
Agile Development with Stepwise Feature Introduction

Mikołaj Olszewski1,2 and Ralph-Johan Back1
1Department Of Information Technologies, Åbo Akademi University, Joukahaisenkatu 3-5, Turku, Finland

2Turku Centre for Computer Science (TUCS), Graduate School, Turku, Finland

Keywords: Agile Development, Object-oriented Design, Development Paradigm, Open-ended Development.

Abstract: The paper evaluates the Stepwise Feature Introduction paradigm, an organised method for constructing
layered, reusable, object-oriented software systems. Based on our research adapted the paradigm to
construction of large-scale software systems. In particular, we added a dedicated, agile development process
to the paradigm and examined strategies for execution and testing. Correctness concerns of the produced
system are also covered in this paper. We also briefly analyse the impact of the paradigm on the quality of
the developed software.

1 INTRODUCTION

The paradigm of Stepwise Feature Introduction
(SFI) has been developed by R.-J. Back as a high-
level framework for software development (Back,
2002). SFI facilitates the construction and evolution
of a software system by introducing features
incrementally, one after another, in a layered
manner.

SFI has been applied to the development of a
number of proof-of-concept software, e.g. a calendar
application (Back, et al., 2005). These projects have
confirmed that the gradual extension of
functionality, which is the essence of the paradigm,
promotes high reusability and maintainability of the
constructed software. Recently the paradigm was
used for construction and reengineering of more
complex software systems. During that work the
paradigm evolved from theoretical grounds to a fully
customisable agile framework.

This paper presents the current state of the
paradigm and is organised as follows. We start with
the introduction of the paradigm and its basic
concepts in section 2. Section 3 discusses the
development process. Correctness and testing are
presented in section 4, together with diagrammatic
reasoning. The discussion on the quality follows in
section 5. We conclude our presentation of the
paradigm with the overview of alternative
approaches to software construction, as well as with
some general remarks and directions for our future
work. An extended version of this paper, where a

specific case study is used to illustrate the concepts
involved, is available as a Turku Centre for
Computer Science Technical Report (Olszewski &
Back, 2012).

2 OVERVIEW

There are three important characteristics of a system
created with SFI that can be outlined. First, the
paradigm requires that whenever new functionality
is added, the preservation of old features must be
explicitly checked. Second, the system in
construction must be fully executable after each
added feature. And finally, a working version must
be presented to its users and stakeholders once new
features are added.

The paradigm requires a programming language
that supports subtype polymorphism and inheritance.
The former is required in order for the new features
to be used in the context of the old ones, although it
does not guarantee that the functionality is
preserved. Inheritance, on the other hand, enables to
extend an existing feature while maintaining parts of
its original behaviour. Thus, object-oriented
programming languages are a natural choice for SFI.

As the system grows, new features are added to it
in the form of layers, one after another. The new
functionality may extend or utilise services provided
in the earlier layers. It is also possible to combine,
replace, rearrange and remove layers, for example,
to enable more efficient algorithms or to optimise

161Olszewski M. and Back R..
Agile Development with Stepwise Feature Introduction.
DOI: 10.5220/0003997901610166
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 161-166
ISBN: 978-989-8565-13-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

the design.

2.1 Service Providers, Users, Borders

The interacting elements of the system – its
components – are differentiated based on the role
they play. Service providers, as the name implies,
offer a specific functionality to the other components
by directly implementing their functions, without
relying on or using the remaining parts of the
software.

Service users, on the other hand, utilise the
functionality offered by the providers. These
components enable the provided services to be
effectively used during the operation of the system.
They are also the final elements in dependency
chains, as no other parts of the system depend on
them. In the most common case, however, the
elements of the system provide functionality by
relying on other components, thus being both service
providers and service users. The role of such
components depends on the perspective they are
examined from.

Fully abstract components may also be found in
the design of a system, especially in a large and
complex one. Such components play the role of
service borders, which outline the desired behaviour
for their descendants.

2.2 System Execution

We mentioned previously that a system developed
with SFI must be executable at each layer. In other
words, the layer and all its preceding layers must
constitute a working, executable system. The
paradigm provides a number of ways in which this
property can be satisfied, based on their complexity.

Executable method is the most straightforward
solution, applicable to the simplest cases. It requires
that each layer contains service user(s) with
dedicated method(s) for executing the system at that
particular layer.

