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Abstract: An accurate diagnosis model is required to diagnose the medical subjects. The subjects should be diagnosed 
with high accuracy and recall rate by the model. The laboratory test data are collected from 953 latent 
subjects having type 2 diabetes mellitus. The results are classified into patient group and normal group by 
using support vector machine kernels optimized through genetic programming. Genetic programming is 
applied for the input data twice with absorbing evolution, which is a new approach. The result shows that 
new approach creates a kernel with 80% accuracy, 0.794 recall rate and 28% reduction of computing time 
comparing to other typical methods. Also, the suggested kernel can be easily utilized by users having no and 
little experience on large data. 

1 INTRODUCTION 

The number of latent subjects with type 2 diabetes 
mellitus in Korea has rapidly increased over the past 
three decades. In general, a laboratory test is taken 
for the latent subject to figure out seriousness of the 
disease. Many specialized diabetes clinics in Korea 
utilize fasting glucose level as the main parameter to 
diagnose type 2 diabetes mellitus although it is 
changed on daily basis and correlated with other 
testing parameters. If the fasting glucose level is > 
120 mg/dL, type 2 diabetes mellitus is diagnosed for 
latent subjects. However, a level of fasting glucose 
is correlated with other laboratory test parameters. 
Therefore, it is necessary for accurate diagnosis by 
figuring out the relationship of between fasting 
glucose level and various test parameters. If the 
accurate diagnosis model is developed for type 2 
diabetes mellitus by using good kernel functions, it 
is helpful for the clinics to diagnose the disease with 
low misdiagnosing errors and high recall rate. The 
diagnosis model classifies the subjects into either 
patient group or normal group, and the relationship 
between the principal parameters among testing 
parameters and subject groups can be specified. The 
purpose of this study is to generate an excellent 
kernel for an accurate diagnosis model with high 
recall rate of type 2 diabetes mellitus by which the 
test results are accurately grouped  or  classified. For 
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this purpose, a new method “absorbing evolution 
(AE)” is developed by optimizing support vector 
machine (SVM) kernel through genetic 
programming (GP) in this study. 

When SVM is used to classify the input data into 
two classes with a linear function in a hyperplane, 
two conditions should be established: one is setting 
for the amount of classifying errors using cost 
parameter and the other is defining kernel functions. 
The cost parameter is required for determining 
classification accuracy and fitness, and kernel 
function decides whether the test data are linearly 
separable or not. The kernel function has its own 
cost parameter. In this study, the accuracy of kernel 
function is the main concern along with fixed cost 
parameter. 

GP has a complex tree structure consisting of 
both function node and terminal node in each 
program as an object. The tree structure is presented 
by S-Expression formats of Lisp language. 
Comparing with GA, GP has different representation 
scheme for genes. GP operations including crossover, 
mutation, inversion or permutation, edit, 
capsulization, and elimination perform on the basis 
of each tree or program. To obtain the optimal 
solution for a given problem, five components 
should be determined. They are a set of terminals, a 
set of functions, fitness functions, algorithm 
parameters, and terminating condition. This study 
focuses on a new method for constructing the initial 
population and defining a fitness function for 
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clinical data, and fast GP evolution for generating 
SVM kernel. 

