
A COLLABORATIVE ENVIRONMENT
TO LEARN PROGRAMMING

G. Bizzarri, L. Forlizzi and F. Ricci
Dipartimento di Informatica, University of L’Aquila, via Vetoio, 67010, L'Aquila, Italy

Keywords: e-Learning, Collaborative Programming, Wiki, Teaching Tool.

Abstract: Students taking their first steps in the programming world need to find resolved examples, compare their
solutions to well-know problems and to understand the errors that are returned by a compiler. We have
planned to create a wiki for source code and give to the students an e-learning platform that allow them to
write code in a collaborative way, integrated with a technology to compile the source code written in
different programming languages, to interpret errors returned by the compiler and to show them by a virtual
tutor speaking in their national language and that use the natural language of everyday life. It helps
to understand the errors, where they were committed and how fix them.

1 INTRODUCTION

In the Internet era, young people often have a
considerable experience with Information and
Communication Technologies (ICTs). However, they
are especially familiar with easy-to-use technologies
like smartphones, entertainment devices, web
browsers. Their skills are often restricted to the ability
to interact, quickly and effectively, with such devices
by means of graphical user interfaces.

The use of more sophisticated technological tools,
with interfaces not designed for ease of use, nor based
on the usual graphical metaphors proves to be far
more difficult for the so-called “digital natives”
(Prensky, 2001). The confidence in the use of many
digital devices is accompanied by a profound
misunderstanding of the world of technology within
young people: they use resources, systems and
devices of which they ignore working principles and
inner details, thus regarding them the same way as
magical objects (Longo, 2009).

Despite this profound limitation, the attitude and
the tendency to use computers and communication
devices is an important skill that one should try to
exploit to reach deeper levels of knowledge and
comprehension. A promising strategy to achieve this
aim is to use take advantage of one relevant
consequence of the use of communication devices,
namely the dense network of social relations that
these devices allow to establish.

Blended e-learning is increasingly emerging as
the most effective use of information technology in
education. In blended courses, a variety of
technological tools such as discussion boards, chats,
wikis, and blogs are employed to facilitate
discussion and interaction (Lord. and Lomicka,
2008). Regular use of these tools is important to the
development of a learning community and to the
promotion of learning and interaction at a distance;
such tools, rather than leading to cold and
dehumanizing contact, can, in fact, promote a sense
of community (Rovai and Jordan, 2004).

In this work we present an e-learning tool
devoted to the teaching of programming at an
introductory level that promote the construction of a
learning community and tries to achieve educational
benefits from the interaction between learners.

Novice programmers (and sometimes
experienced ones) tend to search for a lot of carried
out examples. We regard this as an inherently
positive attitude, since we believe learning-by-
example to be an appropriate strategy to grasp the
basics of programming. Indeed, we think that at an
introductory level, the main difficulty is not to
understand the concepts upon which programming
languages are based (i.e., in the case of imperative
languages, variable, expression, instruction) but
rather in acquiring the ability to use and combine
simple concepts and language constructs to put
together working programs.

471Bizzarri G., Forlizzi L. and Ricci F..
A COLLABORATIVE ENVIRONMENT TO LEARN PROGRAMMING.
DOI: 10.5220/0003964904710476
In Proceedings of the 4th International Conference on Computer Supported Education (ESEeL-2012), pages 471-476
ISBN: 978-989-8565-07-5
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

The problem is that novice programmers who are
digital natives tend to search for program examples
on the internet, often finding programs that have low
quality or are too much sophisticated for their
current skill level. The tool we propose allow the
construction of program examples repositories to
satisfy the needs of novice programmers. In order to
control the quality of programs, we employ two
main mechanisms:

• use of compilers to check correctness and
other properties of programs submitted to the
repository;

• collaborative writing, development and
maintenance of the programs.