Inheritable executable method makes the service
user(s) with executable methods parts of the same
inheritance tree. While it allows reusing the
executable code in the earlier layers, it may also
make the rearranging of layers more difficult.

By adding a dedicated service user to a layer it is
possible to encapsulate the code related to the
execution in a separate class. Reusing the layer in a
different setting may, however, require additional
changes to the dedicated service user.

A hierarchy of dedicated users is a natural
extension of the previous method. As with

inheritable executable method, the major drawback
is the limited rearranging of the layers.

Creation of a dedicated system executable is the
most complex, yet the most flexible option and thus
suitable for large and complex systems. In this case
a configuration file or command line parameters are
used to identify the layer that the execution should
start with.

Each increment in functionality produces a new
executable version of the system, although possibly
with limited set of features. This characteristic of the
paradigm results in a collection of systems being
built, rather than a single system. Therefore, it is
possible to remove a number of layers from an
existing system and continue the development in
another direction, with a distinct set of features.

2.3 Requirements, Components, Layers

The development of a software system starts by
specifying its desired behaviour, based on market
research, interaction with potential users, etc. These
goals set for the development are the requirements
of the final system, i.e. its high-level features.

The requirements, although well-defined, are
abstract and can be implemented in various ways. It
is usually the decision of the system architects and
designers to analyse the requirements and identify
the main components of the software. It is by no
means necessary to establish the components that
realise all of the requirements; a more advisable
solution is to concentrate on the basic functionality
first and extend the components later. The
knowledge about all or most of the requirements,
however, can significantly improve the design and
its future modifications.

As the development progresses, the classes that
contain code and implement the interfaces are
gradually introduced. Each class delivers a small
increment to the functionality of the component it
belongs to.

The paradigm explicitly states that the software
must be executable once new behaviour was added.
Therefore, new functionality added to a service
provider must be accompanied with a code that
utilises it, i.e. corresponding service users. The
related classes are thus added to the system together,
in the form of layers.

3 DEVELOPMENT PROCESS

The software built with SFI is open-ended, i.e. it can
be extended and modified once it is complete (Back,

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

162

2002). Moreover, it is constructed through a number
of iterations, each adding a small, but specific and
well-defined increment to the functionality. Agile
development philosophy shares these characteristics
as well (Beck, et al., 2001); therefore an agile
process is a natural choice when developing
software with SFI. When first presented (Back,
2002), the paradigm recommended the use of
Extreme Programming (Beck, 1999). However, in
our work we decided to use another agile process,
Scrum (Schwaber, 1995) (Schwaber, 2004). It does
not provide nor enforce any techniques by itself,
rather it serves as a framework, within which
different processes and methodologies can be
encapsulated.

The main purpose of Scrum is to increase the
effectiveness of development practices, so that one
can improve upon them while providing a
framework for development of complex products
(Schwaber & Sutherland, 2010). The people directly
and indirectly involved in the project are divided
into two disjoint groups, chickens and pigs
(Schwaber, 2004). The former contains those, who
are indifferent whether the project fails or not, but
are otherwise interested in it. The latter includes all
those who are committed to realise the project and
are responsible for it (Schwaber & Sutherland,
2010).

Within the latter group additional roles can be
identified: the Scrum Master, who maintains the
process, the Product Owner representing the
stakeholders and final users, and the cross-functional
Team who actually does the implementation, design
and other product-related analysis (Schwaber, 2004).

Similarly to other agile development methods,
Scrum is based on frequent releases of the code over
the number of iterations of fixed duration, called
sprints. The desired functionality of the software in
construction is described through user stories, which
are held in product backlog (Schwaber &
Sutherland, 2010).

The functionality to be delivered during a sprint
is decided during a Sprint Planning Meeting. The
corresponding items from the product backlog are
moved to sprint backlog. These items cannot be
modified for the duration of the sprint.

The integration of SFI with Scrum is
straightforward, as the analogies can clearly be seen.
The requirements, the components and sometimes
also the layers correspond to the items in the
backlogs. In particular, the requirements defined by
the customer can be represented in terms of user
stories. The Team can annotate these stories with
information about the components or layers needed

during the implementation. Furthermore, an
extension of a given component, or its introduction
to the system, can also be placed in the backlogs to
explicitly mark a design decision to be delivered
(Olszewski, 2012).

