
Precise Guidance to Dynamic Test Generation

TheAnh Do, A. C. M. Fong and Russel Pears
School of Computing and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

Keywords: Dynamic Symbolic Execution, Automated Test Input Generation, Software Testing, Data Flow Analysis.

Abstract: Dynamic symbolic execution has been shown an effective technique for automated test input generation.
However, its scalability is limited due to the combinatorial explosion of the path space. We propose to take
advantage of data flow analysis to better perform dynamic symbolic execution in the context of generating
test inputs for maximum structural coverage. In particular, we utilize the chaining mechanism to (1) extract
precise guidance to direct dynamic symbolic execution towards exploring uncovered code elements and (2)
meanwhile significantly optimize the path exploration process. Preliminary experiments conducted to
evaluate the performance of the proposed approach have shown very encouraging results.

1 INTRODUCTION

Testing is a widely adopted technique to ensure
software quality in software industry. For about 50%
of the total software project costs are devoted to
testing. However, it is labour-intensive and error-
prone. An attempt to alleviate those difficulties of
manual testing is to develop techniques to automate
the process of generating test inputs. For over the
last three decades, techniques have been proposed to
achieve this goal, ranging from random testing (Bird
and Munoz, 1983), symbolic execution (King,
1976), search-based testing (McMinn, 2004), the
chaining approach (Ferguson and Korel, 1996), to
dynamic symbolic execution (Godefroid, 2005; Sen,
2005).

Among these techniques, dynamic symbolic
execution has been gaining a considerable attention
in the current industrial practice (Cadar et al., 2011).
It intertwines the strengths of random testing and
symbolic execution to obtain the scalability and high
precision of dynamic analysis, and the power of the
underlying constraint solver. One of the most
important insights of dynamic symbolic execution is
the ability to reduce the execution into a mix of
concrete and symbolic execution when facing
complicated pieces of code, which are the critical
obstacle to pure symbolic execution. While
effective, the fundamental scalability issue of
dynamic symbolic execution is how to handle the
combinatorial explosion of the path space, which is
extremely large or infinite in sizable and complex

programs. Dynamic symbolic execution therefore, if
performed in a way to exhaustively explore all
feasible program paths, often ends up with small
regions of the code explored in practical time,
leaving unknown understanding about the
unexplored.

In fact, covering all feasible paths of the program
is impractical. Besides, testing large programs and
referring to sophisticated criteria can often be out of
the limit of a typical testing budget. In the practice
of software development, therefore, high code
coverage has been long advocated as a convenient
way to assess test adequacy (British Standards
Institute, 1998; RTCA, Inc. 1993). Specifically, the
testing process must ensure every single code
element in the program is executed for at least once.
In this context, dynamic symbolic execution can be
conducted so as to cover all code elements rather
than exploring all feasible program paths. This may
lead to a significant reduction in the number of paths
needed to explore. However, the question of “how
can we derive precise guidance to perform dynamic
symbolic execution towards achieving high code
coverage?” becomes important. This question
emphasizes two aspects: high coverage
achievements and minimal path explorations. The
second aspect is essential in the sense that the cost of
performing dynamic symbolic execution is
expensive, especially in large programs, any
technique helping achieve high code coverage must
optimize path explorations to be applicable within
resources available e.g., CPU, memory and time.

5Do T., Fong A. and Pears R..
Precise Guidance to Dynamic Test Generation.
DOI: 10.5220/0003969000050012
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 5-12
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

To answer this question, we propose to apply
data flow analysis to better perform dynamic
symbolic execution in the test input generation
process. Particularly, we utilize the chaining
approach (Ferguson and Korel, 1996) to pull out
precise guidance in order to direct dynamic symbolic
execution towards effectively and efficiently
exploring code elements. Specifically, given a test
goal (an unexplored code element e.g., statement or
branch), the chaining approach first performs data
dependency analysis to identify statements that
affect the execution of the test goal, and then it uses
these statements to form sequences of events that is
to be executed prior to the execution of the test goal.
The advantage of doing this is twofold: (1) it
precisely focuses on the cause of getting the test goal
to be executed and (2) it slices away code segments
that are irrelevant to the execution of the test goal.
As we will show in the evaluation, these two
strengths enable dynamic symbolic execution to
achieve higher code coverage and at the same time
significantly optimize the number of path
explorations required to unclose high-complexity
code.