A key element for the success of this approach, is
to motivate student to participate in the collaborative
effort to build and extend program collections stored
in the system. A major obstacle that discourages
active participation of students is the lack of
familiarity in the use of compilers, which, facing a
series of failures in the compilation of programs, can
lead to mistrust and fear to submit one's work to the
judgement of the machine. To address this problem
we provide the system with a virtual tutor, i.e., a
software agent which provides guidance in natural
language and assists the students to correct
programming errors. Usually compilers, following
the detection of errors, emit rather brief messages
using highly technical terminology, which is hardly
understandable by novice programmers. Also,
compilers rarely provide some indication on how to
correct errors.

Moreover, almost all compilers return an output
in English language only. This fact creates
additional difficulties to students less familiar with
this language.

The program repository thus becomes the center
of a rich learning environment, which also allows
online creation of small programs in a code
highlighter editor. To allow collaborative writing of
programs, our system is based on a wiki system. In
preparation for future integration with other learning
resources, we chose to embed our system in a
Learning Contents Management System (LCMS).

The rest of the paper is organized as follows.
Section 2 describes in more detail the learning
environment we propose. In section 3 we present
some teaching activities in which we are currently
experimenting the usefulness of the system. Finally
Section 4 gives some hint on our plans for future
developments and Section 5 draws some concluding
remark.

2 THE ENVIROMENT

The system is based on two main components: a
central core that handles all kinds of content and
allows the fruition to the students and the virtual
tutor which gives an added value to the student who
uses the system. We decided to build the repository
inside an LCMS in order to take advantage of its
infrastructure for the presentation of contents.
Among the many LCMS available, we chose
Moodle on the ground of its widespread use: the
number of its active sites grew from about 1.000 on
early 2004 to 73.000 at the end of 2011, continuing
its run with an average of 2.000 new activations per
month.

2.1 Wiki

The program repository is built around a wiki
system, that allows to share, exchange and store the
source code in a totally collaborative way. For any
user of the system (registered or anonymous) it is
possible to:

• add content;
• edit content;
• delete content;
• check the version history for a single

content;
• check the differences between two or more

versions of a single content;
• restore a previous version of a single

content.
These are basic features of any wiki, provided in

our system by extending the standard wiki module
present in Moodle, to better handle any kind of
source code.

In order to promote a rapid growth of the code
base in the repository, in the current version of the
system all users are supposed to have the same level
of expertise.

Therefore each user's additions, changes or
deletions to existing programs take place with no
need of approval by other users. In light of this
strategy, a very important feature of the repository is
the preservation of the succession of changes to the
stored programs.

This allows to restore old versions of the
programs in case of mistakes (or vandalism).
Moreover it allows to compare multiple versions of
a source code in order to analyze how it evolved
through a sequence of modifications in terms of
error correction and program quality. To the latter
aim, the history of a program also contains

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

472

diagnostic messages emitted by the compiler for
each single translation performed.

2.2 User Stats

In an e-learning system, in addition to learning tools
and objects, it is important to have reporting tools
allowing students to track their progress having an
evaluation, teachers to monitor the development of
individuals and of the group.

For this reason the system is equipped with a
tracker for the operations in order to store statistics
about translations performed and errors found.
Errors are grouped into macro categories according
to their type and their severity. For each translation a
record is inserted into the database containing the id
of the page, the user id and the number of errors
differentiated by type. Such an organization allows,
by intersecting the data, to generate a variety of
statistics like:

• % of compilation with errors for student;
• % of errors for student grouped by typology;
• % of compilation with errors for program;
• % of compilation with errors for program

grouped by typology;
• % of compilation with errors for course;
• % of compilation with errors for course

grouped by typology;
• list of students who make more errors;
• list of students who make more errors

grouped by typology;
• list of pages where are made more errors;
• list of pages where are made more errors

grouped by typology;
These data can be used for statistical purposes:

for example to perform comparisons between
students and work groups, or any act aimed to
reinforce topics subject of major errors.

