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Abstract: Dynamic symbolic execution has been shown an effective technique for automated test input generation. 
However, its scalability is limited due to the combinatorial explosion of the path space. We propose to take 
advantage of data flow analysis to better perform dynamic symbolic execution in the context of generating 
test inputs for maximum structural coverage. In particular, we utilize the chaining mechanism to (1) extract 
precise guidance to direct dynamic symbolic execution towards exploring uncovered code elements and (2) 
meanwhile significantly optimize the path exploration process. Preliminary experiments conducted to 
evaluate the performance of the proposed approach have shown very encouraging results. 

1 INTRODUCTION 

Testing is a widely adopted technique to ensure 
software quality in software industry. For about 50% 
of the total software project costs are devoted to 
testing. However, it is labour-intensive and error-
prone. An attempt to alleviate those difficulties of 
manual testing is to develop techniques to automate 
the process of generating test inputs. For over the 
last three decades, techniques have been proposed to 
achieve this goal, ranging from random testing (Bird 
and Munoz, 1983), symbolic execution (King, 
1976), search-based testing (McMinn, 2004), the 
chaining approach (Ferguson and Korel, 1996), to 
dynamic symbolic execution (Godefroid, 2005; Sen, 
2005). 

Among these techniques, dynamic symbolic 
execution has been gaining a considerable attention 
in the current industrial practice (Cadar et al., 2011). 
It intertwines the strengths of random testing and 
symbolic execution to obtain the scalability and high 
precision of dynamic analysis, and the power of the 
underlying constraint solver. One of the most 
important insights of dynamic symbolic execution is 
the ability to reduce the execution into a mix of 
concrete and symbolic execution when facing 
complicated pieces of code, which are the critical 
obstacle to pure symbolic execution. While 
effective, the fundamental scalability issue of 
dynamic symbolic execution is how to handle the 
combinatorial explosion of the path space, which is 
extremely large or infinite in sizable and complex 

programs. Dynamic symbolic execution therefore, if 
performed in a way to exhaustively explore all 
feasible program paths, often ends up with small 
regions of the code explored in practical time, 
leaving unknown understanding about the 
unexplored. 

In fact, covering all feasible paths of the program 
is impractical. Besides, testing large programs and 
referring to sophisticated criteria can often be out of 
the limit of a typical testing budget. In the practice 
of software development, therefore, high code 
coverage has been long advocated as a convenient 
way to assess test adequacy (British Standards 
Institute, 1998; RTCA, Inc. 1993). Specifically, the 
testing process must ensure every single code 
element in the program is executed for at least once. 
In this context, dynamic symbolic execution can be 
conducted so as to cover all code elements rather 
than exploring all feasible program paths. This may 
lead to a significant reduction in the number of paths 
needed to explore. However, the question of “how 
can we derive precise guidance to perform dynamic 
symbolic execution towards achieving high code 
coverage?” becomes important. This question 
emphasizes two aspects: high coverage 
achievements and minimal path explorations. The 
second aspect is essential in the sense that the cost of 
performing dynamic symbolic execution is 
expensive, especially in large programs, any 
technique helping achieve high code coverage must 
optimize path explorations to be applicable within 
resources available e.g., CPU, memory and time. 

5Do T., Fong A. and Pears R..
Precise Guidance to Dynamic Test Generation.
DOI: 10.5220/0003969000050012
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 5-12
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

To answer this question, we propose to apply 
data flow analysis to better perform dynamic 
symbolic execution in the test input generation 
process. Particularly, we utilize the chaining 
approach (Ferguson and Korel, 1996) to pull out 
precise guidance in order to direct dynamic symbolic 
execution towards effectively and efficiently 
exploring code elements. Specifically, given a test 
goal (an unexplored code element e.g., statement or 
branch), the chaining approach first performs data 
dependency analysis to identify statements that 
affect the execution of the test goal, and then it uses 
these statements to form sequences of events that is 
to be executed prior to the execution of the test goal. 
The advantage of doing this is twofold: (1) it 
precisely focuses on the cause of getting the test goal 
to be executed and (2) it slices away code segments 
that are irrelevant to the execution of the test goal. 
As we will show in the evaluation, these two 
strengths enable dynamic symbolic execution to 
achieve higher code coverage and at the same time 
significantly optimize the number of path 
explorations required to unclose high-complexity 
code. 

