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Abstract: The aim of the paper is to propose a region-based object recognition method to identify objects from 
complex real-world scenes. The proposed method firstly performs a colour image segmentation by a 
simplified pulse coupled neural network (SPCNN) model, and the parameters of the SPCNN are 
automatically set by our previously proposed parameter setting method. Subsequently, the proposed method 
performs a region-based matching between a model object image and a test image. A large number of object 
recognition experiments have proved that the proposed method is robust against the variations in translation, 
rotation, scale and illumination, even under partial occlusion and highly clutter backgrounds. Also it shows 
a good performance in identifying less-textured objects, which significantly outperforms most feature-based 
methods.  

1 INTRODUCTION 

To identify a given object from complex background 
in an image or video sequence is an important 
branch of the study of object recognition (Ullman et 
al., 2001). In real-world scenes, objects may pose 
randomly under clutter and partial occlusion in 
illumination-changing environment. So an object in 
clutter backgrounds may encounter complex 
variations in viewpoints, translation, scale, rotation, 
and illumination, even under partial occlusion. Thus, 
the capability of identifying an object from complex 
varying viewing conditions is a significant aspect of 
a promising object recognition method. 

There have been a large number of works aiming 
at endowing computers with the ability to recognize 
objects from the real-world scenes. Nowadays, the 
feature-based methods, such as Lowe’s scale 
invariant feature transform (SIFT) (Lowe, 2004) and 
its extension methods (Abdel-Hakim and Farag, 
2006; Bay et al., 2008; Bosch, et al., 2008; 
Burghouts and Geusebroek, 2009; Ke and 
Sukthankar, 2004; Mikolajczyk and Schmid, 2005; 
van de Sande et al. 2010; Weijer et al., 2006), have 
become become active and dominant methods of 
object recognition because of their high accuracy 
and fast speed (Mikolajczyk and Schmid, 2005; van 
de Sande et al., 2010).  

However, the performance of the above feature-
based methods has two critical limitations. One 
limitation is that the feature-based methods would 
inevitably include background information into local 
invariant feature descriptors when keypoints locate 
near object boundaries (Stein and Hebert, 2005). 
This has been a bottleneck when objects are 
identified from heavy clutter environments or 
objects that occupy only a small part of the images 
(Stein and Hebert, 2005). The other limitation is that 
when the feature-based methods are used to identify 
less-textured objects (such as doorknob, sofa, TV, 
fridge), the number of repeating keypoints that are 
correctly matched between model object and test 
image is usually very low, and the corresponding 
descriptors are usually not discriminative either.  

In order to overcome the above limitations, we 
develop an region-based object recognition method 
based on colour segmentation performed by a 
simplified pulse couple neural networks (SPCNN) 
model (Chen et al., 2011; Johnson, 1994; Johnson 
and Padgett, 1999) whose parameters could be 
automatically set by our previously proposed 
method (Chen et al., 2011).  

we conduct a number of experiments to show the 
robustness of the proposed object recognition 
method in resisting the variances in translation, 
rotation, scale, and illumination (even under partial 
occlusion and clutter environments). Moreover, in 
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order to verify the validity of the proposed method, 
we compare it with the state-of-the-art method.  

The following part of this paper is organized as 
follows. Section 2 simply describes the SPCNN 
model with automatic parameters. Section 3 
elaborates the proposed object recognition method 
with an illustrated example. Section 4 demonstrates 
more experimental results. And the last section gives 
a conclusion.  

2 SIMPLIFIED PCNN WITH 
AUTOMATIC PARAMETERS  

Pulse coupled neural network (PCNN) was derived 
by Johnson et al. (Johnson, 1994; Johnson and 
Padgett, 1999) from Echorn’s cortical model which 
was developed on the basis of synchronous 
dynamics of neuronal activity in cat visual cortex 
(Eckhorn et al. 1990). In order to achieve lower 
computational complexity, we employ a simplified 
pulse coupled neural network (SPCNN) with 
parameters automatically set by the automatic 
parameter setting method proposed in our previous 
paper (refer to the equations (33), (40), (41), (48), 
and (49) in Chen et al., 2011). The SPCNN model 
was derived from SCM model (Zhan et al., 2009) 
and can be described as:  
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In this model, there are two inputs for the neuron 
ijN  in position ( , )i j : input stimulus ijS  which is the 

