
Improving Event Correlation for Non-process Aware Information
Systems

Ricardo Pérez-Castillo1, Barbara Weber2, Ignacio García-Rodríguez1 and Mario Piattini1
1Instituto de Tecnologías y Sistemas de Información (ITSI), University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
2University of Innsbruck, Technikerstraße 21a, 6020, Innsbruck, Austria

Keywords: Enterprise Modelling, Business Process, Event Correlation, Legacy Information Systems.

Abstract: Business process mining is a solution to discover business processes. These techniques take event logs
recorded by process-aware information systems. Unfortunately, there are many traditional systems without
mechanisms for events collection. Techniques for collecting events (which represent the execution of
business activities) from non-process-aware systems were proposed to enable the application of process
mining to traditional systems. Since business processes supported by traditional systems are implicit,
correlating events into their execution instances constitutes a challenge. This paper adapts a previous
correlation algorithm and incorporates it into a technique for obtaining event logs from traditional systems.
This technique instruments source code to collect events with some additional information. The algorithm is
applied to the events dataset to discover the best correlation conditions. Event logs are built using such
conditions. The technique is validated with case study, which demonstrates its suitability to discover the
correlation set and obtain well-formed event logs.

1 INTRODUCTION

Current companies must continuously evolve to
maintain their competitiveness levels. Keeping this
in mind, process modelling is essential for
companies to be able to understand, manage and
adapt their business processes (Weske, 2007).
Despite this important fact, a vast amount of
companies do not model their business processes.
When these companies decide in favor of business
process modelling, they have two main options: (i)
modelling from scratch by business experts, which is
time-consuming and error-prone; (ii) using business
process mining techniques to discover business
processes from system execution information (van
der Aalst and Weijters, 2005). The focus of this
paper is on the second option since it takes into
account the business knowledge embedded in
enterprise information systems.

Business process mining techniques allow for
extracting information from process execution logs –
known as event logs (van der Aalst and Weijters,
2005). Event logs contain information about the start
and completion of activities and the resources
executed by the processes (Castellanos, Medeiros et

al., 2009). These events logs are often recorded by
process-aware information systems (PAIS) (e.g.,
Enterprise Resource Planning (ERP) or Customer
Relationship Management (CRM) systems). The
process-aware nature of PAIS facilitates direct
events recording during process execution.
However, not all information systems are process-
aware. In fact, there is a vast amount of enterprise
information systems which are non-process-aware
(termed as traditional systems in this paper) though
they could also benefit from the application of
process mining techniques.

Previous works made a particular effort for the
registration of event logs from traditional systems.
Firstly, main challenges involved in the collection of
event logs from traditional systems were identified
(Pérez-Castillo et al., 2010). Secondly, a particular
technique to obtain event logs from traditional
systems was also developed (Pérez-Castillo et al.,
2011). This technique first injects statements into the
source code to instrument it. The instrumented
system is then able to record some events, which are
finally analysed and organized in an event log. This
technique has already been applied to real-life
traditional systems with promising results (Pérez-

33Pérez-Castillo R., Weber B., García-Rodríguez I. and Piattini M..
Improving Event Correlation for Non-process Aware Information Systems.
DOI: 10.5220/0003983100330042
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 33-42
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Castillo et al., 2011); (Pérez-Castillo et al., 2011).
However, the accuracy of the previous technique is
limited, since events were correlated in different
process instances by using some simple heuristics.
In fact, event correlation is a key challenge, i.e.,
each event must be assigned to the correct instance,
since it is possible to have various instances of the
business process running at the same time. This
paper therefore addresses the weaknesses on the
previous technique by providing an enhanced
technique, which adapts and applies an existing
event correlation algorithm (Motahari-Nezhad et al.,
2011).

The new technique relies on human interaction to
firstly identify some candidate correlation attributes.
The candidate attribute values are then recorded with
each event by means of an instrumented version
from a traditional system. After that, event
correlation algorithms proposed in a related work
(Motahari-Nezhad et al., 2011) are adapted and
applied to this intermediate information to discover
the sub-set of correlation attributes and conditions.
The correlation set is finally used to obtain accurate
process instances in the final event log. For a
smoother introduction into industry, this technique
has been developed by using database-stored
intermediate information as well as a set of
algorithms implemented as stored procedures. Since
the technique is tool-supported, a case study
involving a real-life traditional system has been
conducted to demonstrate the feasibility of the
proposal. The empirical validation results show the
technique is able to obtain the set of correlation
attributes allowing appropriate event logs in a
moderate time.

The paper is organized as follows: Section 2
summarizes related work; Section 3 presents in
detail the proposed technique; Section 4 conducts a
case study with an author management system; and
Section 5 discusses conclusions and future work.

2 RELATED WORK

Event correlation is an issue of growing importance
in the process mining field due to the increasing
heterogeneity and distribution of enterprise
information systems. In addition, there are various
ways in which process events could be correlated. In
fact, many times event correlation is subjective and
most proposals employ correlation heuristics
(McGarry, 2005). Most techniques assess some
indicators and check if they are under or above a
heuristic threshold to discard non-promising

correlation attributes. For example, (Burattin and
Vigo, 2011) propose an approach consisting of the
introduction of a set of extra fields, decorating each
single activity log. These attributes are used to carry
the information on the process instance. Algorithms
are designed using relation algebra notions, to
extract the most promising case IDs from the extra
fields. Other techniques proposals, as in (Rozsnyai et
al., 2011), are based in the use of algorithms to
discover correlation rules by using assessments of
statistic indicators (e.g., variance of attribute values)
from datasets. Similarly, (Ferreira and Gillblad,
2009) propose a probabilistic approach to find the
case ID in unlabeled event logs.