The paper is organised as follows. Section 2 
introduces dynamic symbolic execution and 
highlights the path space explosion problem. Section 
3 provides a brief survey of related work. Section 4 
illustrates the chaining approach. Section 5 explains 
the prototype implementation and discusses the 
experimental results. We discuss research issues and 
future work in Section 6, and conclude the paper in 
Section 7. 

2 DYNAMIC SYMBOLIC 
EXECUTION 

The key idea behind dynamic symbolic execution 
(Godefroid et al., 2005) is to start executing the 
program under test with concrete values while 
gathering symbolic predicates of corresponding 
symbolic values along the execution. By negating 
one symbolic predicate and solving the path 
constraint with an off-the-shelf constraint solver, it 
can obtain a new input to steer the execution along 
an alternative program path. This process is often 
performed in an attempt to exhaustively 
systematically explore all feasible paths of the 
program. Dynamic symbolic execution hence 
outperforms “classical” symbolic execution through 
being able to simplify complex constraints, and deal 
with complex data structures and native calls. 

 
Figure 1: The CheckArray function checks if all elements 
of an input array equal 25. 

To perform dynamic symbolic execution, code of 
the program is instrumented in a way that concrete 
execution can be executed simultaneously with 
symbolic execution. So, while the former drives the 
execution, the latter maintains a symbolic memory S, 
which maps memory addresses to symbolic 
expressions, and a symbolic path constraint PC, 
which is a first-order quantifier-free formula over 
symbolic expressions. In this way, once an 
expression is evaluated, it is evaluated both 
concretely and symbolically, and both physical 
memory and symbolic memory are updated 
accordingly. Similarly, once a conditional statement 
if (e) then S1 else S2 is executed, PC is updated 
according to the “then” or “else” branch taken. If the 
“then” branch is taken, PC becomes ܲܥ	 ∧  ;(݁)ߪ	
otherwise, it is ܲܥ	 ∧  denotes (݁)ߪ where ,(݁)ߪ¬	
the symbolic predicate obtained by evaluating e in 
symbolic memory. As a result, the symbolic path 
constraint PC presenting a symbolic execution of the 
program is as follows: ܲܥ = ଵߪ ∧ …∧ ௜ିଵߪ ∧ ௜ߪ ∧ ௜ାଵߪ ∧ …∧  ௡ (1)ߪ

Every single symbolic predicate of PC represents 
one possibility to execute the program along an 
alternative path. That is one can randomly pick up a 
predicate, e.g., ߪ௜, negate it, and then form the 
constraint system (ߪଵ ∧ …∧ ௜ିଵߪ ∧  ௜) to be solvedߪ¬
by the underlying constraint solver. The satisfiability 
of the constraint system results in an input that the 
execution of the program with this input will follow 
the previous path up to the corresponding 
conditional statement of the negated predicate, but 
afterwards change the flow of control to the other 
branch. Consequently, for every symbolic path 
constraint, the number of program paths can be 2௡ 
or be exponential in the number of symbolic 
predicates. In practice, the number of symbolic 
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predicates of the program is often extremely large 
(or even infinite), especially in the presence of loops 
and/or recursions, causing dynamic symbolic 
execution to face with the combinatorial explosion 
of the path space. The CheckArray function in 
Figure 1 could be a good example to illustrate this 
phenomenon. It takes input an array of 20 elements 
and check if all elements equal 25. This yields 220 
(=1,048,576) paths with just 20 symbolic predicates. 
In practice, this problem becomes worse as the input 
of programs can be a stream of data with too large 
(or unknown) size. In case of check_ISBN and 
check_ISSN in the set of test subjects, for instance, 
both functions take an array with (4093+3) tokens 
(causing approximately 2(4093+3) paths), making 
dynamic symbolic execution ill-suited for the goal of 
covering all code elements of programs. It is 
therefore necessary to devise appropriate search 
strategies to guide dynamic symbolic execution to 
achieve high code coverage within a minimal testing 
budget. In the next section, we provide a brief 
survey of related test input generation techniques 
based on dynamic symbolic execution to assess the 
current state of research. 

