
An Event-driven Approach for the Separation of Concerns

Hayim Makabee
Yahoo! Labs, Haifa, Israel

Keywords: Separation of Concerns, Event-driven Programming, Aspect-oriented Programming, Coupling, Cohesion.

Abstract: This paper presents an event-driven approach for the separation of concerns in software systems. We
introduce the EventJ framework that provides an event-driven extension to the Java programming language.
The paper describes a general methodology that can be used to identify the cross-cutting concerns and
separate them from the main functionality using events and event handlers. We discuss the pre-requisites to
perform this change and illustrate it with a concrete example. Finally, we make a comparison between the
event-driven approach and the aspect-oriented one, and conclude that the use of events to separate concerns
has a positive effect on software quality attributes such as maintainability, extensibility and reusability.

1 INTRODUCTION

One of the most important principles in Software
Engineering is the Separation of Concerns (SoC)
(Hursch, 1995): The idea that a software system
must be decomposed into parts that overlap in
functionality as little as possible. It is so central that
it appears in many different forms in the evolution of
all methodologies, programming languages and best
practices.

Dijkstra mentions it in 1974: "separation of
concerns … even if not perfectly possible is yet the
only available technique for effective ordering of
one's thoughts" (Dijkstra, 1982). Information
Hiding, (Parnas, 1972), focuses on reducing the
dependency between modules through the definition
of clear interfaces. A further improvement was
Abstract Data Types (ADT) (Liskov, 1974), that
integrated data and functions in a single definition.

In the case of Object Oriented Programming
(OOP), encapsulation and inheritance proved to be
essential mechanisms to support new levels of
modularity. Design-by-Contract (Meyer, 1986),
provides guidelines on how to improve interfaces
using pre-conditions and post-conditions. Finally,
the separation of cross-cutting concerns is the most
important motivation for the proponents of Aspect
Oriented Programming (AOP) (Kiczales, 1997).

Since the first programming systems were
implemented, it was understood that it was
important for them to be modular. It is necessary to
follow a methodology when decomposing a system

into modules and this is generally done by focusing
on coupling and cohesion (Constantine, 1974):
Coupling: The degree of dependency between two
modules.
Cohesion: The measure of how strongly-related is
the set of functions performed by a module.

All methodologies try to reduce coupling and
increase cohesion. OOP reduces coupling with the
enforcement of encapsulation and the introduction of
dynamic binding and polymorphism. AOP provides
a solution for the problem of cross-cutting concerns,
so that both the aspects and the affected methods
may become more cohesive. There are many
benefits that software developers expect to obtain
when making a system more modular, reducing
coupling and increasing cohesion:
Maintainability: A measure of how easy it is to
maintain the system. As a consequence of low
coupling, there is a reduced probability that a change
in one module will be propagated to other modules.
As a consequence of high cohesion, there is an
increased probability that a change in the system
requirements will affect a small number of modules.
Extensibility: A measure of how easily the system
can be extended with new functionality. As a
consequence of low coupling, it should be easier to
introduce new modules, for example a new
implementation of an existing interface. As a
consequence of high cohesion, it should be easier to
implement new modules without being concerned
with requirements that are not directly related to

122 Makabee H..
An Event-driven Approach for the Separation of Concerns.
DOI: 10.5220/0003971801220127
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 122-127
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

their functionality.
Reusability: A measure of how easy it is to reuse a
module in a different system. As a consequence of
low coupling, it should be easier to reuse a module
that was implemented in the past for a previous
system, because that module should be less
dependent on the rest of the system. Accordingly, it
should be easier to reuse the modules of the current
system in new future systems. As a consequence of
high cohesion, the functionality provided by a
module should be well-defined and complete,
making it more useful as a reusable component.