(Motahari-Nezhad et al., 2011) propose a set of
algorithms to discover the most appropriate
correlation attributes and conditions (e.g.,
conjunctive and disjunctive conditions grouping two
or more correlation attributes) from the available
attributes of web services interaction logs.

This paper presents an improvement of a
previous technique to retrieving event logs from
traditional systems (Pérez-Castillo et al., 2011), by
adapting and applying the algorithm to discover the
correlation set provided by (Motahari-Nezhad et al.,
2011). While this algorithm is applied to web
services logs, the current approach adapts the
algorithm to be applied in traditional information
systems for obtaining event logs. The feasibility of
this approach is empirically validated by means of a
case study.

Moreover, there are proposals addressing the
distribution of heterogeneous event logs. For
example, (Hammoud, 2009) presents a decentralized
event correlation architecture. In addition, Myers et
al. (Myers et al., 2010) apply generic distributed
techniques in conjunction with existing log
monitoring methodologies to get additional insights
about event correlation. Decentralized event
correlation approaches remain however outside of
the scope of this paper.

3 EVENT CORRELATION

Event correlation deals with the definition of
relationships between two or more events so to point
out events belonging to a same business process
execution (i.e., process instance). Event correlation
is very important in traditional information systems,
since the definitions of the executed business
processes are not explicitly identified (Pérez-Castillo
et al., 2010). Figure 1 shows an overview of the
event correlation challenge. Each business process

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

34

can be executed several times. Each execution is
known as process instance. Events collected during
system execution must be correlated into the correct
instance.

This paper presents a technique to obtain event
logs from traditional systems, paying special
attention to the event correlation improvement
regarding previous work. The technique consists of
three stages. Firstly, the technique records events
from the execution of traditional systems. During
this stage the technique allows experts to identify
candidate correlation attributes, whose runtime
values will then be collected together with each
event. As a result, events and their respective
attributes are then stored in a database in an
intermediate format (cf. Section 3.1). Secondly, the
algorithm proposed by (Motahari-Nezhad et al.,
2011) is adapted and applied with the event datasets
so to discover the most appropriate set of attributes
and conditions for the events correlation (cf. Section
3.2). Finally, the third stage applies an algorithm
based on the correlation set in order to correlate each
event with its corresponding process instance (cf.
Section 3.3). As a result, a standard-format event log
is obtained from the source traditional system.

Figure 1: Event correlation overview.

3.1 Event Collection

The event collection stage is in charge of the suitable
generation and storage of events throughout system
execution. Since traditional information systems do
not have any in-built mechanism to record events
about executed business processes, this stage
instruments information systems to record events.
The instrumentation is semi-automated by a parser
that syntactically analyzes the source code and
injects statements in particular places of the code to
record events during system execution.

This work follows the ‘a callable unit / a
business activity’ approach proposed by Zou et al.
(Zou and Hung, 2006). Callable units are the generic
elements (e.g., Java methods, C or COBOL

procedures, etc.) in which the parser injects
statements to record an event corresponding to the
execution of a business activity. Despite this fact,
not all the executions of callable units have to be
recorded as events. Some callable units such as fine-
grained or technical callable units do not correspond
to events and must be discarded. The injection in the
exact place is consequently supported by some
information provided by experts. Such experts (i)
delimit business processes with the start and end
callable units of each process; (ii) establish the
boundaries of non-technical source code to be
instrumented; and finally, (iii) they identify those
code elements that can be treated as candidate
correlation attributes.

This stage is supported by an improved version
of the tool presented in (Pérez-Castillo et al., 2011),
which supports the identification and addition of
candidate correlation attributes. Selection of
candidate correlation attributes is a key task, since
an incomplete list of candidate attributes may lead to
a non-suitable correlation. This stage provides
experts with all the possible selectable attributes.
These attributes are every parameter appearing in
callable units as well as the output and fine-grained
callable units that are invoked within those callable
units, which are considered to be collected as events.
The information about candidate correlation
attributes is injected together with a statement
enabling event collection.

Figure 2: Example of code instrumentation.

Figure 2 provides an example of the results
obtained after instrumenting a Java method of the
system under study (cf. Section 4). The two tracing
statements (see highlighted statements) are injected
at the beginning and at the end of the body of the
method. Those candidate correlation attributes that
are present in a method (e.g., a parameter or
variable) are automatically injected in the tracing
statements, i.e., the respective variables are in the set
of parameters of the invocation to the method
‘writeDBEvent’ (see Figure 2). However, not all
correlation attributes defined by experts are present
in all methods (e.g., due to the absence of a
particular variable). In this case, the respective