3 RELATED WORK 

Cadar et al (2011) give a preliminary assessment of 
the use of (modern) symbolic execution in academia, 
research labs and industry in which the authors 
emphasize “A significant scalability challenge for 
symbolic execution is how to handle the exponential 
number of paths in the code”. In the context of using 
dynamic symbolic execution to generate test inputs 
for maximum code coverage, tools being in favour 
of depth-first explorations such as DART (Godefroid 
et al., 2005) and CUTE (Sen et al., 2005) deeply 
widen the program path space but lack the ability to 
forward the execution to further unexplored control 
flow points. These approaches when executed 
against large programs for finite time achieve very 
low code coverage. Pex (Tillmann and Halleux, 
2008) is an automated structural testing tool 
developed at Microsoft Research. It combines a rich 
set of basic search strategies and gives a fair choice 
among them. While the combination helps maximize 
code coverage through attempting different program 
control flows, discovering code elements may 
require specific guidance of control and data flow 
analysis. Fitnex (Xie et al., 2009) further makes Pex 
more guided by using fitness functions to measure 
the improvement of the path exploration process. 
The main obstacle of this approach is the flag 

problem (Binkley et al., 2011), where fitness 
functions face a flat fitness landscape, giving no 
guidance to the search process. Flags, however, are 
widely used in real world software (Binkley et al., 
2011). CREST (Burnim and Sen, 2008) is an 
extensible platform for building and experimenting 
with heuristics for achieving high code coverage. 
Among search heuristics implemented in CREST, 
CfgDirectedSearch is shown more effective than the 
others through the reported experimental data. This 
search strategy leverages the static control flow of 
the program under test to guide the search down 
short static paths to unexplored code. Theoretically, 
the control flow guidance may be imprecise since 
the execution of code elements may require data 
dependencies going beyond short paths and/or being 
calculated in dynamic paths. 

Obviously, with sizable and complex programs, 
the difficulty of using dynamic symbolic execution 
to generate test inputs for maximum code coverage 
is among the far too many program paths, how to 
mine for appropriate paths to guide the search 
process towards exposing unexplored code elements. 
In the next section, we introduce the chaining 
mechanism in an attempt to address this issue. 

4 THE CHAINING APPROACH 

The chaining approach (Ferguson and Korel, 1996) 
was proposed to make use of data dependency 
analysis to guide the search process. The basic idea 
is to identify statements leading up to the goal 
structure, which may influence the outcome of the 
test goal. Those statements are sequences of events 
that the search process must walk along to target the 
test goal. The chaining approach can hence be 
considered as a slicing technique (Tip, 1995) which 
simplifies programs by focusing on selected aspects 
of semantics. As a result, the chaining approach can 
provide precise guidance since it forces the 
consideration of data flows, and it is effective since 
it slices away irrelevant code segments to the 
execution of the test goal. These two strengths can 
guide the search process into potentially unexplored 
but promising areas of the path space to unclose 
high-complexity code. 