The paper is organised as follows. Section 2
introduces dynamic symbolic execution and
highlights the path space explosion problem. Section
3 provides a brief survey of related work. Section 4
illustrates the chaining approach. Section 5 explains
the prototype implementation and discusses the
experimental results. We discuss research issues and
future work in Section 6, and conclude the paper in
Section 7.

2 DYNAMIC SYMBOLIC
EXECUTION

The key idea behind dynamic symbolic execution
(Godefroid et al., 2005) is to start executing the
program under test with concrete values while
gathering symbolic predicates of corresponding
symbolic values along the execution. By negating
one symbolic predicate and solving the path
constraint with an off-the-shelf constraint solver, it
can obtain a new input to steer the execution along
an alternative program path. This process is often
performed in an attempt to exhaustively
systematically explore all feasible paths of the
program. Dynamic symbolic execution hence
outperforms “classical” symbolic execution through
being able to simplify complex constraints, and deal
with complex data structures and native calls.

Figure 1: The CheckArray function checks if all elements
of an input array equal 25.

To perform dynamic symbolic execution, code of
the program is instrumented in a way that concrete
execution can be executed simultaneously with
symbolic execution. So, while the former drives the
execution, the latter maintains a symbolic memory S,
which maps memory addresses to symbolic
expressions, and a symbolic path constraint PC,
which is a first-order quantifier-free formula over
symbolic expressions. In this way, once an
expression is evaluated, it is evaluated both
concretely and symbolically, and both physical
memory and symbolic memory are updated
accordingly. Similarly, once a conditional statement
if (e) then S1 else S2 is executed, PC is updated
according to the “then” or “else” branch taken. If the
“then” branch is taken, PC becomes ܲܥ	 ∧ ;(݁)ߪ	
otherwise, it is ܲܥ	 ∧ denotes (݁)ߪ where ,(݁)ߪ¬	
the symbolic predicate obtained by evaluating e in
symbolic memory. As a result, the symbolic path
constraint PC presenting a symbolic execution of the
program is as follows: ܲܥ = ଵߪ ∧ …∧ ௜ିଵߪ ∧ ௜ߪ ∧ ௜ାଵߪ ∧ …∧ ௡ (1)ߪ

Every single symbolic predicate of PC represents
one possibility to execute the program along an
alternative path. That is one can randomly pick up a
predicate, e.g., ߪ௜, negate it, and then form the
constraint system (ߪଵ ∧ …∧ ௜ିଵߪ ∧ ௜) to be solvedߪ¬
by the underlying constraint solver. The satisfiability
of the constraint system results in an input that the
execution of the program with this input will follow
the previous path up to the corresponding
conditional statement of the negated predicate, but
afterwards change the flow of control to the other
branch. Consequently, for every symbolic path
constraint, the number of program paths can be 2௡
or be exponential in the number of symbolic
predicates. In practice, the number of symbolic

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

6

predicates of the program is often extremely large
(or even infinite), especially in the presence of loops
and/or recursions, causing dynamic symbolic
execution to face with the combinatorial explosion
of the path space. The CheckArray function in
Figure 1 could be a good example to illustrate this
phenomenon. It takes input an array of 20 elements
and check if all elements equal 25. This yields 220
(=1,048,576) paths with just 20 symbolic predicates.
In practice, this problem becomes worse as the input
of programs can be a stream of data with too large
(or unknown) size. In case of check_ISBN and
check_ISSN in the set of test subjects, for instance,
both functions take an array with (4093+3) tokens
(causing approximately 2(4093+3) paths), making
dynamic symbolic execution ill-suited for the goal of
covering all code elements of programs. It is
therefore necessary to devise appropriate search
strategies to guide dynamic symbolic execution to
achieve high code coverage within a minimal testing
budget. In the next section, we provide a brief
survey of related test input generation techniques
based on dynamic symbolic execution to assess the
current state of research.