2.3 History

Gaston Bachelard (1977) believes that the error is
positive, normal and useful, and endorses his theory
by claiming that the error is not an obstacle to
knowledge, rather this is characterized as a
perspective of errors corrected.

In this perspective, we think that students can
benefit a lot from the use of a tool that allow them to
inspect the history of a given source code, to study
how errors were committed and were propagated,
and to highlight the differences between successive
versions.

Both the teacher and the students can access

these data to identify the issues and situations in
which mistakes are made and to analyze how
students' knowledge and ability to program improve
over time.

We consider it particularly important that
students have available tools to analyze their own
progress and error, because this helps to improve
critical thinking, the ability to self-evaluation and
the engagement in the use of the system beyond the
scheduled lectures.

Another important reason to provide historical
data is code reuse.

When programming, one often finds himself in
front of errors or problems that have already been
addressed before, but for which one does not know
the solution, either because one forgot or because it
was provided by another person.

The repository can be used as a source of ready
to use solutions, explained in detail and validated
both by means of automatic correction provided by
the system, either by the sieve of other users.

2.4 Module Compile and Report

In this section we describe in more details the tools
that allow to compile source code, which constitute
the real core of the system.

After the creation or the update of a page
containing source code, unlike a conventional wiki
which just saves the content into a database, the
compiling module comes into play. According to the
specific programming language employed, it
extracts the source code from the page and dispatch
it to the appropriate compiler. If the compilation is
successfully completed, no further operations will be
performed. Otherwise, diagnostic messages emitted
by the compiler are submitted to the virtual tutor.

The virtual tutor's role is to interpret the output
of the compiler and to provide to the user a natural
language description of errors, other problems,
possible solutions, related topics

This poses two main difficulties:
• the need to know all the possible errors

detectable by the compiler;
• the need to be able to recognize individual

errors, despite the fact that different
compilers usually emit completely different
diagnostic messages for the same problems.

As regards to the first issue, the only solution is a
total enumeration of all possibilities. This solution,
although expensive, is the only that guarantee a
complete feedback to users, a fact that we consider
important for novice programmer.

To overcome the second difficulty, we employ a

A�COLLABORATIVE�ENVIRONMENT�TO�LEARN�PROGRAMMING

473

set of regular expressions and try to match them with
diagnostics emitted by the compiler. The line
number and the list of program objects involved are
determined by the regular expression matching the
diagnostic messages, and they provide very useful
information to identify the roots of the problem.

2.4.1 Example

To clarify the concept we show the following
example in C language.

void main()
{
int a[];
a[0]=5;
}

The output returned by the gcc compiler is the

following:
7: error: array size missing in 'a'

This is the typical error of an array declaration
where the size of the array is not specified. It would
be sufficient to find a match with “error: array size
missing” to recognize the error, but in addition at the
beginning and at the end of the line there are very
important information that can be shown to the user:
the row number and the name of the array that has
caused the mistake.

The regular expression we use to detect this class
of errors is:
#([0-9]*): error: array size missing in
'([A-Za-z0-9_]*)'#i

Such a regular expression allows to perform the
match and select the row number and the variable
causing the error. The virtual tutor can now produce
an appropriate message, more understandable by a
novice programmer, like for instance “At line 7, you
have declared the array ‘a’ without size. Each array
must have a positive integer size specified between
the brackets”. The message can be complemented by
learning contents related to variable declarations and
characteristics of the array data type.

3 CASE STUDIES

To assess the impact of the tool and methodology
that we propose, based on collaborative
programming, we are using them in a couple of
teaching experiences.

3.1 Olympiads in Informatics Training

A special training course for the Olympiad in
Informatics, has been used as a case study to test the
effectiveness of this approach (Verhoeff, 2006).

For this experiment the repository was built
using a previous version of our system which uses,
instead of wiki pages, an expansion module for
Moodle that we realized for this specific task.
(Barbieri et al., 2011).