2 POTENTIAL RESEARCH ON 
KERNEL AND PARAMETERS 

The well-known evolutionary algorithms (EA) such 
as GP, genetic algorithm (GA), particle swarm 
optimization (PSO), and evolutionary strategy (ES) 
have been combined into SVM to evolve kernel 
functions or kernel parameters. Howley and Madden 
(2005), and Gagne, et al. (2006) evolved a kernel 
function using GP. Their methods produced good 
results for practical cases, but there was no 
guarantee for the final genetic kernel to be positive-
semidefinite (PSD). Sullivan and Nuke (2007) 
proposed combinatory kernel-bounded operations to 
develop new complex kernels from basic predefined 
kernels. Methasate and Theeramunkong (2007) 
proposed a weighted tree in which weight of an edge 
becomes a parameter of the children connected to 
their parent nodes. Also, the weight is adjusted by 
gradient descent using GP. Simian (2008) introduced 
a multiple kernel based on simple polynomial 
kernels using GP. Friedrichs and Igel (2005) 
proposed a covariance matrix adaptation evolutional 
strategy (CMAES) to extend the radial basis 
function (RBF) kernel with scaling and rotation. 
Then, invariance of linear transformation was 
realized within the space of SVM parameters. A 
mechanism, which is similar with reverse singular 
value decomposition (SVD), was used to guarantee 
that the final kernel is semi-positive definite. 
Phienthrakul and Kilsirikul (2005 and 2008) used ES 
for learning the weights in a weighted linear 
combination of Gaussian radial basis functions. 
Souza et al. (2006) used PSO to obtain optimal 
parameters for multi-class classification in a 
Gaussian kernel function. In a similar way, Huang 
and Wang (2006), and Lessmann et al. (2006) used 
GA for classification. Runarsson and Sigurdsson 
(2006) used a parallel ES to generate optimal 
parameters in a Gaussian kernel. Mierswa (2006) 
combined PSO into ES to solve the constrained 
optimization problem related to SVM. Keerthi et al. 
(2007) investigated a method to tune parameters in 
SVM models based on minimizing a smooth 
performance validation function. Simaian and 
Stoicar (2009) proposed a stationary tree structure 
having a combination of known kernels in which 
each kernel parameters were encoded in a single 
chromosome. These parameters are then optimized 
using GA. Kernel functions should be PSD and 

typically meet with Mercer conditions (Refer to 
Section 4.1). 

The previous studies have not considered 
computing time for selecting or generating kernels. 
However, faster selection and generation of kernels 
are necessary for reducing the time since both data 
sizes and dimensions have been big and large. This 
study proposes AE algorithm to generate kernels 
with fast speed in GP. This new approach is applied 
for laboratory test data collected from latent subjects 
of type 2 diabetes mellitus. 

3 TARGET DATA DESCRIPTIONS 

In this study, laboratory test results were collected 
from a specialized diabetes mellitus clinic in Seoul, 
Korea in 2009. The total number of data items was 
953.The laboratory test includes 47 different 
parameters related to liver function, hematology, 
urinalysis, blood sugar, kidney profile, and lipid 
profile. Such parameters having either identical 
values or many missing values are removed 
regardless of gender. A total of 32 parameters 
including gender type are selected for analysis. Also, 
test values located outside of the upper and lower 
limits are removed from each parameter regardless 
of subject to reduce any possible measuring errors. 

In this study, LIBSVM (Chang and Lin, 2011) is 
used for separating the subjects into normal group 
(false) and patient group (true) in SVM learning. 

4 SVM KERNEL OPTIMIZATION 
USING GP 

In this study, SVM is used for classification of 
laboratory test results collected from 953 latent 
subjects. For this purpose, either linear classification 
or nonlinear classification is appropriate for such big 
data. Maximum margin SVM is available for linear 
classification while soft margin SVM is good for it 
with penalties given to misclassification. When both 
SVMs are still inappropriate, kernel trick is utilized 
by which the data can be linearly classified after 
mapping the original data into high dimensional 
space. Nonlinear classification adapts both 
misclassification penalty and kernel trick. Accuracy 
of a kernel affects the performance of nonlinear 
classification. Therefore, it is important to select 
better kernels. There are two ways to select SVM 
kernels: one is based on expert’s experience and the 
other is using popular methods such as grid search, 
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gradient search, GA, and PSO. In this study, GP is 
adapted as a new approach. GP needs high 
computing time to obtain the kernel and no standard 
procedure is available. However, GP does not 
require the expert’s experience or knowledge to 
generate kernels. This study proposes a new 
approach to reduce its computing time in searching 
kernels. 