EV
EN

TS

PR
O

CE
SS

IN

ST
A

N
CE

PR

O
C

ES
S

A D
B

C

A D C A DB

A
D

A C D

D

A
B C

B

A B
D B

C

B

C

public class SocioFacadeDelegate {
 [...]
 public static void saveAuthor(AuthorVO author) throws InternalErrorException {
 writeDBEvent("SocioFacadeDelegate.saveAuthor", "Author Management", "", "start",
 false, false, -1, false, 2, 8, "", "" + author.getId(), "" + author.isHistorico(),
 "" + author.getNumeroSocio(), "", "" + author.getCotas());
 try {
 SaveAuthorAction action = new SaveAuthorAction(author);
 PlainActionProcessor.process(getPrivateDataSource(), action);
 } catch (InternalErrorException e) {
 throw e;
 } catch (Exception e) {
 throw new InternalErrorException(e);
 }
 writeDBEvent("SocioFacadeDelegate.saveAuthor", "Author Management", "", "complete",
 false, true, -1, false, 2, 8, "", "" + author.getId(), "" + author.isHistorico(),
 "" + author.getNumeroSocio(), "", "" + author.getCotas());
 }
 [...]
}

Improving�Event�Correlation�for�Non-process�Aware�Information�Systems

35

Figure 3: Database schema for event and attributes.

parameter of the method ‘writeDBEvent’ (i.e., the
tracing statement) is an empty string (“ ”). As a
result, during execution of this method, the runtime
value (or an empty value) will be recorded together
with the name of the attribute and the event (the
name of the method representing the business
activity).

The instrumented system is then normally
executed and -when an injected statement is
reached- it records events together with the value of
all the candidate correlation attributes available in
that callable unit. Unlike other similar techniques, it
does not build an event log on the fly during system
execution (Pérez-Castillo et al., 2011); Pérez-
Castillo et al., 2011). Instead, this technique stores
all the information about events and their candidate
correlation attributes in a database. A relational
database context facilitates the implementation of
faster algorithms to discover the correlation set from
large datasets (cf. Section 3.2).

Figure 3 shows the database schema used to
represent the intermediate event information. The
EventLogs table is used to represent different logs
obtained from different source systems. The Events
table contains all the different events collected,
including the executed task, type (start or complete),
originator, execution timestamp, two columns to
indicate if the executed task is the initial or final task
of a process, as well as the process name.
CorrelationAttributes is a table related to Events and
contains the runtime values of candidate correlation
attributes.

Candidate correlation attributes are combined by
means of correlation conditions which are then used
to correlate events. We differentiate two kinds of
correlation conditions: atomic and complex
conditions. Firstly, atomic conditions represent key-
based conditions which compare two correlation
attributes. For example, condition1:attribute1

=attribute2 signifies that two events will be
correlated if the value of attribute1 of the first event
is equal to the value of attribute2 of the second
event under evaluation. These conditions are stored
in the AtomicConditions table (see Figure 3).
Secondly, complex conditions evaluate two different
conditions at the same time that are combined by a
logic operator, e.g., conjunction (AND) or
disjunction (OR) (Motahari-Nezhad et al., 2011). For
example, condition3: condition1 AND condition2
evaluated for two events signifies that both
condition1 and condition2 must be met for the
couple of events at the same time. Table Complex-
Conditions represents this information in the
database schema (see Figure 3).

3.2 Discovering Correlation Attributes

After collection of events and candidate correlation
attributes, an adaptation of the algorithm described
in (Motahari-Nezhad et al., 2011) is applied to
discover the most appropriate correlation set. This
set consists of a set of atomic conditions (i.e., equal
comparisons between couples of attributes) as well
as a set of complex conditions (i.e., conjunctive
comparisons between couples of atomic conditions).
The technique does not consider disjunctive
conditions since these conditions are only needed for
heterogeneous systems to detect synonyms of some
correlation attributes.

The algorithm (see Figure 4) first considers all
the possible combinations of attributes involved in
atomic conditions (lines 1-3), and it then prunes the
non-interesting conditions (i.e., less promising
conditions) using the three following heuristics.
Heuristic 1. When attributes of atomic conditions
are the same, the distinct ratio must be above alpha
or distinct to one (line 4). Distinct Ratio (Eq. 1)

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

36

indicates the cardinality of an attribute in the dataset
regarding its total number of non-null values. When
it is under alpha or one it signifies that the attribute
contains a global unique value and the atomic
condition with this attribute can therefore be pruned.
Alpha (Eq. 3) is the threshold to detect global unique
values and it indicates how much values vary
regarding the size of the dataset.
Heuristic 2. If the atomic condition is formed by
two different attributes it is pruned when the shared
ratio is above the alpha threshold (line 5). In a
similar way the previous heuristic, Shared Ratio (Eq.
2) represents the number of distinct shared values
regarding their non-null values for both attributes.

Input: Attributes; Events
Output: AC: the set of atomic conditions; CC: the set of conjunctive
conditions
1: for a ∈Attributes ˄ b ∈Attributes do
2: AC← “a = b”
3: end for
4: AC←AC – { c | c.attribute1 = c.attribute2 and
 (DistinctRatio (c.attribute1) < α or DistinctRatio (c.attribute1) = 1) }
5: AC←AC – { c | c.attribute1 ≠ c.attribute2 and
 SharedRatio (c.attribute1, c.attribute2) <α }
6: AC←AC – { c | PIRatio (c.attribute1, c.attribute2) < α or
 PIRatio (c.attribute1, c.attribute2) >β }
7: N0←AC; N1← { }
8: k ← 1
9: for c1 ∈ Nk-1 and c2 ∈ Nk-1 do
10: Nk← “c1 ˄ c2”
11: end for
12: while Nk≠ { } do
13: Nk←Nk – { c | ConjNumberPI (Nk.condition1, Nk.condition2) ≤
 NumberPI(Nk.condition1.attribute1, Nk.condition1.attribute2) or
 ConjNumberPI(Nk.condition1, Nk.condition2) ≤
 NumberPI(Nk.condition2.attribute1, Nk.condition2.attribute2) }
14: Nk←Nk – { c | ConjPIRatio (Nk.condition1, Nk.condition2)<α or
 ConjPIRatio(Nk.condition1, Nk.condition2) > β }
15: CC←CC ∪ Nk
16: for c1 ∈ Nk and c2 ∈ Nk do
17: Nk+1← “c1 ˄ c2”
18: end for
19: k ← k+1
20: end while

Figure 4: Algorithm to discover the correlation set.

