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Abstract: In most robotic applications, trajectory tracking control and vibration suppression in flexible link 
manipulator is a recurring problem, due to the unknown nonlinearities and strong coupling often caused by 
the presence of flexibility in the links. In order to solve this problem, a new sliding mode controller using 
neural networks and fuzzy logic is presented in this paper. The stability of the proposed controller is proved 
with the Lyapunov function method. The neural network is used to compensate the highly nonlinear system 
uncertainties. The fuzzy logic is used to eliminate the chattering effect caused by the robust conventional 
sliding mode control. The effectiveness of this control system will be compared to the performance obtained 
with a second order sliding mode control which is the super twisting algorithm. Comparative simulations 
show the superiority of the proposed controller regarding the second order sliding mode controller and 
confirm its robustness with bounded disturbance and its ability to suppress the flexible link manipulator 
vibrations. 

1 INTRODUCTION 

In the last few years, the dynamic proprieties and 
control techniques for flexible link manipulators are 
being intensively studied (Sanz and Etxebarria, 
2006). They exhibit many advantages with respect to 
the rigid manipulators, such as payload-to-arm ratio, 
operation speed and energy consumption. But the 
use of structurally flexible robotic manipulators 
requires the inclusion of deformation effects due to 
the flexibility in the dynamic equations which 
complicates the analysis and the control design. 

In a robot system, there are many uncertainties, 
such as dynamic parameters, dynamic effects and 
unmodeled dynamics. These uncertainties should be 
taken into consideration in the control algorithm. So, 
the controller of flexible manipulator must achieve 
the same motion objectives as a rigid manipulator, 
and it must also stabilize the vibrations. A large 
number of reports have been presented, employing 
the hybrid control scheme (Ho Lee and Won Lee, 
2002), the radial basis function network (Tang and 
Sun, 2005), the impedance control (Hui Jiang, 
2005), inversion techniques (De Luca et al., 1989), 
adaptive control (Yang et al., 1997) (Lin and Yeh, 
1996), and VSC (variable structure control) (Fung 

and Lee, 1999) (Singh and Nathan, 1991). Sliding 
modes are the primary form of VSSs. The sliding 
mode control is a well known approach to the 
control of uncertain systems. It has received much 
attention due to its ability to reject disturbances 
while tracking a desired trajectory. However, 
standard sliding modes are caracterized by a high-
frequncy switching of control, wich causes problems 
in practical applications (so-called chattering effect). 
To avoid this drawback, higher order sliding mode 
(HOSM) can be used. The HOSM concept emerged 
in 1980s with the motivation of tackling the 
chattering phenomenon. HOSM controllers have the 
capability of stabilizing around zero in finite time 
not only the sliding variable, but also a number of its 
time derivatives. A lot of HOSM approaches have 
been studied in (Kunusch et al., 2009) (Khan et al., 
2003) (Boiko and Fridman, 2005) (Levant and 
Alelishvili, 2004) (Levant, 2000) (Jimenez, 2004). 
In order to reduce the chattering, other methods can 
be applied such as boundary layer approach (Yeung 
and Chen, 1988), fuzzy sliding mode control (Wang, 
2009) and neural network sliding mode control 
(Peng et al., 2006). 

This paper presents the design of neuro fuzzy 
sliding mode controller for flexible robotic trajectory 
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e = θ − θୢ (5) 
Where θd  is desired joint trajectory vector. 
The sliding surface variable is defined by: s = eሶ + λe (6) Where  λ = diag[λଵ, λଶ, … . λ୬] in wich λ୧ is a positive constant for i= 1, 2….n. 

The control goal is to guarantee the state 
trajectories convergence to sliding surface s=0, and 
keep them on the sliding surface, that is sሶ = 0. 

4 SUPER TWISTING 
ALGORITHM 

The super twisting algorithm is one of the popular 
algorithms among the second order sliding mode 
algorithms (Boiko et al., 2008), (Kunusch et al, 
2009). The super twisting algorithm defines the 
control law u(t) as a combination of two terms 
(Khan et al., 2003). The first is defined in terms of 
discontinuous time derivative u1(t), while the second 
is a continuous function of the sliding variable u2(t). 
The super twisting algorithm is defined as follows: u(t) = uଵ(t) + uଶ(t) (7) where       uሶ ଵ = {−u, |u| ≻ 1 (8)uሶ ଵ = −ωsign(s), |u| ≤ 1 (9)uଶୀି|s|sign(s), |s| > s (10) uଶ = −λ|s|sign(s), |s| ≤ s (11) 

And sufficient conditions for finite time 
convergence are: ω > ФΓ୫ ≻ 0 (12) 

λଶ = 4ФΓ(ω + Ф)Γ୫ଷ (ω − Ф)  (13) 

where ߱, λ and ρ are variable controller parameters, ∅ is positive norm bound on the smooth uncertain Ф, Γ and Γ୫ are lower and upper positive bounds on 
the smooth uncertain function, γ. The choice of ρ = 0.5 assures that sliding order 2 is achieved 
(Levant, 1993). 