image pixel intensity, and a simplified linking input 
which is the sum of the eight neighbouring neuron 
outputs [ 1]klY n −  linked by a constant synaptic 
weight ijklW . Moreover, the amplitude of the 
simplified linking input is denoted by LV . These two 
inputs are modulated by a linking strength β  to 
yield an internal activity [ ]ijU n . The internal activity 
also records the previous neuron state by an 

exponential decay factor fe α− .  The neuron ijN  
outputs a pulse in iteration n  ( [ ] 1ijY n = ) only when 
the current internal activity [ ]ijU n  surpasses the last 
dynamic threshold [ 1]ijE n − . Subsequently, if neuron 

ijN  fires, the dynamic threshold will increase by 
amplitude EV ; otherwise, the dynamic threshold will 
decay by a factor ee α− (Lindblad and Kinser, 2005).  

3 PROPOSED OBJECT 
RECOGNITION METHOD 

PCNN has broad applications in image processing 
(Lindblad and Kinser, 2005; Ma et al., 2010), 
hereinto, object detection is one of the most potential 
applications (Gu, 2008; Kinser, 1996; Ranganath 
and Kuntimad, 1999; Yu and Zhang, 2004). Object 
detection by PCNN is usually implemented by 
generating features which result from encoding the 
spatial distributions of a 2D image into a unique 
temporal sequence (Johnson, 1994; Gu, 2008; Zhan 
et al., 2009). This would result in the loss of image 
spatial information that may facilitate the object 
detection.  

In this paper, we propose an object recognition 
method named RBOR-SPCNN (region-based object 
recognition with SPCNN), which detects a desired 
object from a complex real-world environment. The 
proposed method makes use of both spatial and 
temporal information. Specifically, the proposed 
method employs a specific colour transformation 
before using the SPCNN with automatic parameters 
(Chen et al., 2011) to segment the colour image into 
several syn-firing areas, and finally employs a 
region-based matching to output recognition result.  

3.1 Colour Space Transformation 

In order to resist light intensity change and light 
intensity shift that are caused respectively by a 
constant gain and an equal offset in all channels, we 
carry out a colour space transformation on both 
object model image and test image. The colour space 
transformation integrates normalized rgb colour 
space (scale-invariant) in (5) with opponent colour 
space (shift-invariant) in (6) (van de Sande et al., 
2010). Thus, we call the resulting image an “rgb-
opponent” colour image.  
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Since all the values in the 3o  channel in (6) are equal 
to constant 1

3
, we replace the 3o  intensity channel 

by the normalized gray image and note it as 3O  
channel:  

min
3

max min

Ig IgO
Ig Ig

−=
−

 (7)

 where Ig  denotes the original gray image.  
Due to the subtraction, the 1O  and 2O  channels 

may contain some negative values which do not 
respond to the SPCNN process. Thus, we 
supplement 4O  and 5O  channels by reversing the 1O  
and 2O  channels as follows:  

4 1O O= −  (8)

5 2O O= − . (9)

3.2 Colour Segmentation by SPCNN  

As for a specific object model, the SPCNN 
parameters (Chen et al., 2011) could be estimated 
according to the normalized gray object model 
image 3O .  

After the proper SPCNN parameters are 
estimated, the SPCNN model with these parameters 
could be applied to each of the transformed channels 

1O , 2O , 3O , 4O , and 5O  for object model and test 
image, respectively.   

In order to guarantee the physical meaning of 
image segmentation, we assume that once a pixel in 
a channel fires twice, it will be prevented from firing 
again (Chen et al., 2011). And we record the second 
firing times of the pixels in each channel into a 
firing-order matrix. The matrix has the same size as 
the image channel.  