Heuristic 3. Atomic conditions are pruned when the
process instance ratio (PIRatio) is under alpha or
above beta (line 6). This heuristic checks that the
partitioning of the future log does not only have one
or two big instances, or many short instances.
PIRatio (Eq. 5) is measured as the number of
process instances (NumberPI) divided into non-null
values for both attributes. In turn, NumberPI (Eq. 6)
is heuristically assessed as the distinct attribute
values for all the different couples of events
(executed in a row) containing both attributes. This
is the first difference, since the previous algorithm
first calculates a set of correlated event pairs, and
then it computes a recursive closure over that set
(Motahari-Nezhad et al., 2011). In contrast, our
algorithm estimates NumberPI by considering the
number of possible pairs of correlated events. This
change has been made taking into account that the

recursive closure evaluation is time-consuming (the
complexity of graph closure algorithms in literature
is often O(2n) since they check each pair of nodes
for the remaining of pairs). On the contrary, the
expected results using this proposal can be
considered as heuristic approximation with a lower
computational cost (i.e., O(n) since this technique
only evaluates the list of event pairs). This is the first
difference regarding the algorithm proposed by
Motahari-Nezhad et al. (Motahari-Nezhad et al.,
2011).

(࢏ࢇ)࢕࢏࢚ࢇࡾ࢚ࢉ࢔࢏࢚࢙࢏ࡰ = ,௜ܽ)݈݈ݑܰ݊݋݊(௜ܽ)ݐܿ݊݅ݐݏ݅݀ ௝ܽ) (1)

,࢏ࢇ൫࢕࢏࢚ࢇࡾࢊࢋ࢘ࢇࢎࡿ ൯࢐ࢇ = ,௜ܽ)ݐܿ݊݅ݐݏ݅݀ ௝ܽ)݉ܽݔ ቀ݀݅ݐܿ݊݅ݐݏ(ܽ௜), ൫ݐܿ݊݅ݐݏ݅݀ ௝ܽ൯ቁ (2)

ࢻ = ߳ࢼ(3) ݏݐ݊݁ݒܧ݂ܱݎܾ݁݉ݑܰெ஺௑(ܽ௜)ݐܿ݊݅ݐݏ݅݀ [0.25, 1] (4)

,࢏ࢇ൫࢕࢏࢚ࢇࡾࡵࡼ ൯࢐ࢇ = ,൫ܽ௜ܫܲݎܾ݁݉ݑܰ| ௝ܽ൯|݈݈݊ݑܰ݊݋(ܽ௜, ௝ܽ) ,࢏ࢇ൫ࡵࡼ࢘ࢋ࢈࢓࢛ࡺ(5) ൯࢐ࢇ = ሼݒ ∶ ∃ ݁, ݁ᇱ߳ݏݐ݊݁ݒܧ|݁. 1݁ݐݑܾ݅ݎݐݐܽ = ܽ௜ ˄ ݁ᇱ. 2݁ݐݑܾ݅ݎݐݐܽ = ௝ܽ˄	ݒ = ݁. .1݁ݐݑܾ݅ݎݐݐܽ = ݁ݑ݈ܽݒ ݁ᇱ. .2݁ݐݑܾ݅ݎݐݐܽ ݁ݑ݈ܽݒ ˄ ݁. ݌݉ܽݐݏ݁݉݅ݐ > ݁ᇱ. (6) {	݌݉ܽݐݏ݁݉݅ݐ

,࢏ࢉ൫࢕࢏࢚ࢇࡾࡵࡼ࢐࢔࢕࡯ ൯࢐ࢉ = ,൫ܿ௜ܫܲݎܾ݁݉ݑ݆ܰ݊݋ܥ| ௝ܿ൯|݈݈݊ݑܰ݊݋(ܿ௜. ܽଵ, ܿ௜. ܽଶ,			 ௝ܿ . ܽଵ, ௝ܿ . ܽଶ) (7)

,࢏ࢉ൫ࡵࡼ࢘ࢋ࢈࢓࢛ࡺ࢐࢔࢕࡯ ൯࢐ࢉ = .௜ܿ)ܫܲݎܾ݁݉ݑܰ ܽଵ, ܿ௜. ܽଶ)
∩)ܫܲݎܾ݁݉ݑܰ ௝ܿ. ܽଵ, ௝ܿ . ܽଶ)	 (8)

Moreover, beta (Eq. 4) which can be established
between 0.25 and 1 is used as another threshold to
evaluate the average length of the outgoing
instances. For instance, a beta value of 0.5 (as is
usually used) signifies that conditions leading to
process instances with length above or equal to the
half of the total events would be discarded.