The expansion module provides additional
capabilities to the LCMS:

• a revision control system for source codes
that allows collaborative program
development;

• a module responsible of compiling and
reporting diagnostic messages to students;

• a test environment where successfully
compiled programs are executed with sets of
input instances created by the teacher;

• instruments to manage and organize work
groups suitable for our needs.

Has been decided in fact to experiment the usage
of this module in a special training course managed
by teachers of the University of L’Aquila in
collaboration with teachers of high school for the
AAOII (Italian acronym for: Abruzzesi Trainings of
Olympiad in Informatics.

The purpose of the training course is to prepare
adequately, to the regional and national phases of the
competition, students coming from different high
schools who were selected having reported an high
score in the first round of the competition, in which
they faced a mixture of logical and mathematical
puzzles and very simple programming tests.

The regional phase of the Olympiads in
Informatics consists of a contest in which
participants must create programs written in a
programming language chosen from Pascal, C, C++
that solve algorithmic problems similar to those of
National phase, but with lower difficulty.

By using the repository and the compile-and-
report module, it was possible to extend the teaching
activity outside the planned hours of lectures,
allowing the students to be able to work from home
and to verify the correctness of their own programs
online.

The students had access to the repository,
containing all the source code shown in class, which
has evolved during the whole course, and were able
to practice from home testing the proposed solutions
to individual problems directly through the module
included in the e-learning platform.

The test environment allowed students to check

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

474

run-time correctness and efficiency of their
programs by running them on selected input
instances.

Tests instances were created by teachers in order
to cover a wide range of possible input types,
including very large instances and borderline cases.

Students were positively stimulated by the
availability of a quick and precise feedback to their
work.

The participants in the training course were
asked some written comments on their learning
experience to test the success of the initiative, the
overall efficiency of the course and especially the
usefulness of e-learning platform.

• 92% of students said they had visited the site
at least once

• 75% said they had used the tools available to
supplement the hours of frontal course;

• 83% of respondents would find it useful to
use a platform like the one made available in
this course to complement the regular school
work;

• 75% appreciated the simulation of a
competition conducted by the online delivery
of elaborated and almost all of them would
repeat the experience next year.

These data, although collected on a limited
sample of students, have encouraged us to continue
experimenting with this approach and gave us
valuable information for subsequent developments.

3.2 A University-level Computer
Science Course

The tool presented in this paper will be used in a
first-year programming course starting in March
2012 in a University.

We plan to test benefits provided by the
individual features of the tool through an evaluation
of differences in students' performance against those
of previous years in which the system was not
available.

The evaluation and subsequent adjustments will
be based on assessments of the course, compared to
the corresponding in previous years, the objective
results of the examinations, on a questionnaire
submitted by students at the end of the course and on
the analysis of the history of code assignments.

4 FUTURE DEVELOPMENTS

The system was developed to help students,
especially the beginners in the programming world,

but nothing prevents to extend the system with other
tools that can help even the advanced programmers
in order to make it more complete and increase the
catchment area of the possible users.

4.1 Static Analysis Tools

One of the developments planned for future versions
of our system is the integration of tools that perform
static analysis of code.

We are currently in the process of reviewing
several tools capable to check that a piece of code
does not contain semantic anomalies and satisfies
the particular characteristics of correctness.

A list, although incomplete, of the kind of
checks we would like to offer, is the following:

• declaration of variables;
• initialization of arrays and strings;
• assignments to variables of different length

or size;
• division by 0;
• precedence between operators;
• data types in comparisons between

variables;
• correctness of boolean expression;
• initialization of memory variables;
• access to uninitialized memory variables;
• indices of array not positive or out of range;
• wrong identifier names;
• incorrect access to data structured;
• presence of infinite loops;
• presence of unreachable code.

In all these areas there are errors that usually
escape standard analysis performed by compilers,
and are found only at run-time. The identification of
the cause of a runtime error is extremely difficult
because very often there is not an exhaustive
description.