2 EVENT-DRIVEN APPROACH

Event-Driven Programming (EDP) can also be seen
as a tool for the Separation of Concerns. There is a
clear intention of reducing the coupling between the
modules that trigger the events and the modules that
handle these events. Ideally, the modules which are
triggering the events should not be aware of the
modules that will handle them. The modules
triggering the events should not be concerned of
how these events will be handled, or even if a
particular event will be handled at all. EDP also
helps to increase the cohesion of modules, since it
allows separating the business logic of handling the
event from the function that triggered it. Both the
event triggering module and the event handler
become more cohesive. Of course, there can be
several handlers for the same type of event, each one
with a very specialized way to handle it, what
further decreases coupling and increases cohesion.

Some systems are essentially event-driven, for
example Reactive Systems, in which their main
input from the external environment is in the form of
events, and in this case using EDP is a natural and
almost required design decision. Some systems are
implemented using EDP as a consequence of an
analysis and modelling approach, for example action
games, but in this case using EDP is an option and
they could be modelled in a different way. Finally,
some systems are hybrid, and they use EDP only to
implement a specific part of their functionality, for
example the Graphical User Interface, a Publish-
Subscribe subsystem (Eugster, 2003) or even a
simple Observer pattern (Gamma, 1995). In most of
these situations, the decision of using EDP is not a
consequence of its ability to separate concerns. Very
often it is simply the most convenient way to model
a system or some part of the system.

In this paper we claim that EDP should be
adopted as an alternative tool for the Separation of

Concerns. This means that when a software
developer is confronted with the problem of
reducing the coupling and increasing the cohesion of
a system, he should consider adopting an EDP
approach, based on the explicit definition of Events
and Event Handlers. Further yet, we believe that an
EDP approach has advantages and can provide
benefits that cannot be easily obtained with OOP or
AOP.

In the remaining sections of this paper we
describe a simple framework to support the
introduction of EDP in a system, we provide a brief
example of an application in which EDP is
effectively used to separate concerns, and we present
a more detailed comparison of the advantages and
disadvantages of EDP when compared to AOP.

2.1 The EventJ Framework

In order to analyze the efficacy of the event-driven
approach for the separation of concerns, we
implemented a framework in Java called EventJ.
The two main concepts in the EventJ framework are
the Events and their respective EventHandlers.
Events: An Event is an immutable object which has
state and may have functions that perform some
computation over this state. Events have type and
are organized in an inheritance hierarchy.
EventHandlers: An EventHandler is responsible for
executing some action in response to an Event. A
single EventHandler may subscribe to different
types of Events. If an EventHandler subscribes to an
Event type, it handles also all instances of its
subtypes. EventHandlers may be stateless or stateful.
An EventHandler may trigger Events itself.
EventHandlers receive Events asynchronously and
should not depend on the results of other
EventHandlers. Each EventHandler runs on a
separate thread, and manages its own queue of
Events.
EventDispatcher: The EventDispatcher is a
Singleton object (Gamma, 1995) which is
responsible for the propagation of all Events to the
appropriate EventHandlers. When an Event is
triggered anywhere in the system, it is initially
stored in the EventDispatcher’s central queue. Then,
according to the Event type, each Event is
asynchronously propagated to all the EventHandlers
that have subscribed to its type (or to its supertypes).
When an EventHandler starts its execution, the first
step is to call the EventDispatcher in order to
subscribe to all types of Events it intends to handle.
The EventDispatcher runs on a separate thread.

Of course, the appropriate usage of the EventJ

An�Event-driven�Approach�for�the�Separation�of�Concerns

123

framework requires discipline from software
developers. For example, the programmer must be
aware that EventHandlers will handle Events
asynchronously. If there are several EventHandlers
associated to the same Event type, one should not
expect that these handlers will be executed in any
particular order.

In our view, the separation of concerns using the
event-driven approach follows three main steps:
Identification: Identify the concerns that may be
separated from the main functionality. This means
locating the specific pieces of code that we would
like to move to some other module in the system.
Triggering: For each concern, define an appropriate
type of Event and insert the triggering of this Event
in the suitable places in the code.
Handling: For each type of Event, implement the
associated EventHandler(s). This means explicitly
separating the pieces of code that were previously
found in the Identification step and moving them to
the respective handlers.
In the case of EventJ, there are two pre-conditions to
be possible to separate a specific piece of code from
its original context:
Concurrency: Since Events are handled
asynchronously, it must be possible to execute this
piece of code in parallel with the rest of the original
code.
Non-dependency: Since EventHandlers should not
modify any external data, the execution of the
original code must not depend on the results of the
execution of the piece of code that was separated.