The super twisting algorithm in equation (7) can 
be simplified as follows: u(t) = −λ|s|sign(s) + uଵ (14) uሶ ଵ = −ωsign(s) (15)  

This control algorithm does not need any 
information on the time derivatives of the sliding 
variable nor any explicit knowledge of other system 
parameters. 

5 DESIGN OF NEURO FUZZY 
SLIDING MODE CONTROL 

We define a Lyapunov function: V = 12 sMs (16)  Vሶ = sMsሶ + 12 sMሶ s (17)  Since sൣMሶ − 2C൧s = 0 (18) Then    Vሶ = s(Msሶ + Cs)     = s[(u − M(qሷ ୢ − λeሶ ) − C(qሶ ୢ − λe) − H − Fୢ]            = s(u + (Mλeሶ + Cλe) − Fୢ − Mqሷ ୢ − Cqሶ ୢ − H)   (19)  u is chosen as:u = −μ − kୡsign(s) (20) where μ = Mλeሶ + Cλe (21)  B = Mqሷ ୢ + Cqሶ ୢ + H) (22) Then Vሶ = s(−Fୢ − B − kୡsign(s)) (23) 

The sliding condition Vሶ < 0  can be satisfied if kୡ is 

selected such that: kୡ > |Fୢ + B| (24) 

In order to guarantee that the system tracking 
error is quickly convergent  kୡ should be chosen 
sufficiently large. When s>0, s(−Fୢ − B − kୡsign(s)) < 0 (25) When s<0,² s൫−Fୢ − B − kୡsign(s)൯ < 0 (25) Thus  Vሶ = s൫−Fୢ − B − kୡsign(s)൯ < 0 (27)  
This guarantees that hitting condition is satisfied. 
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In this paper, a neuro-fuzzy is used to 
compensate the uncertainty Fୢ in the robot system 
reel-time. A five layer neuro-fuzzy structure is 
applied. It can be described in detail as below: 
Where x = (xଵ, xଶ) is the input of the neuro-fuzzy. 

      y = (yଵ, yଶ) is the output of the neuro-fuzzy. 
Layer 1: 
The nodes in this layer represent membership 
functions. 
 O୨ଵ = μ୧(x),   for i=1. ...3, j=1……3. (28) 

                                O୨ଵ = μ୧ିଷ(x), for i=4. ...6, j=1……3. (29) 

Where:ߤ and ߤ are triangular fuzzy sets.            
Layer 2: O୨ଶ = μ୧(xଵ)μ୧(xଶ) = W୨, j = 1 … … 9. (30) 

Layer 3: O୨ଷ = W୨∑ W୨ଽଵ = V୨ (31)  
Layer 4: O୨ସ = 1 − eିౠయ1 + eିౠయ = Z୨ (32) 

Layer 5: O୩ହ = ∑ T୩୨O୨ସଽଵ   (33)
k=1…2 T୩୨ is the connection weight  T = Tଵଵ Tଵଶ … … . . TଵଽTଶଵ Tଶଶ … … . . Tଶଽ൨ (34)  
The output of the five layer neuro fuzzy can be 
rewritten as follows:  Y = TZ (35)  
The system uncertainty Fୢ can be described as follows:  Fୢ = TZ + ε (36)  ε is the approximation error. 
If the neuro fuzzy algorithm satisfies:  Tሶ = −γsZ (37)  
Where γ>0. 
The output of the controller is designed as:  u = −s − μ + (1 + γ)TZ − B − kୡsign(s) (38) 

But kୡ can cause chattering due to the sign function. 
In order to eliminate the chattering, we replace the 
control kୡ sign(s) by a fuzzy gain kୡ୳୷. Then,  Vሶ = s(−Fୢ − B − kୡ୳୷) (39)  
In order to make Vሶ < 0 and guarantee the sliding 
mode condition, the fuzzy rules can be decided as 
follows: 
IF s is NB THEN kୡ୳୷ is NB 
IF s is N THEN kୡ୳୷  is N 
IF s is Z THEN kୡ୳୷  is Z 
IF s is P THEN kୡ୳୷  is P 
IF s is PB THEN  kୡ୳୷  is PB 
Then  u = −s − μ + (1 + γ)TZ − B + kୡ୳୷ (40) 