4.1 Mercer’s Theorem and Initial 
Population 

The kernel should be positive-semidefinite (PSD) to 
satisfy Mercer’s theorem. If all kernel matrices 
generated by kernels are symmetry and have 
eigenvalues which are greater than 0, the kernel 
become PSD. All evolved programs generated by 
GP should meet the theorem to be kernels. However, 
only a few programs satisfy the theorem at early 
evolution stage, even when evolutionary process for 
given data is terminated. A typical way of resolving 
this problem, the number of programs and 
generations can be increased. However, this 
resolution requires higher computing time. To 
reduce the time, the initial population is made of 
programs through GP instead of using random 
population in this study. Then, more programs 
satisfying Mercer’s theorem are generated as shown 
in Table 1. Since the initial population is obtained, it 
proceeds again to generate the optimize SVM kernel 
through GP. In other words, highly accurate SVM 
kernel to define a diagnosis model is found by using 
GP twice. 

Table 1: Percent of programs by population types. 

Population Type Percent of programs satisfying Mercer’s 
Theorem (%) 

Random 0.5 
Initial Population 5 

4.2 Selected Primitives in GP 

In a GP structure, program trees need primitives or 
operators. Each kernel has scalar outputs from input 
vectors and it is used for combining programs in 
evolutionary process. The selection of appropriate 
primitives is important for GP in terms of speed and 
simplification of process. In addition to four basic 
operators (+, -, *, /), several operators such as power 
and log can make faster evolutionary speed. Other 
primitives such as p-norm and mhnorm can make 
easier to figure out characteristics of raw data in a 
space mapped by kernels. Also, such primitives as 
L2 norm and p-norm can be used to determine the 

features of a multi-dimension space. Table 2 shows 
those primitives with their argument and return types 
adapted in this study. The combination between 
primitives is done by Automatic Defined Function 
(ADF) method which allows strict primitive 
operations only proved mathematically. 

Table 2: Selected primitives used for GP. 

Name Args. And return types Description 

ssadd, sssub, ssmul, 
ssdiv, sspow 

(scalar, scalar) → 
(scalar) 

arithmetic 
operations vvadd, vvsub, dot (vector, vector) → 

(vector) 
vsmul, svmul, vsdiv, 

vspow 
(vector, scalar) → 

(scalar) 
ssin,scos,stan (scalar) → (scalar) triangular 

functions vsin,vcos,vtan (vector) → (vector) 
sexp, slog, sneg, 

sabs, ssqrt (scalar) → (scalar) exponential, log, 
negative, absolutevexp, vlog, vneg, 

vsbs, vsqrt (vector) → (vector) 

p_norm, norm2 (vector, vector) → 
(scalar) 

p-norm, L2 norm 

p_normdist,norm2di
st, mhdist 

(vector,vector) → 
(scalar) 

p-norm distance, 
L2 norm distance, 

Mahalanobis 
distance 

random scalar (scalar) 
random vector (vector) 

4.3 Fitness Function 

Fitness function is used as the major criterion to 
select better kernels. An appropriate fitness function 
should be established to make ensure whether kernel 
functions meet with required conditions or not. In 
this study, laboratory test results are analysed to 
develop an accurate diagnosis model. The model can 
classify the results into patient group and normal 
group. The conditions required for kernel are the 
overall precision of classification and recall rate. If a 
kernel classifies correctly real patients as true 
patients and normal subjects as normal, the model 
has high recall rate. Large costs would be paid if the 
model misclassifies real patients as normal subjects 
or vice versa. In addition to precision and recall rate, 
the number of support vectors should be low in the 
fitness function. The data mapped into kernel 
functions would be linearly separable better if the 
number of vectors is low. Howley and Madden 
(2005) presents that overfitting risks are reduced 
with low number of vectors. In this study, the 
developed fitness function includes the number of 
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support vectors as shown Eq. 1. 
 Fitness= AVGቆ SV ∗ RଶAC × ሺPC × 100	 × α + RC × 100 × βሻቇ (1)

 

SV is the number of support vectors, R is the radius 
of the smallest hypersphere (Cristianini, 2000), AC 
is the accuracy, PC is the precision rate, RC is the 
recall rate in SVM training/validation, and α and β 
are weights given for precision and recall rate. In 
this study, α and β are set as 0.2 and 0.8, 
respectivelysince the recall rate is regarded as more 
important measurement in developing diagnosis 
models. 