For example, the printing of a log message can
be easily transformed in a log event. In general it is
not necessary to print log messages synchronously:
it is enough for the message to contain the exact
timestamp of when it was created. Accordingly, the
act of printing a log message does not generate any
response that is required by the original function that
triggered that log event.

We have applied this event-driven approach in
real systems, using the EventJ framework. From our
concrete experience, the following benefits were
obtained:
Readability: It is easy to understand the system,
because triggering an Event and subscribing to an
Event type are explicit actions that can be clearly
traced.
Maintainability: It is easy to maintain the system,
because it is possible to precisely identify the
EventHandlers that will be executed in response to
some Event type.

Extensibility: It is easy to extend the system by
adding new EventHandlers without any need to
modify the code that triggers the Events.
Conversely, it is possible to add a new function that
triggers some existing Event type, and all existing
EventHandlers will apply to it as well.
Testability: Thanks to the decoupling between the
code that triggers the Events and the EventHandlers,
it is possible to test them separately. One unit test
may trigger Events of some type and check that the
right EventHandlers were executed. Another unit
test may define test-specific EventHandlers and
check that they are activated by the right Events.
Reusability: The Event hierarchy and associated
EventHandlers are highly cohesive and independent
from the rest of the system, and as such are potential
candidates for reuse. It is possible to model the
Events to be as generic as the exception types
commonly found in Java libraries.

In the next section we provide a more detailed
example of a system that was improved using the
event-driven approach for the separation of
concerns.

2.2 Example: An Instant-Messaging
System

In order to provide a more detailed example of the
usage of the event-driven approach for the
separation of concerns, we analyze an Instant-
Messaging (IM) system. The purpose of this type of
system is to allow users to exchange a series of short
messages online, what is typically called a “chat
session”.

In an IM system, each user has a list of contacts
(friends), and it is important for him to know who
among his contacts is available to chat. Thus, the
system must manage the user status, and whenever
there is a change in this status the system must
notify all his contacts that are currently online. This
is normally done using a subscription model, in
which each online user is subscribed to all his
friends.

To illustrate our approach, it is sufficient to
consider the Login and Logout use-cases: A Login
request occurs when a user enters the system and
becomes online. A Logout request occurs when a
user leaves the system and becomes offline.
Whenever a user Logs-in, all his online contacts
must be notified, and he must be subscribed to all
friends in his contacts list. Conversely, whenever a
user Logs-out, his online contacts must also be
notified and he must be unsubscribed to all friends in
his contacts list. Using a traditional object-oriented

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

124

approach, these would be the steps of these
operations:
Login(User u)
{
u.SetStatus(Online);
NotificationMgr.NotifyContacts(u);
SubscriptionMgr.SubscribeContacts(u);
}

Logout(User u)
{
u.SetStatus(Offline);
NotificationMgr.NotifyContacts(u);
SubscriptionMgr.UnsubscribeContacts(u);
}

As it is clear in this example, the main function
to be performed is the change in the user status.
Notification Management and Subscription
Management are secondary concerns; they are
almost a side-effect of the modification in the user
status.

Now imagine that the system also requires the
client application to periodically send “keep alive”
requests, informing that the user is still online. In
this case, the user may “time-out” if the connection
was lost for some reason without appropriate
Logout. But the code for the Timeout operation
would be identical to a Logout:
Timeout(User u)
{
u.SetStatus(Offline);
NotificationMgr.NotifyContacts(u);
SubscriptionMgr.UnsubscribeContacts(u);
}

This example illustrates that Notification and
Subscription Management are cross-cutting
concerns. Whenever, for any reason, there is a
change in the user status, these modules must be
activated. The consequences of the implementation
above are that there is too much coupling between
the code that changes the status and the modules that
manage notifications and subscriptions.
Accordingly, the functions that should handle the
change in the status become less cohesive.