It is therefore important to make a sophisticated
analysis of the behavior of every single statement
and declaration throughout the source code to try to
discover the possible programming errors (even
hypothetical), that would be unrecognized by the
compiler and which could after cause problems at
run-time.

4.2 Artificial Intelligence

So far we have mainly concentrated in errors
recognition and in the identification of possible
problems in the code in order to assist students in
self-correction.

Another future development is to integrate the
system with elements of artificial intelligence as an
added value for teaching.

A�COLLABORATIVE�ENVIRONMENT�TO�LEARN�PROGRAMMING

475

These elements will be integrated in the core as
independent subsystems which, basing their work on
several pieces of data stored by the history of the
items and compilation statistics, will try to identify,
for each user of the system, specific areas of his
programming activity which seems to pose more
challenges to him, allowing the tutor to suggest
better solutions and more appropriate teaching
material. Since our aim is to show suggestions based
on the observations, the more promising approach is
the knowledge-based reasoning in which an agent
uses the data stored in the database as a knowledge
base to perform meta-reasonings about them.
(Bylander and Chandrasekaran, 1987)

To give a concrete example, imagine that, by
examining the history of the repository, the system
discovers that 6 students out of 10 have made at
least once an error concerning the management of
pointers, and 3 of them have made this type of errors
with a very high frequency; it should be concluded
that it may be appropriate for the teacher to review
the topic with the class.

As a second example, imagine that there is a
high percentage of errors in implementation or use
of the Bubble Sort algorithm. The system will infer
that it is appropriate to spend some time to revisit
topic, and warn the teacher.

5 CONCLUSIONS

The main purpose of our approach is to improve
students' critical thinking in solving programming
problems. This can be achieved by pursuing the
following more specific objectives:

• to help novice programmers to understand
diagnostic messages emitted by compilers and
the roots of their errors;

• to teach not only to recognize the mistakes but
to learn from them;

• to teach the use of a revision control system to
manage source code collections;

• to make students work in group and in a peer
exchange (peer education) and to acquire the
role of the tutor towards novices;

• to promote the use of technology as a means of
to understand and not only to perform tasks.

REFERENCES

Bachelard, G. (1977). La formulation de l’esprit
scientifique. Paris: Vrin.

Barbieri, A. and Bizzarri, G. and Forlizzi, L. (2011),
Gruppi dinamici e compilazione on-line. In: Baldoni,
M. and Baroglio, C. and Coriasco, S. and Marchisio,
M. and Rabellino, S. E-learning con Moodle in Italia:
una sfida tra passato, presente e futuro (pp 183–194).
Torino: Seneca Edizioni.

Bylander, T. and Chandrasekaran, B. (1987). Generic
tasks for knowledge-based reasoning: the “right” level
of abstraction for knowledge acquisition. International
Journal of Man-Machine Studies, 26(2), 231–243.

Gokhale, A. A. (1995). Collaborative Learning Enhances
Critical Thinking. Journal of Technology Education,
7(1).

Longo, G. O. (2009). Nascere digitali. Verso un
mutamento antropologico?, Mondo digitale, 32, 3-20.

Lord, G. and Lomicka, L. (2008). Blended learning in
teacher education: An investigation of classroom
community across media. Contemporary Issues in
Technology and Teacher Education, 8(2).

Prensky, M. (2001) Digital Natives, Digital Immigrants
On the Horizon, 9(5), 1-6

Rößling, G. and Crescenzi, P. and Ihantola, P. and
McNally, M. and Radenski, A. and Sànchez-Torrubia,
M. G. (2010). Adapting Moodle to Better Support CS
Education. Proceedings of the 2010 ITiCSE working
group reports, 15-27.

Rovai, A. P. and Jordan, H. M. (2004). Blended learning
and sense of community: A comparative analysis with
traditional and fully online graduate courses. The
International Review of Research in Open and
Distance Learning, 5(2).

Verhoeff, T., (2006) The IOI is (not) a science olympiad.
Informatics in Education 5(1), 147-159.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

476