Thus, we obtain five firing-order matrices 
corresponding to the five channels 1O , 2O , 3O , 4O , 
and 5O  for object model and test image, 
respectively： 

1 2 3 4 5[ ; ; ; ; ]m m m m mC C C C C  (10) 

1 2 3 4 5[ ; ; ; ; ]t t t t tC C C C C . (11) 

Subsequently, we could gather the pixels firing 
synchronously throughout all the five channels as an 
image segment called “syn-firing area”. Thus, an 
image could be segmented into several “syn-firing 
areas”. Specifically, we construct a firing-order 

vector for each pixel. For example, the firing-order 
vector of the pixel at position ( , )i j  consists of five 
elements extracted from the five firing-order 
matrices at the same position ( , )i j  as follows:  

( , ) 1 ( , ) 2 ( , ) 3 ( , ) 4 ( , ) 5 ( , )[ ]m m m m m m
i j i j i j i j i j i jv c c c c c=  (12) 

 

( , ) 1( , ) 2( , ) 3( , ) 4( , ) 5( , )[ ]t t t t t t
i j i j i j i j i j i jv c c c c c= . (13) 

Thus, a syn-firing area can be formed by grouping 
the pixels with the same firing-order vector. In this 
manner, the object model and the test images could 
be segmented into several syn-firing areas according 
to the different firing-order vectors. An example of a 
sharpener is shown in Fig. 1.  

 
Figure 1: The 1O , 2O , 3O , 4O , and 5O  transformed 
channels of a sharpener image (a) and its test image (b) are 
shown in (a1) - (a5) and (b1) - (b5), respectively. And the 
corresponding SPCNN firing-order matrices of the five 
channels are shown in (c1)-(c5) and (d1)-(d5) in Pseudo-
colours. And the image segmentation results represented 
by several syn-firing areas depicted with different Pseudo-
colours are shown in (c) and (d).  

3.3 Matching Syn-Firing Areas 

We suggest a hypothesis that the same object 
possesses the same SPCNN firing-order vectors no 
matter how background varies and how object poses. 

Based   on    this   assumption,  a  specific  object 
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model could be identified from a test image of 
complex real-word scenes, by means of extracting 
the syn-firing areas with the same firing-order 
vectors as the syn-firing areas in the object model. 
And we define these pairs of syn-firing areas 
between the object model and test image as pairs of 
matching syn-firing areas. Thus, the test matching 
syn-firing areas are the potential regions to contain 
the desired object in the test image.  

3.4 Region Blobs  

The matching syn-firing areas in test image often 
disperse and usually include both object and 
background pixels. In order to separate the 
background pixels and the object pixels, it is 
necessary to divide the matching syn-firing areas 
into smaller region blobs which are expected to 
contain either part of object pixels or part of 
background pixels.  

In order to speed up the experiments, we remain 
only the pairs of matching syn-firing areas whose 
model syn-firing area component is larger than 1/50 
of the total area of the object model and further split 
them into smaller region blobs.  

In the process of region splitting, we 
successively apply a morphological closing (with a 
disk-shaped structuring element of 3-pixel radius) 
and an 8-connected components labelling to each 
pair of matching syn-firing areas. And the resulting 
connected components are labelled as separated 
region blobs of the pair of matching syn-firing area.  

Since there may still exist some region blobs that 
are too small to be meaningful, we only remain the 
region blobs with more than 100 pixels (image size: 
640*480) in our experiments.  

For each of the remained region blobs, we 
calculate the region properties, such as ‘area’, ‘major 
axis length’, ‘minor axis length’, ‘weighted centroid’ 
and ‘eccentricity’ (refer to “regionprops” in Matlab). 

3.5 Removal of Test Region Blobs with 
Irrational Size  

Since there may exist many background region blobs 
in test image, we may easily remove the obvious 
ones by comparing their rough sizes with that of the 
object model.  