After atomic conditions are filtered out, the
algorithm (see Figure 4) builds all the possible
conjunctive conditions based on the combination of
outgoing atomic conditions (lines 7-11). These
conditions are then pruned by applying two
heuristics (lines 13-14). After that, new conjunctive
conditions by combining the remaining previous
conditions are iteratively evaluated (lines 15-19).

The first heuristic (line 13) applied to filter out
conjunctive conditions is based on the monotonicity
of the number of process instances. This is the
second difference with regard to (Motahari-Nezhad
et al., 2011), since this algorithm considers the
number of process instances (but not the length of
instances) to evaluate the monotonicity heuristic.
This heuristic is based on the idea that the number of
process instances for a conjunctive condition is

Improving�Event�Correlation�for�Non-process�Aware�Information�Systems

37

always higher than the number for their simpler
conditions in isolation. Conjunctive conditions that
do not increase the number of process instances are
therefore pruned, since they are subsumed in their
atomic conditions. The number of process instances
obtained though conjunctive conditions
(ConjNumberPI) (Eq. 8) is based on (Eq. 6), which
is defined for simple conditions, and is measured by
intersecting both component conditions of the
conjunctive one.

Input: Events; AC: the set of atomic conditions; CC: the set of conjunctive
conditions
Output: Log: the final event log
1: process; instance
2: for e1 ∈ Events ˄e2 ∈ Events ˄ e1.proces = e2.process
 ˄ e1.timestamp ≤ e2.timestamp do
3: if e1.starting=true ˄ ∀n ∈Log.processes.name, process.name=n then
4: process.name ← e1.process
5: end if
6: for ac ∈AC ˄cc ∈CCdo
7: if ∃i, e1.attributes[i].name = ac.attribute1 ˄
 ∃i’, e2.attributes[i’].name = ac.attribute2 ˄
 e1.attributes[i].value = e2.attributes[i’].value ˄
 ∃j, e1.attributes[j].name = cc.condition1.attribute1 ˄
 ∃j’, e2.attributes[j’].name = cc.condition1.attribute2 ˄
 e1.attributes[j].value = e2.attributes[j’].value ˄
 ∃k, e1.attributes[k].name = cc.condition2.attribute1 ˄
 ∃k’, e2.attributes[k’].name = cc.condition2.attribute2 ˄
 e1.attributes[k].value = e2.attributes[k’].value then
8: instance.id ←e1.attributes[i].value + e2.attributes[i’].value +
 e1.attributes[j].value + e2.attributes[j’].value +
 e1.attributes[k].value + e2.attributes[k’].value
9: instance.events←instance.events∪ {e1, e2}
10: process.instances←process.instances∪ {instance}
11: end if
12: end for
13: Log.processes←Log.processes∪ (Fluxicon Process Laboratories)
14: end for

Figure 5: Algorithm to discover process instances.

The algorithm also applies the same heuristic
about the partitioning of the log to the conjunctive
conditions (line 14). Thereby, the ratio of process
instances is also evaluated for conjunctive
conditions (ConjPIRatio) (Eq. 7). When
ConjPIRatio is under alpha or above beta threshold
the conjunctive condition is discarded.

In conclusion, the proposed algorithm adapts the
algorithms provided by (Motahari-Nezhad et al.,
2011) thus adjusting to traditional systems. There
are two main changes as seen above in this section:
(i) the way in which the expected number of process
instances is calculated for each condition; and (ii)
the monotonicity heuristic which only takes into
account the length of the estimated process
instances.

3.3 Discovering Process Instances

The last stage, after obtaining the correlation set,
attempts to discover process instances using the

correlation set in order to build the final event log,
which will be written following the MXML (Mining
XML) format (Van der Aalst et al., 2009). MXML is
a notation based on XML and is the most common
format used by most process mining tools.

Figure 5 shows the algorithm to correlate all the
events of the intermediate dataset in its own process
instance within the event log. The algorithm
explores all the candidate events pairs, i.e., those
pairs that belong to the same process and which
were executed in a row (line 2). When an event was
recorded as the start point of a process, the target
process takes this name (lines 3-5). For each
candidate event pair, all the atomic and conjunctive
conditions of the correlation set are evaluated (line
7). If the event pair meets all the conditions, then it
is a correlated event pair and these events are then
put into the respective process instance, and in turn,
the instance is added to the process (lines 9-10).
Process instances are previously identified by means
of the specific values of the events’ attributes
involved in the correlation set (line 8). Each process
found during the event pair exploration, together
with all the discovered process instances, is finally
added to the event log (line 13).

Business process can be subsequently discovered
from the MXML event logs by applying different
well-known techniques and algorithms developed
from the business process mining field.

4 CASE STUDY

This section presents a case study conducted with a
real-life information system. The whole set of
artefacts involved in the study are online available in
(Pérez-Castillo, 2012).

The object of the study is the proposed technique
and the purpose of the study is to demonstrate the
feasibility of the technique in terms of accuracy. The
main research question therefore is:

MQ. - Can the technique obtain correlation sets for
generating event logs from a traditional system
which could on their turn be used to discover
the business processes supported by the
system?

Additionally, the study evaluates two secondary
research questions:

AQ1. - How well does this technique perform
compared to the previously developed
technique?

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

38

Figure 6: Reference business process model of the AELG-members system.