3 RELATED WORK

Cadar et al (2011) give a preliminary assessment of
the use of (modern) symbolic execution in academia,
research labs and industry in which the authors
emphasize “A significant scalability challenge for
symbolic execution is how to handle the exponential
number of paths in the code”. In the context of using
dynamic symbolic execution to generate test inputs
for maximum code coverage, tools being in favour
of depth-first explorations such as DART (Godefroid
et al., 2005) and CUTE (Sen et al., 2005) deeply
widen the program path space but lack the ability to
forward the execution to further unexplored control
flow points. These approaches when executed
against large programs for finite time achieve very
low code coverage. Pex (Tillmann and Halleux,
2008) is an automated structural testing tool
developed at Microsoft Research. It combines a rich
set of basic search strategies and gives a fair choice
among them. While the combination helps maximize
code coverage through attempting different program
control flows, discovering code elements may
require specific guidance of control and data flow
analysis. Fitnex (Xie et al., 2009) further makes Pex
more guided by using fitness functions to measure
the improvement of the path exploration process.
The main obstacle of this approach is the flag

problem (Binkley et al., 2011), where fitness
functions face a flat fitness landscape, giving no
guidance to the search process. Flags, however, are
widely used in real world software (Binkley et al.,
2011). CREST (Burnim and Sen, 2008) is an
extensible platform for building and experimenting
with heuristics for achieving high code coverage.
Among search heuristics implemented in CREST,
CfgDirectedSearch is shown more effective than the
others through the reported experimental data. This
search strategy leverages the static control flow of
the program under test to guide the search down
short static paths to unexplored code. Theoretically,
the control flow guidance may be imprecise since
the execution of code elements may require data
dependencies going beyond short paths and/or being
calculated in dynamic paths.

Obviously, with sizable and complex programs,
the difficulty of using dynamic symbolic execution
to generate test inputs for maximum code coverage
is among the far too many program paths, how to
mine for appropriate paths to guide the search
process towards exposing unexplored code elements.
In the next section, we introduce the chaining
mechanism in an attempt to address this issue.

4 THE CHAINING APPROACH

The chaining approach (Ferguson and Korel, 1996)
was proposed to make use of data dependency
analysis to guide the search process. The basic idea
is to identify statements leading up to the goal
structure, which may influence the outcome of the
test goal. Those statements are sequences of events
that the search process must walk along to target the
test goal. The chaining approach can hence be
considered as a slicing technique (Tip, 1995) which
simplifies programs by focusing on selected aspects
of semantics. As a result, the chaining approach can
provide precise guidance since it forces the
consideration of data flows, and it is effective since
it slices away irrelevant code segments to the
execution of the test goal. These two strengths can
guide the search process into potentially unexplored
but promising areas of the path space to unclose
high-complexity code.

We illustrate the core of the chaining mechanism
using again the function CheckArray in Figure 1 in
which the test goal is to cover branch (5, 6). For this,
the chaining mechanism first generates the following
initial event sequence E0 =<(s, Ø), (6, Ø)> where
each event is a tuple ei = (ni, Si) where ni is a
program node and Si is a set of variables referred to

Precise�Guidance�to�Dynamic�Test�Generation

7

as a constraint set. Now suppose that the search
process fails to find an input array with all elements
equal 25 to execute the target branch, moving from
node 5 to node 6. Node 5 is hence considered to be a
problem node. Formally, a problem node refers to a
conditional statement for which the search process
within a fixed testing budget cannot find inputs to
execute an intended branch from this node. The
chaining mechanism then performs data flow
analysis in respect of this problem node to identify
statements that define data for variables used in the
conditional expression. In this case, the conditional
expression consists of variable success, which is
defined at nodes 1 and 4. Two event sequences are
constructed accordingly, E1 and E2, based on the
initial event sequence.