In our experiments, we firstly remove the very 
large test region blobs whose area is larger than 

argl eτ  times of the test image area (if any), since they 
are probably generated by the broad background  

test blob test image
argl eA Aτ> × . (14) 

Secondly, we remove the test region blobs that 
distribute loosely in a large space. That is to remove 
the test blobs that are larger than looseτ  times of the 
coarse distribution area of the object model:   

test blob test blob model model
major axis minor axis major axis minor axis( )looseL L L Lτ× > × × . (15) 

Besides, since the very long test region blobs are 
usually outliers, we could remove the test blobs 
whose major axis lengths are larger than longτ  times 
of the maximum major axis length of the model 
region blobs in the pair of matching syn-firing areas:  

test blob matching model blobs
major axis major axismax( )longL Lτ> × . (16) 

It is noted that the above weight constants are 
application-dependent, and we employ arg =0.25l eτ , 

2looseτ = , and 3longτ =  in our experiments based on a 
number of experiments.  

3.6 Cluster Formation  

After the above removal of obvious outlier test 
region blobs, the test image has been fragmented and 
has many large or small gaps among the object and 
background region blobs. Since the desired object 
can only occupy a cluster of nearby test region blobs, 
we could group the remained nearby test region 
blobs into several clusters under a certain radius 
distance constraint which is adjustable according to 
a specific object model.  

Inspired by the cluster seeking method proposed 
by Ranganath and Kuntimad (Ranganath and 
Kuntimad, 1999), we form clusters as follows:  

Step-1: Sort all the test region blobs in a list in 
descending order of areas.  

Step-2: Mark the test region blob that has the 
largest area as the root region blob.  

Step-3: Calculate the distances of intensity-
weighted centroids between each test region 
blob and the root region blob.  

Step-4: Form a cluster by grouping together the 
adjacent test region blobs surrounding the 
root region blob, under the constraint of a 
certain specific cluster radius threshold.  

Step-5: Set the area of the root region blob to be 
“0” in the list to make sure that this root 
region blob cannot become root region blob 
again in the following iterations.  

Step-6: Repeat Step-1 to Step-5 until the areas of 
all the region blobs are set to “0” in the list.  

In order to make sure that the cluster radius 
threshold is adjustable  for  different  object  models,  
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the cluster radius threshold could be set as follows:  

( ) ( )thr m md mean d std dμ= + ×  (17) 

where md  denotes the distances between the 
intensity-weighted centroids of each pair of model 
region blobs; and 0.5μ =  is empirically set based on 
plenty of experiments.  

3.7 Cluster Refinement 

Since some of the obtained clusters are outliers, we 
perform a cluster refinement process as follows:  

(A) Eliminate the repetitive clusters by retaining 
only one of them.  

(B) Delete the clusters with areas less than lowτ  
times or larger than highτ  times of the total area of the 
model region blobs.  

cluster model region blobs
lowA Aτ< ×  (18) 

cluster model region blobs
highA Aτ> × . (19) 

 (C) Lastly, remove the clusters with the 
eccentricity larger than eccentrτ  times of the 
eccentricity of the object model, if any.  

cluster model
eccentrE Eτ> × . (20) 

In the above equations, the weigh constants are 
empirically set as =0.1lowτ , =3highτ , and =7eccentrτ  
based on a number of experiments.  

3.8 Cluster Matching and Object 
Recognition Results  

After obtaining the above clusters, the next step is to 
pick out the cluster which is of the highest 
probability to contain the desired object and output it 
as the final object recognition result.  

In our study, a Bhattacharyya distance of colour 
histograms is employed to measure the distance 
between each test cluster image and the model 
image that is filtered by the model region blobs  

( )
1
2

1
( , ) 1 ( ) ( )Ni i

model cluster model clustern
D h h h n h n

=
= −∑  (21) 

where h  denotes a colour histogram; n denotes the 
n th element of the histogram and i  denotes  the i th 
cluster in the test image.  

The histogram is constructed by 
1 2 3O O ON N N N= +  bins (

1ON , 
2ON  and 

3ON  are the 
bins in 1O , 2O  and 3O  channels, respectively). In 
our experiments, the histogram dimension is  

1 2 3
20 20 30 430O O ON N N N= + = × + = . (22) 

As a result, the test cluster with the minimal 
Bhattacharyya distance of colour histograms is 
outputted as the final object recognition result shown 
as in the right side of Fig. 2 (e). And the compared 
result performed by the state-of-the-art 
OpponentSIFT (Burghouts and Geusebroek, 2009; 
van de Sande et al., 2010) is shown in Fig. 2 (f) 
where no matching point is found.  

