
EFFICIENT FILTERING OF BINARY XML IN RESOURCE
RESTRICTED EMBEDDED NETWORKS

Sebastian Käbisch1,2, Richard Kuntschke1, Jörg Heuer1 and Harald Kosch2
1Siemens AG, Corporate Technology, Communication Systems & Control Networks, 81730 Munich, Germany

2University of Passau, 94032 Passau, Germany

Keywords: XML, EXI, Filtering, Embedded Networks.

Abstract: Existing XML-based filter and publish-subscribe solutions are based on plain-text XML. Due to the com-
putational overhead and memory consumption of parsing and processing textual XML, these approaches are
generally not applicable to embedded devices such as microcontrollers. However, XML-based communica-
tion in embedded networks is a desirable paradigm to ease the development of applications on top of diverse
heterogeneous nodes by leveraging existing XML-based development processes and tools. In this paper, we
present an approach using the W3C Efficient XML Interchange (EXI) format for efficiently filtering XML data
against a number of XPath subscriptions with low computational effort and memory usage. Thus, XML-based
messaging can be brought to resource limited embedded devices while at the same time gaining performance
compared to technologies based on plain-text XML.

1 INTRODUCTION

Sensor/actor networks in the embedded domain, e.g.,
in home or industrial automation, can be very hetero-
geneous, containing wired and wireless nodes with
different kinds of resources and service capabilities
such as sensing, acting, and processing. This is
especially true if the sensor/actor network evolves
over time, adding new components or removing old
ones. Since proprietary interfaces drastically limit the
amount of available compatible devices or cause huge
integration effort, research in recent years has focused
on extending generic XML-based technologies such
as Web services to the embedded domain.

By means of using XML-based communication,
it is possible to create interoperable service commu-
nication between heterogeneous machines on today’s
Internet. However, textual XML comes with a huge
penalty for parsing and processing XML data. Thus,
binary XML has emerged and with the W3C Effi-
cient XML interchange (EXI) format (Schneider and
Kamiya, 2011), a binary XML standard has been es-
tablished that enables very efficient usage and seam-
less adoption of XML-based protocols on embed-
ded devices with limited resources such as microcon-
trollers (Käbisch et al., 2011). EXI eliminates the
overhead of parsing and processing textual XML, re-
ducing both, memory usage and computational effort

Figure 1: Typical microcontroller for embedded devices.

to a degree that makes XML applicable in the embed-
ded domain.

Figure 1 gives an impression of the kind of em-
bedded devices that we target with the approach pre-
sented in this paper. The Figure shows an STMicro-
electronics1 ARM Cortex-M3 microcontroller with a
24 MHz CPU, 8 kilobytes of RAM, and 128 kilo-
bytes of flash memory integrated into a typical inter-
face board.

Figure 2 illustrates an example embedded network
with eight embedded devices. The arrows indicate
that data emitted by device 1, e.g., sensor readings, is
routed to receiving devices 4, 5, and 7 via devices 2,
3, and 6, respectively. In such a scenario, the com-
bined subscriptions of devices 4, 5, and 7 can already
be evaluated at device 1. The resulting stream of data
can then be routed to devices 4, 5, and 7 where it can

1http://www.st.com/

174 Käbisch S., Kuntschke R., Heuer J. and Kosch H..
EFFICIENT FILTERING OF BINARY XML IN RESOURCE RESTRICTED EMBEDDED NETWORKS.
DOI: 10.5220/0003939001740182
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 174-182
ISBN: 978-989-8565-08-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

4

6

11111
5

2 3 8

7

Figure 2: Service communication in embedded network.

again be processed to yield the actual data subscribed
at the respective devices. In this paper, we focus on
technologies for efficiently evaluating a batch of sub-
scriptions against a potentially continuous stream of
data at a single device such as, e.g., device 1 in the
example above.

Our main contribution in this paper is the presen-
tation of an approach using the W3C Efficient XML
Interchange (EXI) format (Schneider and Kamiya,
2011) for efficiently filtering XML data against a
number of XPath subscriptions with low computa-
tional effort and memory usage, thus making the ap-
proach applicable to resource limited embedded de-
vices. In detail, we make the following contributions:

• We shortly introduce the W3C Efficient XML In-
terchange (EXI) format (Schneider and Kamiya,
2011) and describe how we realize an efficient
EXI processor for embedded devices (Käbisch
et al., 2010) (Section 2).