E1 =<(s, Ø), (1, {success}), (5, Ø), (6, Ø)>
E2 =<(s, Ø), (4, {success}), (5, Ø), (6, Ø)>

Notice that for every two adjacent events in an
event sequence, ei = (ni, Si) and ei+1 = (ni+1, Si+1)
there must exist a path from ni to ni+1 along which all
variables in Si are not redefined. Such a path allows
the effect of a definition statement to be transferred
up to the target structure. Obviously, the sequence
E2 cannot help to explore the test goal as the value of
success variable is false, which leads to the
execution of the “else” branch instead. The event
sequence E1, on the other hand, guides the search
process to first reach node 1 from the function entry,
which sets the value of success variable to the
desired true value to explore branch (5, 6), and then
continues from node 1 to node 5. When moving to
node 5, the value of success variable may be killed
at node 4 if branch (3, 4) is executed. If so, the
search process is guided to change the flow of
control at node 3 to the “else” branch, which
prevents success variable from being set to the
unwanted false value. This guidance is continuously
refined throughout the for loop to preserve the
constraint set {success} of event (1, {success})
while reaching to event (5, Ø). By doing so, the
value of all elements in the input array is altered to
25, providing the desired input to expose the test
goal, branch (5, 6).

We now formalize the process of creating a new
event sequence from an existing sequence E. Let E =
<e1, …, ei-1, ei, ei+1, …, em> be an event sequence.
Suppose the search process driven by the event
sequence guides the execution up to event ei and a
problem node p is encountered between events ei
and ei+1. Let d be a definition statement of problem
node p. Two events are generated, ep = (p, Ø) and ed
= (d, D(d)), corresponding to the problem node and

its definition. A new event sequence is now created
by inserting these two events into sequence E. Event
ep is always inserted between ei and ei+1. However,
event ed, in general, may be inserted in any position
between e1 and ep. Suppose the insertion of event ed
is between events ek and ek+1. The following event
sequence is then created:

E’=<e1,…, ek-1, ek, ed, ek+1, …, ei-1, ei, ep, ei+1, …, em>

Since new events are added to the sequence, the
implication of data propagation may be violated.
This requires modifications of the associated
constraint sets of involved events. The update is
done in three steps:

(1) Sd = Sk ∪ D(d)
(2) Sp = Si
(3) ∀j, k + 1 ≤ j ≤ i, Sj = Sj ∪ D(d)

In the first step, the constraint set Sd of event ed
is initialized to the union of D(d) and the constraint
set of the preceding event ek. This modification
ensures that the constraint set Sk of event ek is
preserved up to event ek+1 while getting through the
new inserted event ed. The second step also imposes
the same requirement on event ep by assigning Si to
its constraint set. In the final step, all constraint sets
of events between ek+1 and ei are modified by
including a variable defined at d. By doing this, the
chaining mechanism guarantees to propagate the
effect of the definition at node d up to the problem
node p.

Created event sequences may be organised in a
form of a tree referred to as a search tree. The initial
event sequence E0 represents the root of the tree.
Other levels of the tree are formed by event
sequences created when problem nodes are
encountered. One tree node represents a possibility
to unclose the test goal. The search process when
following an event sequence attempts to adjust the
execution to move from one event to another
without making the constraint set in the previous
event violated. This suggests a systematic
mechanism to propagate the effect of all possible
data flows up to the target goal structure. When
intertwined with dynamic symbolic execution, this
search process specifically involves picking up
relevant symbolic predicates, negating them, and
then forming constraint systems to be solved by the
underlying constraint solver for inputs. Dynamic
symbolic execution directed by the precise guidance
of the chaining mechanism can hence significantly
strengthen the test input generation process in

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

8

Table 1: Percentage of branch coverage achieved by search strategies when executed on 9 test subjects.

Subject loc br Random DFS CREST Pex Fitnex STIG
sample 31 12 42 92 92 92 92 100
testloop 17 8 13 88 88 100 100 100
hello_world 37 32 34 56 91 91 91 100
netflow 28 6 83 83 83 100 100 100
moveBiggestInFront 37 6 100 83 83 100 100 100
handle_new_jobs 37 6 67 100 100 83 100 100
update_shps 52 10 60 90 90 100 100 100
check_ISBN 78 52 83 83 83 96 83 98
check_ISSN 78 52 83 83 94 96 83 98
Average 44 20 63 84 89 95 94 100≈

Table 2: Measurements of number of program explorations required by search strategies.