 
Figure 2: Removal of test region blobs with irrational sizes 
and object recognition result. (a) shows all the region 
blobs in the pairs of matching syn-firing areas depicted 
with different pseudo-colours. The right side of (b) shows 
the remained region blobs after a test region blob with area 
larger than 1/4 of the test image is discarded; and the right 
side of (c) shows the remained region blobs after the long 
test region blobs and the large but loose ones are discarded. 
(d) shows that only 7 clusters are left after cluster 
refinement in test image. (e) shows the object recognition 
result by the proposed method. For comparison, (f) shows 
the object recognition result performed by the state-of-the-
art OpponentSIFT, where no matching point is found.  

4 MORE EXPERIMENTS 

In order to examine the general validity of the 
proposed RBOR-SPCNN method, we apply it to a 
wide range of diverse objects under various 
backgrounds. Each object model corresponds to 
several test images. As an example, the experiments 
of a sharpener are shown in Fig. 3. In the column (b) 
of Fig. 3, the sharpeners in the test images are 
casually placed in highly clutter environments, 
suffering variations in viewpoints, translation, 
rotation, scaling, even occlusion.   

Moreover, experiments on several other daily 
necessities are shown in Fig. 4 as examples. Various 
object models are shown in column Fig. 4 (a); some 
are less-textured objects, such as cap, chair, and bag. 
And the test images with complex real-world 
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environments are shown in column (b). In each test 
image, the desired object is randomly rotated and 
scaled. Besides, the tooth past in test image (b2) and 
the bag in test image (b7) even suffer partial 
occlusion and illumination change.  

 
Figure 3: Object recognition results of a sharpener in 
different poses and various clutter backgrounds. Object 
model is shown in (a). Six test images with complex 
backgrounds are shown in column (b). The final object 
recognition results obtained by the proposed method are 
shown in column (c). The compared results performed by 
OpponentSIFT are shown in column (d) where no 
matching points for most cases (expect one matching point 
appearing in (d1) and (d4), respectively).  

Obviously, in both Fig. 3 and Fig. 4, the object 
recognition results obtained by the proposed method 
(shown as in column (c)) significantly outperform 
the compared ones processed by the state-of-the-art 
OpponentSIFT (shown as in column (d)) (Burghouts 
and Geusebroek, 2009; van de Sande et al., 2010). It 
could be seen that the proposed method is not only 
capable of detecting occluded objects, such as the 
sharpener in Fig. 3 (b5), the tooth paste in Fig. 4 
(b2) and the bag in Fig. 4 (b7); but also capable of 
detecting less-textured objects, such as the cap, bag, 
and chair in Fig. 4 (b5)-(b7), respectively. In 
contrast, the OpponentSIFT fails to find any 
matching points in such cases.  

 
Figure 4: Object recognition results of diverse objects 
under various backgrounds. Column (a) is object models. 
Column (b) is test images. All the desired objects in test 
images are casually placed in highly clutter environments. 
The variations of objects include variations in rotation, 
sale and occlusion. The final object recognition results 
obtained by the proposed method are shown in column (c). 
The compared results performed by OpponentSIFT are 
shown in column (d) where no matching point is found in 
most cases (expect two matching points in (d4)).  

5 CONCLUSIONS 

In this paper, we presented a region-based object 
recognition method (i.e., RBOR-SPCNN) to identify 
specific objects from complex real-world 
environments. The proposed object recognition 
method performs region-based matching between 
object model and test image based on colour image 
segmentation performed by the SPCNN with 
automatic parameters (Chen et al., 2011).  

The proposed method could overcome the 
limitation of the feature-based methods that 
inevitably include background information into local 
invariant feature descriptors (Stein and Hebert, 
2005), and the limitation of the feature-based 
methods that is incapable of identifying less-textured 
objects. As compared to the state-of-the-art 
OpponentSIFT, the proposed method showed 
encouraging results in identifying diverse objects 
from complex real-world scenes.  
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