In order to facilitate the introduction of
requirements, components and layers to the system,
the Sprint Planning Meeting should be divided into
two parts, customer- and architecture-centric. The
former enables the Product Owner to prioritise the
requirements and the Team to select a number of
top-priority items to be delivered, similarly to the
idea present in Scrum. The architecture-centric
discussion focuses on the components relevant to the
implementation of the selected requirements. It
provides an opportunity for the Team to establish an
initial design for the sprint, incorporate it into
already existing architecture and to resolve any
ambiguities around the requirements (Olszewski,
2012).

During the sprint the items in the sprint backlog
remain fixed, i.e. they cannot be modified and no
new items may be added. Due to that stability and
the precise meaning the items in the backlog can be
used to aid the communication between the
developers, in particular during the daily scrum.

The evaluation of functionality delivered during
the sprint is carried out at the Sprint Review
Meeting. The meeting is divided into three parts,
design-, architecture- and customer-centric. The goal
of the former two is to evaluate the changes to the
layers and the components, respectively. The latter
involves interaction with the Product Owner. It is
used by the Team to present the working product
and gather feedback about its current state.

4 ISSUES OF CORRECTNESS

The paradigm puts a strong emphasis on the
correctness, making it an essential concern during
the development (Back, 2002). SFI does not require
any particular technique for ensuring that the
correctness conditions hold. The application of
formal methods might be suitable to certain systems,
in particular the high-critical ones. In most cases,
however, the correctness is ensured through rigorous
testing.

The principles of the paradigm state four
correctness conditions, all of which must be satisfied
for each added layer (Back, 2002): Internal
Consistency (class invariants must be preserved),
Respect (classes must adhere to the constraints of
other classes), Preserving Old Features and

Agile�Development�with�Stepwise�Feature�Introduction

163

Satisfying Requirements.

4.1 Testing

The paradigm benefits from Test-Driven
Development (TDD) (Beck, 2003), a technique
frequently implemented in agile development
settings. TDD recommends that each fragment of
code should have a corresponding unit test designed
and written prior to the actual implementation
(Beck, 2003). Different strategies in writing tests are
applied, depending on a role the tested class plays.

The unit tests are especially beneficial when
testing service providers. A carefully designed set of
unit tests confirms that a provider class is internally
consistent and it provides a proper service.
Inheritance allows reusing tests and gives an
opportunity to use unit tests for also regression
testing. This is beneficial when an existing service
provider is extended and must be checked that it
preserves the functionality introduced earlier.

The crucial part of testing the service users is to
ensure that the user respects the constraints of the
service it uses. This can be achieved with integration
testing, in which different parts of the system may
interact. However, the testing of service users is
considerably more demanding. Frequently the
purpose of a service user is to utilise the service and
present it to the end-user of the system. It is usually
achieved through a graphical user interface, which
may be difficult to test.

The testing of service borders does not require
writing dedicated tests, as the borders are abstract
and rarely contain any code. Instead, the correctness
conditions for borders are directly ensured while
testing the descendant classes.

4.2 Diagram-based Reasoning

The Unified Modelling Language (UML) (Object
Management Group, 2010) is used to create a model
of the system to be constructed. The most commonly
used UML diagrams are class diagrams (Fowler,
2004) that present attributes, operations and relations
between different classes of the system. There is a
mapping between class diagrams and the code they
represent, hence class diagrams can be used to
document the developed software.

In order to provide an overall view on the state of
correctness at a given stage of the development, SFI
introduces diagram-based reasoning. It based on two
annotations: a question mark ‘?’ and an exclamation
mark ‘!’. There are three basic constructs of class
diagrams that can be annotated: class box,

association arrow and inheritance arrow (Back,
2002). The annotating is done simultaneously with
the development.

The exclamation mark indicates that the
correctness condition associated with the construct is
established. Marking the constructs with a question
mark signifies that it is not known whether or not the
corresponding correctness conditions hold, whereas
no symbol means that these conditions were not yet
of any concern. It is also allowed for the developers
to place additional correctness conditions, if they
find it beneficial to the project.

Introducing a new layer to the system raises
more concerns over the correctness of classes and
associations. More specifically, the fact that the
newly added subclasses are internally consistent
does not mean that the new associations are correct.
In order to assert the correctness of the inheritances
the regression tests must be designed. The unit tests,
used to state internal consistency of the new
implementations, can be modified following the
technique described in a previous section of the
paper. The same tests can also ensure that the
aggregation between the new classes can be
considered correct.