Subject Random DFS CREST Pex Fitnex STIG
sample 1000 1000 1000 1000 1000 13
testloop 1000 1000 1000 26 27 22
hello_world 1000 1000 1000 1000 1000 55
netflow 1000 2 1000 5 5 2
moveBiggestInFront 15 1000 1000 4 4 2
handle_new_jobs 1000 2 2 1000 99 34
update_shps 1000 1000 1000 5 7 4
check_ISBN 1000 1000 1000 234 313 51
check_ISSN 1000 1000 1000 234 313 45
Average 891 778 889 390 308 25

Notice: loc number of lines of code
 br number of branches
 Random random input search
 DFS depth-first search

coverage achievements and path exploration
optimizations.

5 PRELIMINARY EVALUATION

We have implemented our proposed approach as a
search heuristic, called STIG (Scalable Test Input
Generation), on the CREST platform (Burnim and
Sen, 2008), an automatic test input generation tool
for C, based on dynamic symbolic execution. Since
CREST unrolls decisions with multiple conditions as
an equivalent cascade of single condition decisions
and converts every single conditional statement into
a form of if (e) then S1 else S2, branch coverage
achieved by CREST is comparable to condition
coverage in the original program. For any
specification clothed in forms of assertion calls, i.e.,
assert (e), we transform into a conditional statement
if (!e) error(); to check for errors. In this case, the
test goal is to explore the function call error.

To evaluate the effectiveness of our approach,
we chose a set of test subjects and conducted
experiments to compare STIG with two widely
adopted search strategies, random input search and

depth-first search, and with three test input
generation tools CREST, Pex and Fitnex. For CREST,
we chose the control-flow graph directed search
strategy (CfgDirectedSearch) which was confirmed
the “best” search algorithm through the reported
experimental data. The test input generation CREST
tool used in the whole paper thus refers to this
chosen search strategy. For Pex, it implements
dynamic symbolic execution to generate test inputs
for .NET code, supporting languages C#,
VisualBasic, and F#. Besides, Fitnex is an extension
of Pex. The test subjects selected include the sample
function which was borrowed from the work of
Ferguson and Korel (1996). The next two test
subjects, testloop and hello_world, were from the
work of Xie et al. (2009). These test subjects were
employed in literature to illustrate the essence of
individual exploration problems. Thus we want to
check if STIG by using data flow analysis is able to
tackle those exploration problems. Notice that the
hello_world function in this evaluation was modified
to check an input array which must start with
“Hello”, end with “World!” and contain only spaces.
This modification makes the function more difficult
for search strategies to cover all its code coverage.

Precise�Guidance�to�Dynamic�Test�Generation

9

The rest of the test subjects were mentioned in the
work of Binkley et al. (2011). These functions come
from open-source programs; we hence want to
evaluate the capability of STIG in dealing with the
high complexity of real world programs as compared
to the others’. For the sake of experiments, for some
functions we just extracted part of their code. All the
test subjects are in C code, to make comparison with
Pex and Fitnex we converted them to C# code.

All experiments in the evaluation were run on
3GHz CoreTM2 Duo CPU with 4GB of RAM and
running Ubuntu GNU/Linux for Random, DFS,
CREST and STIG, and Windows for Pex and Fitnex.

The first purpose of the experiment is to evaluate
the capability of each tool (or search strategy) in
achieving high code coverage, hence it is fair to set
up a fixed testing budget for all. For this, we chose
1000 runs as the limit to run every test subject on
each tool. We measured the percentage of branch
coverage obtained. The results are shown in Table 1.
The second purpose is to evaluate the capability of
each tool in optimizing the path exploration process.
As mentioned, this is an important criterion to assess
the effectiveness of any test input generation tool
based on dynamic symbolic execution since the cost
of performing dynamic symbolic execution is
expensive, minimizing the number of path
explorations is necessary to make the technique
applicable in practice. For this, besides the first stop
condition, 1000 runs, we also stopped tools when all
branch coverage of the experimenting test subject is
met. The results are given in Table 2.

