices to prevent the use
of the behavior-changing attributes on user-supplied
form controls, although it is wise to prevent the use of
the form-association attribute as well.

[Example #2] CORS: Arbitrary Body Format.
The Cross-Origin Resource Sharing and XMLHt-
tpRequest Level 2 specifications enable cross-origin
requests from JavaScript, where previously only
same-origin requests were allowed. The main idea
of CORS is that the client provides the server the ne-
cessary information to make a decision about whether
an origin can fetch a resource or not. The decision
is communicated to the client by means of response
headers, where it is enforced. If an origin is not al-
lowed to fetch the resource, the requesting script will
not have access to the response data.

Technically, the algorithms elaborating on this
idea distinguish betweensimple requestsandactual
requests. Simple requests are requests that could

A�Security�Analysis�of�Emerging�Web�Standards�-�HTML5�and�Friends,�from�Specification�to�Implementation

259



previously be sent with other HTML elements, such
as GET requests or POST requests using forms. A
simple CORS request is sent to the server, and based
on the CORS headers in the response, the browser de-
cides whether the script can access the response con-
tents. Actual requests are new types of requests, such
as cross-origin PUT or DELETE requests, and can not
be sent cross-origin with traditional techniques. This
design decision prevents introducing new vulnerabil-
ities in legacy applications.

The treatment of simple CORS requests is based
on the assumption that these cross-origin requests
could previously be made using commonly available
HTML elements. However, one important difference
between a POST request resulting from a form sub-
mission and a scripted POST request is the format of
the request body. A form body is either in the text/-
plain or application/x-www-form-urlencoded format,
which is restricted tokey=valuedata separated by
&, or the multipart/form-data format, which contains
multiple sections separated by a self-defined bound-
ary. The analysis uncovered that a simple cross-origin
POST request sent from JavaScript is still restricted
to these content types in its header, but compliance
of the body format to the specified content type is
never checked. This means that an attacker is able
to send cross-origin POST requests with an arbitrary
body format, but will most likely be denied access the
response, since the appropriate response headers to
allow access will be missing.

A concrete attack scenario is an application offer-
ing an authenticated API, e.g. using the JSON format.
Where previously only pages within the origin of the
application were able to access the API, CORS en-
ables all origins to make requests to the API. Even
though the API will not add the appropriate headers
to the response, the request will still be processed, po-
tentially resulting in unintended server-side changes.

Traditionally, the body format of cross-origin
POST requests was tightly constrained, but simple
CORS requests, explicitly aimed at not enabling more
features than existing with HTML elements, relax
these constraints. CORS opens up existing applica-
tions to cross-origin requests with an arbitrary body
format, previously only available within the same ori-
gin. This is a violation of the first security goal.

Concretely, web developers can protect against
this attack vector by validating the format of incoming
requests against the format specified in the header.

[Example #3] CORS: Sandboxed Sender. As dis-
cussed with the previous violation, the HTML5 spe-
cification offers the possibility to sandbox an iframe
and impose restrictions on the content. One important

restriction is the possibility to have the browser assign
a unique origin to the content of the iframe. This en-
sures that the content of the iframe is separated us-
ing the same origin policy, allowing strict isolation of
content, even within the same origin. An important
nuance of this unique origin is that the serialization to
a string equalsnull, meaning that the valuenull will
be used in headers or origin checks.

The effect of a unique origin being serialized to
null can be observed with the use of CORS in a sand-
boxed iframe. A CORS request contains an origin
header defining the origin where the request origin-
ated from. In a sandboxed iframe with a unique ori-
gin, the value of the origin header will benull. Even
though the server has no concrete origin information
about the request, CORS specifically supports grant-
ing thenull origin access to the resource by adding
the appropriate response headers. This behavior en-
ables the use of the valuenull as a wildcard, since any
document can sandbox itself in an iframe and send
requests with an origin-value ofnull. The main dif-
ference with the already available wildcard in CORS
(∗) is that thenull origin allows the use of credentials,
a feature that is explicitly forbidden for the wildcard.

A concrete scenario where the use of CORS from
a sandbox poses a problem is a legitimate site that
wants to expose an API to a selected set of origins
that use a sandboxed iframe for additional security.
Since the site offering the API no longer receives ori-
gin information, it is unable to enforce access con-
trol restrictions and can either disallow the use of the
API or allow the use of the API from anull origin.
The former prevents the sites using the API from de-
ploying a sandboxed iframe, the latter forces the API
provider to open up its API to all origins. The inter-
action between the sandbox attribute and CORS is a
violation of the second security goal, stating that co-
existing security mechanisms should interact grace-
fully.

Web developers should never allow the use of a
null origin in a CORS request, unless they explicitly
intend to provide wildcard-accessible authenticated
APIs. Explicitly checking for thenull value and im-
mediately returning a response is the safest approach.
The wildcard (∗) offered by CORS can be used to
grant any origin (unauthenticated) access to a specific
part of the application.