We illustrate the core of the chaining mechanism 
using again the function CheckArray in Figure 1 in 
which the test goal is to cover branch (5, 6). For this, 
the chaining mechanism first generates the following 
initial event sequence E0 =<(s, Ø), (6, Ø)> where 
each event is a tuple ei = (ni, Si) where ni is a 
program node and Si is a set of variables referred to 
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as a constraint set. Now suppose that the search 
process fails to find an input array with all elements 
equal 25 to execute the target branch, moving from 
node 5 to node 6. Node 5 is hence considered to be a 
problem node. Formally, a problem node refers to a 
conditional statement for which the search process 
within a fixed testing budget cannot find inputs to 
execute an intended branch from this node. The 
chaining mechanism then performs data flow 
analysis in respect of this problem node to identify 
statements that define data for variables used in the 
conditional expression. In this case, the conditional 
expression consists of variable success, which is 
defined at nodes 1 and 4. Two event sequences are 
constructed accordingly, E1 and E2, based on the 
initial event sequence. 

E1 =<(s, Ø), (1, {success}), (5, Ø), (6, Ø)> 
E2 =<(s, Ø), (4, {success}), (5, Ø), (6, Ø)> 

Notice that for every two adjacent events in an 
event sequence, ei = (ni, Si) and ei+1 = (ni+1, Si+1) 
there must exist a path from ni to ni+1 along which all 
variables in Si are not redefined. Such a path allows 
the effect of a definition statement to be transferred 
up to the target structure. Obviously, the sequence 
E2 cannot help to explore the test goal as the value of 
success variable is false, which leads to the 
execution of the “else” branch instead. The event 
sequence E1, on the other hand, guides the search 
process to first reach node 1 from the function entry, 
which sets the value of success variable to the 
desired true value to explore branch (5, 6), and then 
continues from node 1 to node 5. When moving to 
node 5, the value of success variable may be killed 
at node 4 if branch (3, 4) is executed. If so, the 
search process is guided to change the flow of 
control at node 3 to the “else” branch, which 
prevents success variable from being set to the 
unwanted false value. This guidance is continuously 
refined throughout the for loop to preserve the 
constraint set {success} of event (1, {success}) 
while reaching to event (5, Ø). By doing so, the 
value of all elements in the input array is altered to 
25, providing the desired input to expose the test 
goal, branch (5, 6). 

We now formalize the process of creating a new 
event sequence from an existing sequence E. Let E = 
<e1, …, ei-1, ei, ei+1, …, em> be an event sequence. 
Suppose the search process driven by the event 
sequence guides the execution up to event ei and a 
problem node p is encountered between events ei 
and ei+1. Let d be a definition statement of problem 
node p. Two events are generated, ep = (p, Ø) and ed 
= (d, D(d)), corresponding to the problem node and 

its definition. A new event sequence is now created 
by inserting these two events into sequence E. Event 
ep is always inserted between ei and ei+1. However, 
event ed, in general, may be inserted in any position 
between e1 and ep. Suppose the insertion of event ed 
is between events ek and ek+1. The following event 
sequence is then created: 

E’=<e1,…, ek-1, ek, ed, ek+1, …, ei-1, ei, ep, ei+1, …, em>

Since new events are added to the sequence, the 
implication of data propagation may be violated. 
This requires modifications of the associated 
constraint sets of involved events. The update is 
done in three steps: 

(1) Sd = Sk ∪ D(d) 
(2) Sp = Si 
(3) ∀j, k + 1 ≤ j ≤ i, Sj = Sj ∪ D(d) 

In the first step, the constraint set Sd of event ed 
is initialized to the union of D(d) and the constraint 
set of the preceding event ek. This modification 
ensures that the constraint set Sk of event ek is 
preserved up to event ek+1 while getting through the 
new inserted event ed. The second step also imposes 
the same requirement on event ep by assigning Si to 
its constraint set. In the final step, all constraint sets 
of events between ek+1 and ei are modified by 
including a variable defined at d. By doing this, the 
chaining mechanism guarantees to propagate the 
effect of the definition at node d up to the problem 
node p. 