Table 1 and Table 2 summarize the statistics we
obtained after we carried out the experiments. It is
clear from the statistics that Random is the worst
approach to test input generation with the lowest
average coverage (63%) obtained but the highest
average number of runs (891 runs) exploited. DFS is
an instance of using dynamic symbolic execution to
systematically explore all feasible paths of the
program. It lacks the ability to forward the execution
to further unexplored control flow points and hence
achieved very low branch coverage within the fixed
testing limit. However, since DFS relies on the
power of the underlying constraint solver, it must
obtain higher coverage (84% in average) than
Random. For CREST, it had 8 out of 9 cases failed to
achieve full coverage. For these cases, the test
subjects contain branches that require precise
guidance of data flow analysis to be covered. Only
CREST utilizes the static control flow and thus is not
effective. Pex and Fitnex achieved quite similar
average coverage results, 95% and 94%,
respectively. While Pex failed in 5 cases to achieve

full coverage, Fitnex had 1 fewer case. In cases of
check_ISBN and check_ISSN, both Pex and Fitnex
automatically terminated after 234 and 313 runs,
respectively, although all coverage was not
achieved. The comparison thus favours these tools in
the aspect of path explorations. The results obtained
by both Pex and Fitnex are better than Random, DFS
and CREST in terms of coverage achievements and
exploration optimizations. This highlights the power
of bringing several search strategies together as well
as the power of fitness functions in test input
generation. For STIG, it failed to achieve 100%
coverage in 2 cases, check_ISBN and check_ISSN.
We manually investigated these test subjects and
realized that the two functions contain one
unreachable branch which is resulted from the
instrumentation step where our tool normalizes
every if statement to have the form if (e) then S1 else
S2. Currently, STIG is not able to deal with infeasible
code. But an interesting observation when we
conducted experiments on these test subjects is that
even though we set the testing limit to 1000 runs,
STIG stopped the exploration process after 51 runs
for check_ISBN and 45 runs for check_ISSN. This
means the search process considered all possible
combinations of data flows but none could help to
explore the test goal. This suggests evidence that this
code element is infeasible. We refer this situation to
saturated data propagation and are working to give
a formal proof for identifying infeasible code
through exploring data flows. It is worth mentioning
that on average STIG achieved the highest coverage
(100% if infeasible code is not counted) and
maintained a significantly small number of program
explorations (25 runs compared to 308 and 390 of
Fitnex and Pex, respectively, and 889 of CREST) on
the selected test subjects. This shows the capability
of utilizing data flow analysis to guide dynamic
symbolic execution in the test input generation
process.

6 DISCUSSION

The Chaining Approach. The chaining approach
we utilized in this work is a test input generation
technique (Ferguson and Korel, 1996), which relies
on a local search method called the alternating-
variable method to find test inputs but this is
performed largely randomly. In addition, the
chaining mechanism itself mainly focuses on
propagating the effect of definition statements to the
target structure but lacks the ability to consider at a
definition it may need to perform certain

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

10

computations to satisfy the target predicate. This
limitation was partially addressed in the work of
McMinn and Holcombe (2006) and has been
strengthened by STIG to be able to intertwine with
dynamic symbolic execution.

Complexity. The cost of applying the chaining
mechanism comes from two facets. One is
performing data flow analysis to identify definition
statements (or formally reaching definitions) (Aho et
al., 2008) of problem nodes. This is a maximum
fixedpoint algorithm operated statically on the
source code of the program prior to dynamic
symbolic execution. The algorithm complexity is the
product of the height of the lattice and the number of
nodes in the program flow graph, which is minor
compared to the very expensive cost of performing
dynamic symbolic execution. The other is the cost of
performing dynamic symbolic execution with the
guidance of event sequences. This cost results
actually in the number of runs that STIG requires to
execute the program, which was confirmed
significantly smaller than other search strategies and
tools. In fact, we observed from the experiments that
CREST and STIG both executed the test subjects
within a matter of a few seconds. Pex and Fitnex,
however, consumed a considerable amount of time
on all the test subjects.