AQ2. - How much time does the technique require
to discover correlation sets regarding the size
of datasets?

AQ1 evaluates the gain of this new approach over
the previous one employing an isolated source code
object as correlation set. For the evaluation of this
secondary question, the result of this study is
compared with the result obtained in a previous
study that validated the previous approach using the
same traditional information system (Pérez-Castillo,
Weber et al., 2011). AQ2 assesses the time spent on
discovering correlations sets in order to know if the
technique is scalable to a large dataset.

In order to answer the main research question,
the study follows a qualitative research approach by
comparing a reference model and the obtained one.
The study first considers the business process model
previously provided by business experts (the
reference model). Secondly, the study obtains an
event log (using the discovered correlation set) and
compares the business processes instances collected
in the log together with the reference business
process model. The comparison between models
evaluates the degree of conformance of the obtained
model regarding the reference one, which is done by
scoring the number of business activities in common
with the reference business process model.

4.1 Case under Study

The traditional (non-process-aware) information
system under study was AELG-members, which
supports the administration of an organization of
Spanish writers. From a technological point of view,
AELG-members is a Java standalone application
with an architecture that follows the traditional
structure on three layers: (i) the domain layer
supporting all the business entities and controllers;

(ii) the presentation layer dealing with the user
interfaces; and (iii) the persistency layer handling
data access. The total size of the legacy system is
23.5 KLOC (thousands of lines of source code).

Figure 6 shows the business process supported
by the system under study, which is considered as
the reference business process model. The main
business activities carried out by the writers’
organization, including author registration,
importing author information from different sources,
cancellation of memberships, author information
management and payment of fees.

4.2 Execution

For the execution of the case study, all the stages of
the proposed technique were semi-automated by
different tools. The steps carried out during the study
execution were the following:
1. The AELG-members system was instrumented
through the Event Traces Injector tool (Pérez-
Castillo, 2012) which was modified to support the
addition of candidate correlation attributes by
experts. Six attributes were selected to be collected
together with events (see Table 1). Some attributes
regarding the identification of author were first
selected due to the business processes focuses on
this entity. Other attributes related to fees were also
selected since experts expect process instances end
when annual fees of an author are paid.
2. The instrumented version of AELG-members
was normally executed in the same production
environment. The execution consisted of storing
events and candidate correlation attributes in a SQL
Server 2005 database until significant datasets to
conduct the study were collected. Three different
sizes of dataset (above 2000, 7000 and 15000

Improving�Event�Correlation�for�Non-process�Aware�Information�Systems

39

events) were considered to test different
configurations.
3. The algorithm for discovering the correlation set
(Figure 4) was then applied to the datasets. Unlike in
previous stages, this algorithm was implemented by
means of a set of stored procedures using PL/SQL
which executes a set of queries from datasets. Since
the beta threshold (Eq. 4) can be chosen by business
experts (Motahari-Nezhad et al., 2011), the
algorithm was applied with four different values:
0.25, 0.5, 0.75 and 1. The four different correlation
sets obtained for each configuration are shown in
Table 2. An event log was obtained for each
different correlation set by means of the algorithm
presented in Figure 5, which was also implemented
through PL/SQL procedures.
4. The four event logs were finally analyzed and
compared with the reference model. For this
purpose, the ProM tool (Van der Aalst et al., 2009)
was used to discover the respective business process
models for each log. The study particularly used the
genetic mining algorithm of ProM since it is the
most accurate one (Medeiros et al., 2007). Finally,
the conformance of each business process model
with the reference model was analyzed according to
the aforementioned qualitative research approach
(cf. Section 4.1).

Table 1: Candidate correlation attributes selected.

Attribute ID Java Class Output Method
1 FeeVO getIdAuthor
2 AuthorVO getId
3 AuthorVO isHistoric
4 AuthorVO getMemberNumber
5 PublicAuthorVO getId
6 AuthorVO getFees

Table 2: Correlation sets and time obtained in each case.

Events Correlation
Attributes β=0.25 β=0.5 β=0.75 β=1

Correlation
Sets

2432 10412 A C C C
7608 33278 A C C C
15305 74136 B C D D

Time (s)
2432 10412 12 15 16 15
7608 33278 41 56 55 55
15305 74136 113 150 151 147

Table 3: Correlation sets (numbers 1 to 5 refer to attribute
ID of Table 1; letters o to s refer to atomic conditions).

Atomic
Conditions

A o : 1=1 p : 2=2 q : 4=4 r : 6=6
B o : 1=1 p : 2=2 q : 4=4 r : 6=6
C o : 1=1 p : 2=2 q : 4=4 r : 6=6 s : 5=5
D o : 1=1 p : 2=2 q : 4=4 r : 6=6 s : 5=5

Complex
Conditions

A o ˄ q p ˄ q
B o ˄ q p ˄ q r ˄ q r ˄ p
C o ˄ q p ˄ q r ˄ q r ˄ p
D o ˄ q p ˄ q r ˄ q r ˄ p o ˄ s

4.3 Analysis and Interpretation

Table 2 and Table 3 summarize the results obtained
after cases study execution, showing the correlation
sets (A, B, C and D) obtained for each combination
of dataset (2432, 7608 and 15305 events) and beta
value (0.25, 0.5, 0.75 and 1). Table 2 also shows the
time spent on discovering each correlation set as
well as the particular atomic and conjunctive
conditions of each set.