Created event sequences may be organised in a 
form of a tree referred to as a search tree. The initial 
event sequence E0 represents the root of the tree. 
Other levels of the tree are formed by event 
sequences created when problem nodes are 
encountered. One tree node represents a possibility 
to unclose the test goal. The search process when 
following an event sequence attempts to adjust the 
execution to move from one event to another 
without making the constraint set in the previous 
event violated. This suggests a systematic 
mechanism to propagate the effect of all possible 
data flows up to the target goal structure. When 
intertwined with dynamic symbolic execution, this 
search process specifically involves picking up 
relevant symbolic predicates, negating them, and 
then forming constraint systems to be solved by the 
underlying constraint solver for inputs. Dynamic 
symbolic execution directed by the precise guidance 
of the chaining mechanism can hence significantly 
strengthen   the   test   input   generation   process  in  
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Table 1: Percentage of branch coverage achieved by search strategies when executed on 9 test subjects. 

Subject loc br Random DFS CREST Pex Fitnex STIG 
sample 31 12 42 92 92 92 92 100 
testloop 17 8 13 88 88 100 100 100 
hello_world 37 32 34 56 91 91 91 100 
netflow 28 6 83 83 83 100 100 100 
moveBiggestInFront 37 6 100 83 83 100 100 100 
handle_new_jobs 37 6 67 100 100 83 100 100 
update_shps 52 10 60 90 90 100 100 100 
check_ISBN 78 52 83 83 83 96 83 98 
check_ISSN 78 52 83 83 94 96 83 98 
Average 44 20 63 84 89 95 94 100≈ 

Table 2: Measurements of number of program explorations required by search strategies. 

Subject Random DFS CREST Pex Fitnex STIG 
sample 1000 1000 1000 1000 1000 13 
testloop 1000 1000 1000 26 27 22 
hello_world 1000 1000 1000 1000 1000 55 
netflow 1000 2 1000 5 5 2 
moveBiggestInFront 15 1000 1000 4 4 2 
handle_new_jobs 1000 2 2 1000 99 34 
update_shps 1000 1000 1000 5 7 4 
check_ISBN 1000 1000 1000 234 313 51 
check_ISSN 1000 1000 1000 234 313 45 
Average 891 778 889 390 308 25 

Notice: loc number of lines of code 
 br number of branches 
 Random random input search 
 DFS depth-first search 

coverage achievements and path exploration 
optimizations. 

5 PRELIMINARY EVALUATION 

We have implemented our proposed approach as a 
search heuristic, called STIG (Scalable Test Input 
Generation), on the CREST platform (Burnim and 
Sen, 2008), an automatic test input generation tool 
for C, based on dynamic symbolic execution. Since 
CREST unrolls decisions with multiple conditions as 
an equivalent cascade of single condition decisions 
and converts every single conditional statement into 
a form of if (e) then S1 else S2, branch coverage 
achieved by CREST is comparable to condition 
coverage in the original program. For any 
specification clothed in forms of assertion calls, i.e., 
assert (e), we transform into a conditional statement 
if (!e) error(); to check for errors. In this case, the 
test goal is to explore the function call error. 

To evaluate the effectiveness of our approach, 
we chose a set of test subjects and conducted 
experiments to compare STIG with two widely 
adopted search strategies, random input search and 