Evaluation. The evaluation was conducted in a
small set of test subjects. However, these test
subjects reveal characteristic exploration problems
of real world programs for which dynamic symbolic
execution without guidance is ineffective to apply.
Future work aims to extend the proposed approach
and conduct experiments on large test subjects to
properly assess the validity of our proposal and
observations. We believe that when testing sizeable
and complex programs, where the path space is too
large to systematically exhaustively explore, the
ability to break down the path space and to precisely
guide the search process by centralizing on selected
aspects of semantics of our proposed approach is
essential in optimizing the very expensive cost of
performing dynamic symbolic execution to
maximize coverage achievements and enhance error-
detection capabilities.

7 CONCLUSIONS

Achieving high code coverage is an important goal
of software testing. Dynamic symbolic execution
based techniques hold most promise to make this
goal achievable. When applied to real world
software, the scalability of dynamic symbolic

execution, however, is limited due to the extremely
large program path space. In this paper, we have
proposed to apply data flow analysis to effectively
and efficiently perform dynamic symbolic execution
for maximum code coverage. The proposed
approach alleviates the combinatorial path space
explosion by guiding the search process to focus on
code segments that truly affect the execution of
uncovered code. The experimental evaluation shows
that STIG is effective in maximizing code coverage,
optimizing path explorations, and providing useful
evidence to identify infeasible code elements. In
most of the experiments, STIG achieves higher
coverage with significantly small path explorations
than popular state-of-the-art test case generation
tools.

ACKNOWLEDGEMENTS

We thank Kiran Lakhotia for sending us source code
of test subjects used in his work (Binkley et al.,
2011). We are grateful to Nikolai Tillmann and Tao
Xie for their help on Pex and Fitnex.

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D.
(2008). Compilers: Principles, Techniques, and Tools.
Addison Wesley, 2nd edition.

Binkley, D. W., Harman, M., and Lakhotia, K. (2011).
FlagRemover: A testability transformation for
transforming loop-assigned flags. ACM Transactions
on Software Engineering and Methodology 20(3).

Bird, D., and Munoz, C. (1983). Automatic generation of
random self-checking test cases. IBM Systems Journal,
22(3), 229-245.

British Standards Institute (1998). BS 7925-1 Vocabulary
of Terms in Software Testing.

Burnim, J., and Sen, K. (2008). Heuristics for scalable
dynamic test generation. In ASE, pp. 443-446.

Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C. S.,
Sen, K., Tillmann, N., and Visser, W. (2011).
Symbolic execution for software testing in practice:
preliminary assessment. In ICSE, pp. 1066-1071.

Ferguson, R., and Korel, B. (1996). The chaining approach
for software test data generation. ACM Transactions
on Software Engineering and Methodology, 5(1).

Godefroid, P., Klarlund, N., and Sen, K. (2005). DART:
directed automated random testing. In PLDI '05, pp.
213-223.

King, J. C. (1976). Symbolic execution and program
testing. Communications of the ACM, 19, 385 - 394.

McMinn, P. (2004). Search-based software test data
generation: a survey. Software Testing, Verification
and Reliability, 14(2).

Precise�Guidance�to�Dynamic�Test�Generation

11

McMinn, P., and Holcombe, M. (2006). Evolutionary
Testing Using an Extended Chaining Approach.
Evolutionary Computation, 14(1).

RTCA, Inc. (1993). Document RTCA/DO-178B. U.S.
Department of Transportation, Federal Aviation
Administration, Washington, D.C.

Sen, K., Marinov, D., and Agha, G. (2005). CUTE: a
concolic unit testing engine for C. In ESEC/FSE-13,
pp. 263-272.

Tillmann, N., and Halleux, J. D. (2008). Pex–white box
test generation for .NET. In Beckert, B., Hahnle, R.
(eds.) TAP 2008. LNCS, vol. 4966, pp. 134-153.
Springer, Heidelberg.

Tip, F. (1995). A survey of program slicing techniques.
Journal of Programming Languages, 3(3), 121-189.

Xie, T., Tillmann, N., Halleux, P. d., and Schulte, W.
(2009). Fitness-guided path exploration in dynamic
symbolic execution. In DSN, pp. 359-368.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

12