After obtaining the corresponding event log and
discovering the respective business process for the
AELG-Members system, it was perceived that the
most accurate correlation set was ‘A’. The set ‘A’
leads to the business process with the highest
conformance degree (93%). This means the business
process discovered using set ‘A’ had the highest
number of business activities in common with the
reference business process model (13 from the 14
tasks).

The same conclusion can be stated by analyzing
the conditions of correlation set ‘A’ (see Table 3).
Set ‘A’ is less restrictive (compared to the other sets)
and contains fewer correlation conditions. Despite
this fact, it contains all the atomic conditions
necessary to evaluate the identity of each writer (i.e.,
getIdAuthor, getId and get MemberNumber).
Additionally, set ‘A’ also contains the atomic
condition to know when a fee is paid (i.e., getFees),
which signifies that a particular process instance
ends for a writer.

Moreover, regarding complex conditions of
correlation set ‘A’, there is a conjunctive condition
linking FeeVo.getIdAuthor together with
AuthorVO.getId, which signifies that the managed
fees must correspond to the same writer of a
particular process instance. Finally, set ‘A’ also
works well because the categorical correlation
attribute AuthorVO.isHistoric was properly
discarded, since these kinds of attributes (e.g.,
Boolean variables) split the datasets into only two
instances.

The remaining correlation sets (B, C and D) are
similar to correlation set ‘A’, since all those sets
contain all correlation conditions of ‘A’. However,
those sets incorporate more conditions, and although
they provide alternative event correlations, they are
more restrictive. This means that some process
instances obtained using ‘A’ could be split in two or
more instances in case sets B, C or D were used as
the correlation set instead of set ‘A’. These sets led
to conformance values between 64% and 86%,
which respectively correspond to 9 and 12 tasks in
common with the 14 tasks of the reference model.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

40

Regarding the evaluation of AQ1, in the previous
case study with the same system (Pérez-Castillo et
al., 2011), the Java class ‘AuthorVO’ was selected as
the classifier to collect correlation information
during the system instrumentation stage. During
system execution, the runtime values of the
AuthorVO objects were used to correlate events. As
a result, all the process instances in the event log
were obtained with all the events regarding each
writer. Unlike the current approach, not all the
different executions of the reference business
process (see Figure 6) for each author were detected.
For example, every time a writer pays the annual
fee, it should be detected as the end of a process
instance. This kind of aggregation works by using
any correlation set obtained with the current
approach. However, as per the previous approach,
not all the events of the same writer could be
grouped into fine-grained process instances, since
the sole information to correlate events was
AuthorVO objects.

The conformance degree in the previous case
study with the same system was 77% (Pérez-Castillo
et al., 2011), while the degree obtained with the
proposed technique is 93% (obtained with set ‘A’).
In fact, the business process obtained with the
previous technique was complex and visually
intricate due to several crossing sequence flows. As
a result, AQ1 can be positively answered.

In order to demonstrate the feasibility of the
proposal, the time spent on discovering correlation
sets was analyzed according to the additional
question AQ2. Outlier beta values such as 1, and
especially 0.25 lead to shorter times (see Table 2).
This is due to the fact that outlier values allow the
algorithm to quickly prune non-promising
correlation sets, saving much time. Anyway, it
should be noted that the time regarding the beta
value is approximately linear. Besides, regarding the
number of events, the time is non-linear. The time is
lower for smaller datasets and higher for larger ones.
It seems the trend of the time follows a quadratic
function. This is due to the fact that every event
must be checked for all the remaining events
according to the proposed algorithm.

In conclusion, the main research question can be
positively answered. This means that the technique
is able to correlate events from traditional system,
and in turn, it produces a gain regarding techniques
previously developed. However, the time spent on
discovering correlation sets is quadratic, and huge
datasets may be time-consuming.

4.4 Evaluation of the Validity

The most important threat is the fact that the code
could be poorly instrumented. The obtained results
clearly depend on the candidate correlation attributes
selected at the beginning of the study. If business
experts select an incomplete or erroneous set of
candidate correlation attributes, the outgoing results
could be quite different. In order to mitigate this
threat we propose repeating the study using an
iterative approach in which experts can select or
remove some candidate correlation attributes
according to the results obtained for each iteration.
This way, the list of candidate correlation attributes
can be iteratively refined.

Moreover, correlation sets do not always have to
be obtained under lower beta values (e.g., 0.25). A
lower beta value often implies a more restrictive
correlation set and vice versa. The beta threshold can
therefore be established by business experts
depending on the constraint degree to be applied to
the particular set of candidate correlation attributes.
This threat can be addressed by repeating the study
with different cases and different beta values.

5 CONCLUSIONS

This paper presents a technique to discover the
correlation set in order to generate event logs from
traditional (non-process aware) information systems.
This challenge is important in traditional systems
since (i) they do not have any in-built mechanism to
record events and (ii) captured events do not have
any reference to the process instance they belong to.

The technique consist of three stages: (i) the
selection of candidate correlation attributes and
injection of statements into the source code to
collect events during system execution; (ii) the
discovery of the correlation set from collected
events; and (iii) the generation of the final event logs
by correlating events using the discovered
correlation conditions.