depth-first search, and with three test input 
generation tools CREST, Pex and Fitnex. For CREST, 
we chose the control-flow graph directed search 
strategy (CfgDirectedSearch) which was confirmed 
the “best” search algorithm through the reported 
experimental data. The test input generation CREST 
tool used in the whole paper thus refers to this 
chosen search strategy. For Pex, it implements 
dynamic symbolic execution to generate test inputs 
for .NET code, supporting languages C#, 
VisualBasic, and F#. Besides, Fitnex is an extension 
of Pex. The test subjects selected include the sample 
function which was borrowed from the work of 
Ferguson and Korel (1996). The next two test 
subjects, testloop and hello_world, were from the 
work of Xie et al. (2009). These test subjects were 
employed in literature to illustrate the essence of 
individual exploration problems. Thus we want to 
check if STIG by using data flow analysis is able to 
tackle those exploration problems. Notice that the 
hello_world function in this evaluation was modified 
to check an input array which must start with 
“Hello”, end with “World!” and contain only spaces. 
This modification makes the function more difficult 
for search strategies to cover all its code coverage. 
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The rest of the test subjects were mentioned in the 
work of Binkley et al. (2011). These functions come 
from open-source programs; we hence want to 
evaluate the capability of STIG in dealing with the 
high complexity of real world programs as compared 
to the others’. For the sake of experiments, for some 
functions we just extracted part of their code. All the 
test subjects are in C code, to make comparison with 
Pex and Fitnex we converted them to C# code. 

All experiments in the evaluation were run on 
3GHz CoreTM2 Duo CPU with 4GB of RAM and 
running Ubuntu GNU/Linux for Random, DFS, 
CREST and STIG, and Windows for Pex and Fitnex. 

The first purpose of the experiment is to evaluate 
the capability of each tool (or search strategy) in 
achieving high code coverage, hence it is fair to set 
up a fixed testing budget for all. For this, we chose 
1000 runs as the limit to run every test subject on 
each tool. We measured the percentage of branch 
coverage obtained. The results are shown in Table 1. 
The second purpose is to evaluate the capability of 
each tool in optimizing the path exploration process. 
As mentioned, this is an important criterion to assess 
the effectiveness of any test input generation tool 
based on dynamic symbolic execution since the cost 
of performing dynamic symbolic execution is 
expensive, minimizing the number of path 
explorations is necessary to make the technique 
applicable in practice. For this, besides the first stop 
condition, 1000 runs, we also stopped tools when all 
branch coverage of the experimenting test subject is 
met. The results are given in Table 2. 

Table 1 and Table 2 summarize the statistics we 
obtained after we carried out the experiments. It is 
clear from the statistics that Random is the worst 
approach to test input generation with the lowest 
average coverage (63%) obtained but the highest 
average number of runs (891 runs) exploited. DFS is 
an instance of using dynamic symbolic execution to 
systematically explore all feasible paths of the 
program. It lacks the ability to forward the execution 
to further unexplored control flow points and hence 
achieved very low branch coverage within the fixed 
testing limit. However, since DFS relies on the 
power of the underlying constraint solver, it must 
obtain higher coverage (84% in average) than 
Random. For CREST, it had 8 out of 9 cases failed to 
achieve full coverage. For these cases, the test 
subjects contain branches that require precise 
guidance of data flow analysis to be covered. Only 
CREST utilizes the static control flow and thus is not 
effective. Pex and Fitnex achieved quite similar 
average coverage results, 95% and 94%, 
respectively. While Pex failed in 5 cases to achieve 

full coverage, Fitnex had 1 fewer case. In cases of 
check_ISBN and check_ISSN, both Pex and Fitnex 
automatically terminated after 234 and 313 runs, 
respectively, although all coverage was not 
achieved. The comparison thus favours these tools in 
the aspect of path explorations. The results obtained 
by both Pex and Fitnex are better than Random, DFS 
and CREST in terms of coverage achievements and 
exploration optimizations. This highlights the power 
of bringing several search strategies together as well 
as the power of fitness functions in test input 
generation. For STIG, it failed to achieve 100% 
coverage in 2 cases, check_ISBN and check_ISSN. 
We manually investigated these test subjects and 
realized that the two functions contain one 
unreachable branch which is resulted from the 
instrumentation step where our tool normalizes 
every if statement to have the form if (e) then S1 else 
S2. Currently, STIG is not able to deal with infeasible 
code. But an interesting observation when we 
conducted experiments on these test subjects is that 
even though we set the testing limit to 1000 runs, 
STIG stopped the exploration process after 51 runs 
for check_ISBN and 45 runs for check_ISSN. This 
means the search process considered all possible 
combinations of data flows but none could help to 
explore the test goal. This suggests evidence that this 
code element is infeasible. We refer this situation to 
saturated data propagation and are working to give 
a formal proof for identifying infeasible code 
through exploring data flows. It is worth mentioning 
that on average STIG achieved the highest coverage 
(100% if infeasible code is not counted) and 
maintained a significantly small number of program 
explorations (25 runs compared to 308 and 390 of 
Fitnex and Pex, respectively, and 889 of CREST) on 
the selected test subjects. This shows the capability 
of utilizing data flow analysis to guide dynamic 
symbolic execution in the test input generation 
process. 