4.4 Absorbing Evolution (AE) 
Algorithm 

There exist two major problems in using GP to 
obtain optimized SVM kernels: one is high 
computing time and the other is lack of PSD 
programs. The latter is more serious in terms of 
evolutionary speed and dropping into optimal 
solution locally. Parallel evolutionary algorithm 
(PEA) can solve these problems in which the 
original data is divided into partial populations, each 
population evolves independently and its result is 
shared by migrating its objects each other with 
specific operators or primitives under given 
conditions (Kim, 2011). Yet, the algorithm has the 
possibility to generate too small number of programs 
during evolution process. In this study, the island 
algorithm as a typical PEA is modified and utilized 
to minimize this problem. The modified island 
algorithm is defined as “absorbing evolution (AE)” 
algorithm. The AE algorithm composes a target 
population consisting of the desired objects and 
defines it as the initial partial population. Then, the 
target population absorbs new objects from other 
populations.If some objects aremigrated from a 
partial population, the same number of new objects 
migrates into the partial population in the island 
algorithm. Therefore, the population size is always 
same. In AE algorithm, however, the size of the 
target population is increased through migration of 
objects selected from other partial populations. 

The procedure of AE algorithm is as follows: 
 

Step 1: Initialization 
Compose target population with desired objects and 
the rest of objects are grouped into other partial 
populations 
Step 2: Termination 
Establish terminating conditions 

Step 3: Migration 
Step 3.1: Selection of migrating objects 
Select migrating objects based on both migration 
rate defined for each partial population and 
fitness function values, and copy 
Step 3.2: Transferring migrating objects into 
neighbouring populations 
Step 3.3: Receiving migrated objects 
Step 3.4: Exchanging the existing objects in the 
current population with new migrating objects to 
maintain the same size of population 

Step 4: Absorption 
Step 4.1: Selection of absorbing objects except 
migrating objects 
Select absorbing object based on absorbing 
conditions 
Step 4.2: Target population absorbs selected 
objects 

Step 5: Deportation and elimination 
Target population deports and removes those objects 
on the basis of deportation criteria 
Step 6: Executing standard GP and back to Step 2.  

4.5 Setting Algorithm Parameters in 
GP 

In this study, the initial population is made of 
programs through GP (GP-1) to reduce computing 
time. Then, more programs satisfying Mercer’s 
theorem are generated. Since the initial population is 
obtained, it proceeds again to generate the optimize 
SVM kernel through GP (GP-2) with AE. In other 
words, highly accurate SVM kernel to define a 
diagnosis model is found by using GP twice. 

Table 3: Algorithm parameter settings. 

 GP-1 GP-2 
Number of iterations 30 10 

Number of 
populations 1000 

5000 
(including from GP-

1’s best results) 
Number of 
generations 1000 1000 

Crossover probability 0.8 0.8 
Mutation probability 0.4 0.1 

Selection algorithm Tournament 
 t= 3 

Tournament 
 t= 3 

SVM cross validation 10 fold validation 10 fold validation 
Terminate condition None None 

Additional condition Mercer’s theorem 

Mercer’s theorem or 
not matter and 
migration rate, 

absorption condition 
 
Table 3 shows GP algorithm parameters and 
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terminate condition. GP-1 focuses on kernel function 
satisfied Mercer’s theorem quickly. So, mutation 
probability is set high. GP-2, all parameters are 
general except migration rate, absorbing condition 
and elimination rate. Migration rate is 0.1. 
Absorbing condition is whether a function 
satisfiesMercer’s theorem or not. Finally, 
elimination rate is 0.05. 

5 RESULTS 

Table 4: The 13 kernels obtained for laboratory test results. 