4 RELATED WORK

In this section, we briefly discuss relevant subsets of
the vast amount of related work on web application
security. First, we highlight traditional approaches,

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

260



focused on patching basic flaws in the classical web
paradigm (either in the code itself, or via client- or
server-side hardening). Next, we describe a recent
and gradual evolution in web security towardspatch-
ing standardsandsandboxing environmentsimposing
additional server-driven constraints on the integrated
content. Finally, we discuss previous security assess-
ments on web application standards, and their ability
to address some of the core security problems in web
security in the specifications themselves.

An inherent problem of web security is the vast
amount of deployed browsers and applications, each
from multiple vendors in multiple versions. Mak-
ing fundamental security improvements while still
maintaining existing functionality is hard, as docu-
mented by the traditional patching of the basic web
paradigm. For most classical web application vulner-
abilities, such as cross-site scripting, SQL injection
and cross-site request forgery, adequate safe-practices
and countermeasures have been proposed (Su and
Wassermann, 2006; Zeller and Felten, 2008), but are
unfortunately not always consistently deployed. This
has in turn led to policy-driven security on the client-
side, such as Content Security Policy (Sterne and
Barth, 2011) or X-Frame-Options (Law, 2010).

Complementary, several techniques offer con-
trolled execution of third-party JavaScript (as is typ-
ically the case in mashup compositions (De Ryck
et al., 2011a) and online advertisements (Ter Louw
et al., 2010)), which is especially relevant because
of the obviously increased set of features available
to JavaScript developers. Common approaches to-
wards fine-grained behavior control are the use of
security wrappers in JavaScript (Phung et al., 2009;
Magazinius et al., 2010), policy-controlled client-side
sandboxes (Ter Louw et al., 2010; Miller et al., 2008)
and the use enhanced browser support (Meyerovich
and Livshits, 2010; Van Acker et al., 2011).

Web standards have been scrutinized for security
before, with positive results. The most relevant re-
lated work, discussed below, typically goes into great
detail on narrowly scoped functionality. Unfortu-
nately, detailed analysis techniques do not scale well
to a set of multiple specifications and their potential
interactions. Our work is complementary to such de-
tailed analysis because of its broad set of features and
functionality, and the explicit focus on potential con-
sequences of interactions between these features.

Barth et al. investigated the security of frame
communication in browsers (Barth et al., 2008), dis-
covering both weaknesses in fragment identifier mes-
saging, an unintended communication channel, and
postMessage, the designed communication channel.
Their work goes into great detail on a specific aspect

of client-side functionality, using very specific secur-
ity goals. Similarly, Akhawe et al., who use formal
modeling to find design vulnerabilities in web spe-
cifications (Akhawe et al., 2010), specifically focus
on web security mechanisms. The formal model is
also useful to evaluate the security of newly proposed
countermeasures (De Ryck et al., 2011b).

Other related research is by Rydstedt et al. on the
effectiveness of clickjacking defenses (Rydstedt et al.,
2010) and of Aggarwal et al. about the actual security
of private browsing modes (Aggarwal et al., 2010).
In this area, we also consider the work of Doty et
al. about privacy issues in the Geolocation API (Doty
et al., 2010) and the work of Heiderich et al. on cross-
site scripting attack vectors in HTML5 (Heiderich,
2011) to be highly relevant.

5 DISCUSSION

The security analysis shows that the studied web spe-
cifications already achieve a high level of security,
but still violate the two security goals,preservation
of security invariantsandgraceful interaction of co-
existing features, on various occasions. These viola-
tions can be ascribed to the fragile balance between
functionality and security, a thin line to walk, es-
pecially in the web application ecosystem, with the
standards simultaneously serving browser vendors,
web developers and users. This analysis focuses on
imbalances at the expense of security, but likewise,
sacrifices will have been made in favor of security and
at the expense of functionality.

The violations of the security goals documented
in the analysis should be addressed by the specifica-
tions in the future. Whenever possible, the function-
ality should be updated and adapted to better respect
the balance with security. Whenever there is a case of
favoring functionality over security, these design de-
cisions and their consequences should be included in
the specification. This ensures that all invested parties
are informed of potential security risks and can take
appropriate measures.

Even though we rigorously and systematically
performed our security analysis, guided by the two
security goals stated before, it remains an informal
and manual analysis approach. Full completeness can
only be achieved by formal analysis techniques. Ma-
jor disadvantages of formal analysis are the tremend-
ous amount of effort involved, as well as scalabil-
ity to complex models. This work has already star-
ted (Akhawe et al., 2010) with an Alloy model of
web interactions, which is already pushing the limits
of model finding tools. Continuing this work, pos-

A�Security�Analysis�of�Emerging�Web�Standards�-�HTML5�and�Friends,�from�Specification�to�Implementation

261



sibly using other formalisms than Alloy, has a great
potential to further enhance or validate the security of
emerging web technologies and specifications.