Establishing the correctness conditions for
classes that are directly related to each other allows
also inferring a number of correct associations
(Back, 2002). These may be useful when reasoning
about the correctness of the code reused in a
different context, or when a significant number of
new classes are added at the same time.

5 IMPACT ON QUALITY

The application of the paradigm enables production
of software of good quality. SFI provides a
straightforward framework for gradual extension of
software systems. This, in turn, enables us to control
the complexity and the design of the system, so that
at each point of its development it suits best the
current needs.

In order to be able to accurately evaluate the
quality of the produced system and the impact of the
paradigm on the development, we benefit from the
principles of Empirical Research (Kitchenham, et
al., 2001). This approach is based on
experimentation, observation and collecting
evidence that confirms or rejects the research
hypothesis. Empirical Research is focused on
identification, investigation, authentication and
progress of theoretical concepts.

We expect the system developed with SFI to be

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

164

reusable due to each layer being executable and
maintainable because of small, manageable
increments in functionality. In addition, our
expectation is for the system to be highly modular,
due to its division to components and layers.

We define maintainability according to the
standard ISO/IEC 9126-1 Software engineering –
Product quality (ISO, 2001) as a characteristic that
allows concluding about the degree in which the
software can be maintained. Reusability, on the
other hand, is understood as ability of software for
integration in other systems (ISO, 2001).

The area of metrics dedicated for agile
approaches, including Scrum, is young and not well
investigated yet (Elssamadisy, 2007). Some work in
the domain of quality metrics has been done for lean
approaches (Petersen & Wohlin, 2010). However, in
order to be able to quantitatively evaluate the impact
of our development approach, we relied on well
established and empirically validated metrics that
are dedicated for object-oriented systems.

The overall quality of a software system is a
combination of the quality of design, architecture,
code and tests. These areas can be evaluated in a
variety of ways, the most common being
automatically collected metrics and measurements.

Our assessment is based on the set of Chidamber
and Kemerer metrics (Chidamber & Kemerer,
1994). Their analysis provides an insight on the
complexity, maintainability and understandability of
the system. The set consists of six metrics which can
be collected automatically for any class, without
detailed investigation of the code: Weighted
Methods Count (WMC), Depth of Inheritance Tree
(DIT), Number of Children (NOC), Coupling
Between Objects (CBO), Response for a Class
(RFC) and Lack of Cohesion in Methods (LCOM).

In general, high value of these metrics denotes
the increase of the density of bugs and thus the
decrease of the overall quality. An exception to that
observation is the NOC metric, which is usually
positively related with the quality. The optimal
values and their thresholds for each metric are often
specific to the project the metrics are applied to.

We have applied the paradigm to the
development of two software projects of significant
complexity and size – a multi-platform board game
(Olszewski & Back, 2012) and a highly-specialised
tool for analysis and processing of digital
microscope images (Olszewski, 2012).

Our results show that, according to the metrics
both systems are highly maintainable and reusable.
Low values of LCOM indicate highly cohesive
systems, which signify the code that is easy to

maintain. Likewise, reasonable values of CBO and
WMC are a sign of systems that can be easily
managed and reused in different settings. In addition
our findings were confirmed by the subjective
perception of the developers of one of the systems
(Olszewski, 2012).

6 ALTERNATIVE PARADIGMS

Maintainable and reusable software can be
developed using various other paradigms. Software
construction and design, in general, is about
recognising components of the system and
establishing the connection between them, based on
the requirements.

Certain complex functionality, however, may
span over a number of components. Aspect-Oriented
Development (Kiczales, et al., 1997) is the approach,
in which the design is primarily focused on
identifying and representing such cross-cutting
concepts – aspects. The behaviour brought to the
system by aspects is combined by join points during
execution time with the static code of components.

Aspect-Oriented Development is based on a
modularisation scheme that is different from the one
present in SFI. As a result, static domain knowledge
is separated from dynamic, frequently changing
requirements. The overall maintainability and
reusability of the system is thus increased. The
drawback of the approach, however, is the necessity
of using a dedicated programming language that is
able to describe and combine aspects.

An emerging paradigm of Data, Context and
Interaction (Reenskaug & Coplien, 2009) is
designed specifically for object-oriented systems and
therefore can be used with existing tools. Its general
goal is the same as the one of Aspect-Oriented
Development – to separate non-changing elements
of the system (Data) from the dynamic ones
(Context and Interaction).