Kernels 

1 scos(mhdist(vsdiv(VE1, 1.0), VE0)) 
2 scos(mhdist(VE1, vneg(svmul(-1.0, VE0)))) 

3 scos(mhdist(VE1, vspow(VE0, 1.0))) 

4 scos(mhdist(VE1, vabs(vabs(VE0)))) 

5 scos(mhdist(VE1, vsdiv(VE0, 1.0))) 

6 scos(mhdist(vspow(VE1, 1.0), VE0)) 

7 scos(mhdist(svmul(1.0, VE1), VE0)) 
8 scos(mhdist(vsmul(VE1, 1.0), VE0)) 

9 scos(mhdist(VE1, vvsub(vvsub(VE1, VE1), vneg(VE0)))) 

10 scos(mhdist(vabs(vspow(VE1, 1.0)), VE0)) 

11 scos(ssadd(slog(-1.0), mhdist(VE1, VE0))) 

12 
scos(mhdist(vvsub(svmul(1.0, VE1), vvsub(VE1, VE1)), 
VE0)) 

13 scos(mhdist(VE0, vsmul(VE1, 1.0))) 

Fitness Kernel SVM SVM Precision Recall
Making Learning Accuracy 

Time Time 
1 0.269 0.878 0.005 79.412 1.000 0.794

2 0.269 0.854 0.004 79.412 1.000 0.794

3 0.269 0.902 0.004 79.412 1.000 0.794

4 0.269 0.840 0.004 79.412 1.000 0.794

5 0.269 0.964 0.004 79.412 1.000 0.794

6 0.269 0.901 0.004 79.412 1.000 0.794

7 0.269 0.895 0.007 79.412 1.000 0.794

8 0.269 0.897 0.006 79.412 1.000 0.794

9 0.269 0.984 0.004 79.412 1.000 0.794

10 0.269 1.002 0.004 79.412 1.000 0.794

11 0.269 0.998 0.005 79.412 1.000 0.794

12 0.269 1.227 0.004 79.412 1.000 0.794

13 0.269 1.146 0.005 79.412 1.000 0.794

*VE0, VE1 are single data vector (like X, Y). 

Table 4 presents top 13 kernels which have identical 
fitness values obtained through GP using AE 
algorithm. These kernels have the identical fitness 
value. Among the kernels, the second kernel has the 

least computing time and can be selected finally. 
When the kernel is applied for the original data, that 
is, laboratory test results with 10 fold cross 
validation, 80% accuracy of classification is shown 
while other classifiers such as RBF kernel and linear 
kernel are shown about 81%. Also, the recall rate is 
0.794 for GP with AE algorithm, and it is 0.644 for 
linear kernel. Even though other kernels present 
similar performance in terms of accuracy and recall 
rate, the new method suggested in this study shows 
the highest recall rate and needs less computing time 
compared to standard GP algorithms. The time is 
reduced as much as 28%. 

The selected kernel has the expression as shown 
in Eq. 2. 
 Kernel = cos ൭ሺX − Yሻ෍ ሺܺ − ܻሻ்ିଵ ൱ (2)
 

where ∑ିଵ is an inverse of the covariance matrix 
of the original data, e.g. the laboratory test results. 
Both X and Y are single data vectors in the original 
space. 

6 CONCLUSIONS AND 
DISCUSSION 

This study focuses on generating an accurate 
diagnosis model from laboratory test results 
obtained by type 2 diabetes mellitus subjects. The 
accurate model should be able to classify the 
subjects into patient group and normal group with 
high precision. There are 32 test parameters 
including fasting glucose level in a laboratory test. 
Because these parameters are correlated and have 
complex relations, a diagnosis model cannot classify 
the subjects clearly. In other words, misclassification 
of normal subjects into patient group or vice versa 
can be occurred.  This study suggests a new 
approach to optimize SVM kernels with GP. 
Especially, GP is utilized twice along with AE 
algorithm. Then, the accuracy of the best kernel is 
80% and the recall rate is 0.794. Other typical kernel 
like RBF shows similar accuracy. However, the 
method suggested by this study shows the highest 
recall rate and needs less computing time although it 
utilizes GP twice. In addition to this achievement, 
other advantage of this study is easiness to generate 
a good diagnosis model from the developed kernel 
function without expert’s experience on clinical data. 
Yet, the time should be minimized by better 
approaches. Also, further research should be 
followed by investigation of advanced 
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methodologies to generate more PSD programs. 
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