The full report of the security analysis (De Ryck
et al., 2012) does not only cover potential increases
of the attack surface, but also discusses how specific-
ations suffer from under-specification and ambiguity,
leading to inconsistent and potentially insecure imple-
mentations as a consequence. Additionally, the full
report illustrates that mainstream implementations not
always comply with explicit security considerations
stated in the specifications. As a consequence, se-
curely specified features might in practice still be vul-
nerable due to this mismatch.

6 CONCLUSIONS

In this paper, we aimed to thoroughly scrutinize emer-
ging web standards for potential security problems.
We performed a systematic and repeatable analysis
using two generally applicable security goals:preser-
vation of security invariantsandgraceful interaction
of co-existing features. From the security analysis, we
can conclude that the overall security of the standards
is quite good. Nonetheless did we identify several vi-
olations of one of the stated security goals under cer-
tain application-specific circumstances.

ACKNOWLEDGEMENTS

The results presented in this paper build on experience
from an earlier security analysis performed with the
support of ENISA (De Ryck et al., 2011c). This re-
search is partially funded by IBBT, IWT, the Research
Fund K.U. Leuven and the EU-funded FP7-projects
WebSand and NESSoS.

REFERENCES

Aggarwal, G., Bursztein, E., Jackson, C., and Boneh, D.
(2010). An analysis of private browsing modes in
modern browsers. InProc. of 19th Usenix Security
Symposium.

Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., and Song,
D. (2010). Towards a formal foundation of web se-
curity. Computer Security Foundations Symposium,
IEEE, 0:290–304.

Barth, A., Jackson, C., and Mitchell, J. C. (2008). Securing
frame communication in browsers. InIn Proceedings
of the 17th USENIX Security Symposium (USENIX Se-
curity 2008).

De Ryck, P., Decat, M., Desmet, L., Piessens, F., and
Joosen, W. (2011a). Security of web mashups: a sur-
vey. In 15th Nordic Conference in Secure IT Systems
(NordSec 2010).

De Ryck, P., Desmet, L., Joosen, W., and Piessens, F.
(2011b). Automatic and precise client-side protection
against csrf attacks.Computer Security–ESORICS
2011, pages 100–116.

De Ryck, P., Desmet, L., Philippaerts, P., and Piessens, F.
(2011c). A security analysis of next generation web
standards. Technical report, European Network and
Information Security Agency (ENISA).

De Ryck, P., Desmet, L., Piessens, F., and Joosen, W.
(2012). A security analysis of emerging web standards
- extended version. Technical Report CW 622, De-
partment of Computer Science, K.U.Leuven, Leuven,
Belgium.

Doty, N., Mulligan, D. K., and Wilde, E. (2010). Privacy
issues of the w3c geolocation api.

Heiderich, M. (2011). Html5 security cheatsheet. http://
code.google.com/p/html5security/.

Law, E. (2010). Combating clickjacking with x-frame-
options. http://blogs.msdn.com/b/ieinternals/archive/
2010/03/30/ combating- clickjacking- with- x- frame-
options.aspx.

Magazinius, J., Phung, P., and Sands, D. (2010). Safe wrap-
pers and sane policies for self protecting javascript. In
15th Nordic Conference on Secure IT Systems.

Meyerovich, L. and Livshits, B. (2010). Conscript: Spe-
cifying and enforcing fine-grained security policies
for javascript in the browser. InSecurity and Privacy
(SP), 2010 IEEE Symposium on, pages 481–496.

Miller, M. S., Samuel, M., Laurie, B., Awad, I., and Stay, M.
(2008). Caja: Safe active content in sanitized javas-
cript. http://google-caja. googlecode. com/files/caja-
spec-2008-01-15.pdf.

Phung, P. H., Sands, D., and Chudnov, A. (2009). Light-
weight self-protecting javascript. InProc. of the 4th
International Symposium on Information, Computer,
and Communications Security, pages 47–60.

Rydstedt, G., Bursztein, E., Boneh, D., and Jackson, C.
(2010). Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. Inin IEEE Oakland
Web 2.0 Security and Privacy (W2SP 2010).

Sterne, B. and Barth, A. (2011). Content security policy.
http://www.w3.org/TR/CSP/.

Su, Z. and Wassermann, G. (2006). The essence of com-
mand injection attacks in web applications. InACM
SIGPLAN Notices, volume 41, pages 372–382. ACM.

Ter Louw, M., Ganesh, K. T., and Venkatakrishnan, V. N.
(2010). Adjail: Practical enforcement of confidenti-
ality and integrity policies on web advertisements. In
19th USENIX Security Symposium.

Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., and
Joosen, W. (2011). Webjail: Least-privilege integra-
tion of third-party components in web mashups. In
Proceedings of the 27th Annual Computer Security
Applications Conference, pages 307–316. ACM.

Zalewski, M. (2011). Postcards from the post-xss world.
http://lcamtuf.coredump.cx/postxss/.

Zeller, W. and Felten, E. W. (2008). Cross-site request for-
geries: Exploitation and prevention. Technical report,
Princeton University.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

262