6 SIMULATION RESULTS 

In order to demonstrate the superior performance of 
the two methods, a simulation example of a two–link 
flexible robotic manipulator is also considered. The 
function of the desired trajectories can be expressed 
as:  θ(t) = θ + (ూషబ)ଶ (ଶ୲୲భ − sin ቀଶ୲୲భ ቁ)  (41)  
Where θ(t) is the desired tracking curve. θ is the 
initial value of θ(t). 
We assume the disturbance as:  d(t) = w(t) sin (2 πt) (42)  
Where w(t) is a Gaussian distributed randon signal 
with mean zero and standard deviation σ. 

 

The figures compare the results obtained with the 
super twisting algorithm and neuro fuzzy sliding 
mode control for tip position control when the 
flexible manipulator was commanded to move from 
an initial position of 0 rad to a target tip position of 
0.5 rad. From the tip deflection trajectories shown in 
figures (2) and (3), it can be seen that deflection is 
less with the neuro fuzzy sliding mode control than 
Super Twisting algorithm. The first and second 
mode of vibration has smaller amplitude with the 
neuro fuzzy sliding mode compared to the super 
twisting. Even more important, it should be noted 
that the oscillations of elastic modes are attenuated 
quickly with the neuro fuzzy sliding mode control. 

Control profiles of  the  controllers  are  shown in  
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figure (4). Initially, the control torque rises to a 
maximum of 0.6 and 0.8 respectively, and in all 
cases, the control torque eventually becomes zero 
when the desired tip displacement is achieved and 
the vibration is completely damped out.  

Figure (5) shows the position error for the two 
methods. The tip position trajectory with the method 
of Super Twisting algorithm has a law rise time but 
overshoots more than the method of neuro fuzzy 
sliding mode control. 

Figures (6) and (7) show the velocity error for 
the two methods. It can be seen that the tracking of 
the desired velocity is better with the neuro fuzzy 
sliding mode control. 

 
Figure 2: First mode and second mode deflection 
trajectories (link 1). 

 
Figure 3: First mode and second mode deflection 
trajectories (link 2). 

 
Figure 4: Control torque. 

 
Figure 5: Position error σ = 0. 

 
Figure 6: Velocity error with Super Twisting algorithm. 

 

Figure 7: Velocity error with neuro fuzzy sliding mode 
control. 

Figures (8) to (11) show the position error for the 
two controllers with the variation of the 
perturbation. The neuro fuzzy sliding mode is more 
robust than Super Twisting algorithm. It can be seen 
that the tip position exhibits better tracking of the 
desired trajectory with the neuro fuzzy sliding mode 
control. For σ = 0.1 to 100, the error position is 
acceptable with the two methods. But since          ߪ = 120, the desired trajectory with Super Twisting 
algorithm is completely divergent. For σ = 180, the 
error position with the neuro fuzzy sliding mode 
control start to be high. 
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Figure 8: Position error σ = 6. 

 
Figure 9: Position error σ = 20. 

 
Figure 10: Position error σ = 120. 

 
Figure 11: Position error σ = 180. 

Table 1: Comparaison between the two controllers. 

Control σ Rise 
time Precision Robustness

Super 
Twisting 
algorithm 

6 0.1 0.015 Good 
20 0.5 0.02 Good 
120 Bad 0.6 Bad 
180 Bad Bad Very bad 

Neuro Fuzzy 
Sliding Mode 

Control 

6 0.1 10-7 Very good 
20 0.2 10-5 Very good 
120 0.5 0.1 Good 
180 0.6 0.2 Good 

7 CONCLUSIONS 

Due to nonlinearities and uncertainties, the dynamic 
characteristics of flexible-link manipulator are very 
difficult to obtain precisely. In order to achieve high 
precision position control and suppress the 
vibrations, a combined control strategy based on the 
concept of sliding mode control, neural network and 
fuzzy logic is proposed in this paper. Neural network 
is employed to mimic an equivalent control law in 
the sliding mode control and approximate the 
uncertainties and disturbances; fuzzy logic is 
developed to eliminate the chattering phenomenon. 
This controller is compared with the super twisting 
algorithm.  The simulation results show that the two 
methods can eliminate the phenomenon chattering 
greatly, and confirm that the proposed controller 
achieves efficient positioning and vibration 
suppression performances. The neuro fuzzy sliding 
mode controller is more robust than Super Twisting 
algorithm. 
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