This is not a rare example. Frequently, software
systems have functional requirements that are
implemented as cross-cutting concerns. Most often
these are operations that do not represent the essence
of the business logic. They can be seen as secondary
functions that happen as a consequence of the
primary one.

In this example, the cross-cutting concerns
satisfy the pre-requisites that allow us to adopt an
event-driven approach. Regarding Concurrency,
both Notification and Subscription Management can

be done asynchronously and in parallel with the
main flow. It is not necessary to immediately send
notifications when a user changes his status; it just
needs to happen soon enough. The same is true
about updating subscriptions to friends. Regarding
Non-dependency, the main functions of Login,
Logout and Timeout do not need the results of the
Notification and Subscription Management
operations.

Thus, after we have successfully identified the
cross-cutting concerns, and after we have assured
that they satisfy our pre-requisites, it is possible to
execute the steps of Triggering and Handling to
separate them from the main code:
Login(User u)
{
u.SetStatus(Online);
}

Logout(User u)
{
u.SetStatus(Offline);
}

Timeout(User u)
{
u.SetStatus(Offline);
}

User.SetStatus(Status status)
{
…
EventDispatcher.Trigger(new
UserStatusChangedEvent(this));
}

NotificationHandler.Handle(
UserStatusChangedEvent e)
{ … }

SubscriptionHandler.Handle(
UserStatusChangedEvent e)
{ … }

In the example above, the triggering of the event
was moved to the User class, because it should be
the responsibility of the User to trigger an event
whenever its status is changed.

There are several benefits obtained by adopting
the event-driven approach to separate the concerns
in the example above. In terms of system
performance, it is possible to make it more efficient,
reducing the latency of the Login and Logout
operations and increasing their throughput, because
more operations are executed in parallel instead of
serially. In a software quality perspective, the system
is now more modular, since we both reduced
coupling and increased cohesion. The Login and

An�Event-driven�Approach�for�the�Separation�of�Concerns

125

Logout functions are not coupled to anything related
to Notification or Subscription Management, and
neither is the User class. The Notification and
Subscription Handlers are themselves highly
cohesive.

In the next section we compare this event-driven
approach for the separation of concerns with the
widely accepted aspect-oriented approach.

2.3 Comparison between the
Event-driven and Aspect-oriented
Approaches

For each of the characteristics below, we briefly
present a comparison of the EDP approach using
EventJ and the AOP approach.
Encapsulation:
EDP does not violate encapsulation. Event Handlers
have no access to the data members of other classes.
AOP allows the violation of encapsulation. An
advice may change the value of any variable
anywhere in the code.
Inheritance:
EDP can use existing inheritance mechanisms. Event
types and EventHandlers can be organized in
hierarchies. This increases the potential for reuse
and extensibility.
AOP does not use inheritance. Pointcuts cannot be
organized in a hierarchy, since they are defined by
name. Aspects cannot inherit from other aspects.
This reduces the opportunities for reuse or
extension.
Coupling:
EDP supports coupling by type. An EventHandler is
coupled to a type of Event.
AOP allows coupling by name. An aspect can
execute over a specific function or variable, by
name. If the name of this variable is changed, the
aspect must be changed as well.
Order of Execution:
EDP uses EventHandlers which are executed
asynchronously and in no particular order, since
their execution should be independent of each other
and should not directly affect the rest of the system.
AOP has aspects whose execution order is not well-
defined and thus if several aspects execute as a
consequence of the same code, the results may be
unpredictable.
Invocation:
EDP is based on explicit invocations. The Events are
triggered explicitly. For each method it is possible to
know which Events are triggered by it, and for each
Event type it is clear which EventHandlers handle it.