The dissonance between the static code structure
and its run-time representation can be observed in
object-oriented systems (Gamma, et al., 1994). Data,
Context and Interactions aims to minimise this gap
by unifying common practices of object-oriented
design and by decomposing the system into different
perspectives (Reenskaug & Coplien, 2009).

The dynamic parts of the system are injected to
the static objects at run-time, therefore Data, Context
and Interaction is suitable for modern, dynamic,
object-oriented languages. However, not all object-
oriented programming languages offer support for
such operations. The paradigm of SFI, in contrast,

Agile�Development�with�Stepwise�Feature�Introduction

165

relies only on inheritance and subtype
polymorphism, and therefore fits all object-oriented
programming languages.

7 CONCLUSIONS AND FUTURE
WORK

This paper presented a novel approach to software
construction, the paradigm of SFI. We described the
principles of the paradigm and its agile development
process based on Scrum.

The overall results of applying SFI to software
development are encouraging. The quality
measurement results confirmed that the systems
constructed according to the paradigm are
maintainable and reusable, and thus present the
characteristics which are desirable in software
development.

At its current stage, however, the suitability of
our approach to various types of developments is not
yet statistically validated. Therefore, our intent is to
apply SFI to a larger number of projects. The
development of database- and web-applications is
especially in our focus, due to the success of Web
2.0 and rich internet applications.

The applicability of the paradigm to software
product lines is also in the scope of our research. We
are confident that the ability of the software to be
executed after each iteration, combined with its
modular architecture, can be beneficial in such
setting.

Finally, we would like to investigate the
suitability of the paradigm in combination with a
different development process and examine it in
more formal environments. Such experiments would
allow us to identify potential improvements to the
paradigm before it can be applied to construction of
systems of higher criticality.

REFERENCES

Back, R.-J., Eriksson, J. & Milovanov, L., 2005. Using
stepwise feature introduction in practice: an
experience report. Springer.

Back, R.-J., 2002. Software Construction by Stepwise
Feature Introduction. In: ZB 02: Proceedings of the
2nd International Conference of B and Z Users of
Formal Specification and Development in Z and B.
Springer-Verlag.

Beck, K., 1999. Extreme Programming Explained.
Addison-Wesley.

Beck, K., 2003. Test-Driven Development by Example.
Addison Wesley.

Beck, K. et al., 2001. Manifesto for Agile Software
Development. [Online] Available at: http://agilemani
festo.org [Accessed 03 2011].

Chidamber, S. R. & Kemerer, C. F., 1994. A Metrics Suite
for Object Oriented Design. IEEE Transactions on
Software Engineering, 20(6).

Elssamadisy, A., 2007. Agile Measurement - A Missing
Practice? [Online] Available at: http://www.infoq.com
/news/2007/07/Agile_Measurement [Accessed 27
February 2012].

Fowler, M., 2004. UML Distilled: A Brief Guide to the
Standard Object Modelling Language. New York:
Pearson Education.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1994.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

ISO, 2001. ISO/IEC 9126-1:2001. Geneve: ISO.
Kiczales, G. et al., 1997. Aspect-Oriented Programming.

Jyväskylä: Springer Lecture Notes in Computer
Science 1241, Springer-Verlag.

Kitchenham, B. A. et al., 2001. Preliminary Guidelines for
Empirical Research in Software Engineering. National
Research Council of Canada.

Object Management Group, 2010. UML 2.3 Specification.
Object Management Group.

Olszewski, M., 2012. Applying Stepwise Feature
Introduction to Reengineering of Large Scale Software
Systems. PhD dissertation (to be published) Turku:
Turku Centre for Computer Science (TUCS).

Olszewski, M. & Back, R.-J., 2012. Scrum-Based Agile
Development with Stepwise Feature Introduction,
Turku: TUCS Technical Report number 1045.

Petersen, K. & Wohlin, C., 2010. Software Process
Improvement through the Lean Measurement (SPI-
LEAM) Method. Journal of Systems and Software,
8(7).

Reenskaug, T. & Coplien, J. O., 2009. The DCI
Architecture: A New Vision of Object-Oriented
Programming. Artima Developer, 03.

Schwaber, K., 1995. SCRUM Development Process.
Proceedings of the 10th Annual ACM Conference on
Object Oriented Programming Systems, Languages,
and Applications (OOPSLA).

Schwaber, K., 2004. Agile Project Management with
Scrum. Microsoft Press.

Schwaber, K. & Sutherland, J., 2010. Scrum. The Official
Guide. Scrum.org.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

166