6 DISCUSSION 

The Chaining Approach. The chaining approach 
we utilized in this work is a test input generation 
technique (Ferguson and Korel, 1996), which relies 
on a local search method called the alternating-
variable method to find test inputs but this is 
performed largely randomly. In addition, the 
chaining mechanism itself mainly focuses on 
propagating the effect of definition statements to the 
target structure but lacks the ability to consider at a 
definition it may need to perform certain 
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computations to satisfy the target predicate. This 
limitation was partially addressed in the work of 
McMinn and Holcombe (2006) and has been 
strengthened by STIG to be able to intertwine with 
dynamic symbolic execution. 

Complexity. The cost of applying the chaining 
mechanism comes from two facets. One is 
performing data flow analysis to identify definition 
statements (or formally reaching definitions) (Aho et 
al., 2008) of problem nodes. This is a maximum 
fixedpoint algorithm operated statically on the 
source code of the program prior to dynamic 
symbolic execution. The algorithm complexity is the 
product of the height of the lattice and the number of 
nodes in the program flow graph, which is minor 
compared to the very expensive cost of performing 
dynamic symbolic execution. The other is the cost of 
performing dynamic symbolic execution with the 
guidance of event sequences. This cost results 
actually in the number of runs that STIG requires to 
execute the program, which was confirmed 
significantly smaller than other search strategies and 
tools. In fact, we observed from the experiments that 
CREST and STIG both executed the test subjects 
within a matter of a few seconds. Pex and Fitnex, 
however, consumed a considerable amount of time 
on all the test subjects. 

Evaluation. The evaluation was conducted in a 
small set of test subjects. However, these test 
subjects reveal characteristic exploration problems 
of real world programs for which dynamic symbolic 
execution without guidance is ineffective to apply. 
Future work aims to extend the proposed approach 
and conduct experiments on large test subjects to 
properly assess the validity of our proposal and 
observations. We believe that when testing sizeable 
and complex programs, where the path space is too 
large to systematically exhaustively explore, the 
ability to break down the path space and to precisely 
guide the search process by centralizing on selected 
aspects of semantics of our proposed approach is 
essential in optimizing the very expensive cost of 
performing dynamic symbolic execution to 
maximize coverage achievements and enhance error-
detection capabilities. 

7 CONCLUSIONS 

Achieving high code coverage is an important goal 
of software testing. Dynamic symbolic execution 
based techniques hold most promise to make this 
goal achievable. When applied to real world 
software, the scalability of dynamic symbolic 

execution, however, is limited due to the extremely 
large program path space. In this paper, we have 
proposed to apply data flow analysis to effectively 
and efficiently perform dynamic symbolic execution 
for maximum code coverage. The proposed 
approach alleviates the combinatorial path space 
explosion by guiding the search process to focus on 
code segments that truly affect the execution of 
uncovered code. The experimental evaluation shows 
that STIG is effective in maximizing code coverage, 
optimizing path explorations, and providing useful 
evidence to identify infeasible code elements. In 
most of the experiments, STIG achieves higher 
coverage with significantly small path explorations 
than popular state-of-the-art test case generation 
tools. 
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