AOP uses implicit invocations. By observing a piece
of code there is nothing that indicates that an aspect
may be executed. Given an aspect, it is hard to find
in the system all pieces of code affected by it.
Extensibility:
EDP makes it easy to add a new EventHandler for
some existing Event type or to trigger an Event of an
existing type in some new function.
AOP is not easily extensible. If a new advice must
be added to some existing pointcut it is necessary to
repeat the pointcut definition in a new aspect. If we
want to extend an advice to be applied to more
pointcuts, it is necessary to change the code of the
original aspect.
Reusability:
EDP supports reusability of Events and
EventHandlers. Handlers are modular and reusable
since they are coupled to Event types, and are
independent of the rest of the system.
AOP defines aspects which have small potential for
reuse in other systems, since they are coupled to
functions and variables by name.
Concurrency:
EDP supports EventHandlers that can be executed in
parallel, since they are encapsulated and do not
affect code outside them.
AOP does not support concurrency. Advices cannot
be executed in parallel. Their execution must be
serialized since they can potentially affect the same
piece of code.

3 RELATED WORK

To the best of our knowledge, no previous work has
proposed the use of an event-driven approach for the
separation of concerns. Other frameworks such as
EventJava (Eugster, 2009) have been created to add
support for events in Java, but their goal was not the
separation of concerns. The Ptolemy language
(Rajan, 2008) was proposed as an implementation of
AOP using events, but it does not discuss an event-
driven approach to separate concerns. Other works
on event-based AOP (Douence, 2002) have
proposed the use of events as an extension to AOP,
but not as an alternative approach.

4 CONCLUSIONS

In this paper we have proposed the adoption of an
Event-Driven approach for the Separation of
Concerns. We described a general methodology that

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

126

can be used to identify the cross-cutting concerns
and separate them from the main functionality using
events and event handlers. We presented the pre-
requisites to perform this change and illustrated it
with a concrete example, based on our real-world
experience using the EventJ framework. We
compared our approach with AOP, and concluded
that that usage of events has many potential benefits
which improve software quality attributes. We hope
that this work will help promote the adoption of
Event-Driven Programming as an alternative tool to
increase the modularity of software systems.

REFERENCES

Constantine, L., Stevens, W., Myers, G., 1974. Structured
Design. IBM Systems Journal, 13 (2), 115-139.

Dijkstra, E. W., 1982. On the role of scientific thought. In
Selected writings on Computing: A Personal
Perspective. New York, NY, USA: Springer-Verlag
New York, Inc. pp. 60–66. ISBN 0-387-90652-5.

Douence, R., Fradet, P., Sudholt, M., 2002. A framework
for the detection and resolution of aspect interactions.
In Proc. of the Conf. on Generative Programming and
Component Engineering, pages 173–188.

Eugster, P. T., Felber, P. A, Guerraoui, R., Kermarrec, A.,
2003. The Many Faces of Publish/Subscribe. ACM
Computing Surveys, Vol. 35, No. 2, pp. 114–131.

Eugster, P., Jayaram, K. R., 2009. EventJava: An
Extension of Java for Event Correlation. In
Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Springer-Verlag.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley. ISBN 0-201-
63361-2.

Hursch, W. L., Lopes, C. V., 1995. Separation of
Concerns. Technical Report, Northeastern University.

Kiczales, G., Lamping, J., Mehdhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J., Irwin, J., 1997. Aspect-
Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), Springer-Verlag.

Liskov, B., 1974. Programming with Abstract Data Types.
In Proceedings of the ACM SIGPLAN Symposium on
Very High Level Languages, pp. 50--59.

Meyer, B., 1986. Design by Contract. Technical Report
TR-EI-12/CO, Interactive Software Engineering Inc.

Parnas, D. L., 1972. On the Criteria To Be Used in
Decomposing Systems into Modules. Comm ACM 15
(12): 1053–8.

Rajan, H., Leavens, G. T., 2008. Ptolemy: A language
with quantified, typed events. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), Springer-Verlag.

An�Event-driven�Approach�for�the�Separation�of�Concerns

127