All the stages of the technique are semi-
automated, making it possible to validate the
proposal by conducting a case study with a real-life
system. The study demonstrates the feasibility of the
technique to discover correlation sets that lead to
well-formed event logs and the gain regarding
previous techniques in terms of accuracy. The main
implication of the results is that this technique
contributes to the application of well-proven
techniques and algorithms from the process mining
field. So far, such business process mining

Improving�Event�Correlation�for�Non-process�Aware�Information�Systems

41

techniques work with event logs that are often
obtained only from process-aware information
systems.

The work-in-progress focuses on conducting
another case study with a healthcare information
system to obtain strengthened conclusions about
empirical validation. Moreover, concerning the
selection of candidate correlation attributes, a
mechanism to analyse source code and provide
business experts with some insights about the most
appropriate attributes will be developed.

ACKNOWLEDGEMENTS

This work has been supported by the FPU Spanish
Program; by the R+D projects funded by JCCM:
ALTAMIRA (PII2I09-0106-2463), INGENIO
(PAC08-0154-9262) and PRALIN (PAC08-0121-
1374); and MITOS (TC20091098) funded by the
UCLM.

REFERENCES

Burattin, A. and R. Vigo (2011). A framework for Semi-
Automated Process Instance Discovery from
Decorative Attributes. IEEE Symposium on
Computational Intelligence and Data Mining
(CIDM'11) Paris, France: 176-183.

Castellanos, M., K. A. d. Medeiros, J. Mendling, B. Weber
and A. J. M. M. Weitjers (2009). Business Process
Intelligence. Handbook of Research on Business
Process Modeling. J. J. Cardoso and W. M. P. van der
Aalst, Idea Group Inc.: 456-480.

Ferreira, D. and D. Gillblad (2009). Discovering Process
Models from Unlabelled Event Logs. Business Process
Management. U. Dayal, J. Eder, J. Koehler and H.
Reijers, Springer Berlin / Heidelberg. 5701: 143-158.

Fluxicon Process Laboratories (2009). XES 1.0 Standard
Definitio (Extensible Event Stream). http://www.xes-
standard.org/.

Hammoud, N. (2009). Decentralized Log Event
Correlation Architecture. Proceedings of the
International Conference on Management of Emergent
Digital EcoSystems. France, ACM: 480-482.

McGarry, K. (2005). "A Survey of Interestingness
Measures for Knowledge Discovery." Knowl. Eng.
Rev. 20(1): 39-61.

Medeiros, A. K., A. J. Weijters and W. M. Aalst (2007).
"Genetic Process Mining: An Experimental
Evaluation." Data Min. Knowl. Discov. 14(2): 245-
304.

Motahari-Nezhad, H. R., R. Saint-Paul, F. Casati and B.
Benatallah (2011). "Event Correlation for Process
Discovery From Web Service Interaction Logs." The
VLDB Journal 20(3): 417-444.

Myers, J., M. R. Grimaila and R. F. Mills (2010). Adding
Value to Log Event Correlation Using Distributed
Techniques. Proceedings of the Sixth Annual
Workshop on Cyber Security and Information
Intelligence Research. Oak Ridge, Tennessee, ACM:
1-4.

Pérez-Castillo, R. (2012). "Experiment Results about
Assessing Event Correlation in Non-Process-Aware
Information Systems " Retrieved 09/02/2012, 2012,
from http://alarcos.esi.uclm.es/per/rpdelcastillo/
CorrelationExp.html#correlation.

Pérez-Castillo, R., B. Weber, I. García Rodríguez de
Guzmán and M. Piattini (2010). "Toward Obtaining
Event Logs from Legacy Code." Business Process
Management Workshops (BPI'10) Lecture Notes in
Business Information Processing ((LNBIP 66 - Part
2)): 201–207.

Pérez-Castillo, R., B. Weber, I. García Rodríguez de
Guzmán and M. Piattini (2011). "Generating Event
Logs from Non-Process-Aware Systems Enabling
Business Process Mining." Enterprise Information
System Journal 5(3): 301–335.

Pérez-Castillo, R., B. Weber, I. García Rodríguez de
Guzmán and M. Piattini (2011). "Process Mining
through Dynamic Analysis for Modernizing Legacy
Systems." IET Software Journal 5(3): 304–319.

Rozsnyai, S., A. Slominski and G. T. Lakshmanan (2011).
Discovering Event Correlation Rules for Semi-
Structured Business Processes. Proceedings of the 5th
ACM international conference on Distributed event-
based system. New York, USA, ACM: 75-86.

van der Aalst, W. and A. J. M. M. Weijters (2005).
Process Mining. Process-aware information systems:
bridging people and software through process
technology. M. Dumas, W. van der Aalst and A. Ter
Hofstede, John Wiley & Sons, Inc.: 235-255.

Van der Aalst, W. M. P., B. F. Van Dongenm, C. Günther,
A. Rozinat, H. M. W. Verbeek and A. J. M. M.
Weijters (2009). ProM: The Process Mining Toolkit.
7th International Conference on Business Process
Management (BPM'09) - Demonstration Track. Ulm,
Germany, Springer-Verlag. 489: 1-4.

Weske, M. (2007). Business Process Management:
Concepts, Languages, Architectures. Leipzig,
Germany, Springer-Verlag Berlin Heidelberg.

Zou, Y. and M. Hung (2006). An Approach for Extracting
Workflows from E-Commerce Applications.
Proceedings of the Fourteenth International
Conference on Program Comprehension, IEEE
Computer Society: 127-136.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

42