• We describe a naive approach for EXI-based
XML filtering based on SAX events as a baseline
and then go on to introduce in detail our solution
for efficient XML filtering for embedded devices
based on EXI (Section 3).

• Finally, we present performance results of our so-
lution, comparing it to the naive approach as well
as to YFilter (Diao and Franklin, 2003) as a repre-
sentative of filtering based on textual XML (Sec-
tion 4). Furthermore, a demo setup of an embed-
ded network is presented that provides some num-
bers of memory usage of the approaches.

2 BINARY XML WITH EXI

The Efficient XML interchange (EXI) for-
mat (Schneider and Kamiya, 2011) is a very
compact representation of the XML Information
Set2 (Cowan and Tobin, 2004) that is intended to
simultaneously optimize performance and utilization

2The XML Information Set is a W3C specification de-
scribing an abstract data model of an XML document in
terms of a set of information items (e.g., elements and at-
tributes). XML and EXI respectively are implementations
thereof.

of computational resources. Since March 2011 EXI
is a W3C recommendation. In the following, a brief
introduction of the functionality of EXI is given.
The next subsection describes an approach how an
efficientEXI Processorcan be created that is suitable
for small embedded devices.

2.1 Basic Functionality of EXI

The EXI format uses a relatively simple grammar-
driven approach that achieves very efficient encod-
ings for a broad range of use cases (Peintner et al.,
2009) (Bournez, 2009). The EXI specification defines
a predefined process how schema information is to be
transformed to EXI grammars. The reason for do-
ing so is that EXI grammars are much simpler to pro-
cess, compared to XML Schema information, while
still describing in an accurate way what is expected to
occur at any given point.

Figure 3 shows an example of an EXI grammar
based on the XML schema shown in Listing 1. In gen-
eral, EXI grammars correspond to deterministic finite
automata (DFA) where each automaton represents a
complex type in an XML schema. States represent
a particular element. The transitions declare which
successor states/elements may arrive. For states that
allow multiple transitions, the grammar uses an event
code (EV) to indicate which path in the automaton has
been chosen.

Listing 1: XML Schema example snippet

<?xml version="1.0" encoding="UTF -8"?>

<schema >

<element name="A">

<complexType>

<sequence>

<element name="e" minOccurs="0"/>

<element name="d"/>

</sequence>

</complexType>

</element>

<element name="B"> ... </element>

<element name="C"> ... </element>

</schema>

The event code is represented with ann-bit stream
(n = ⌈log2m⌉, wherem is the number of transitions
at the state). E.g., the start state of the root grammar
has three transitions. Thus, only 2-bits are required to
signalA (=EV(00)), B (=EV(01)), or C (=EV(10)) as
possible successor states. A transition is considered
to be implicit if there is only one possible next state.
In that case no event code is required (EV(-)).

To understand how such a grammar is used to en-
code and decode EXI streams, we discuss a simple
example: Lets assume there is a plain XML document

EFFICIENT�FILTERING�OF�BINARY�XML�IN�RESOURCE�RESTRICTED�EMBEDDED�NETWORKS

175

B
EV(01)

EV(10)

EV(00)

EV(-)

EV(-)

EV(-)

Root Grammar
C

A

EV(0)

EV(1)

EV(-)

A Grammar

EV(-)

d

e

f

B Grammar

EV(-) EV(-)

EV(0)

EV(1)

EV(-)

EV(-)

g

h

C Grammar

Figure 3: EXI grammar example.

as shown on the left hand side in Listing 2.

Listing 2: Two XML instances.

<A>

<e>123</e> <f>abc</f>

<d>abc</d>

For that case, the equivalent EXI stream would
look like:

EXI Stream1 =00 1 '123' 'abc'

This EXI stream is produced by traversing the cor-
responding transitions starting from the start state of
theRoot Grammar: The root elementA in the XML
document is met in this grammar by following the
transition with the event code00. Signalling this, 2
bits are written to the stream and theA state is vis-
ited next. Since theA element is a complex type theA
Grammaris processed. There, the event code1 (1 bit)
is written to the stream since thee element is present
in the XML document. Thee element itself is a sim-
ple type and at this point the value of the element is
encoded (only sketched here). After that, no event
code is written to the stream since there is no choice
of transitions. Therefore, thed state is visited next
without writing any bits ex ante. Thed element is
also a simple type and the value is encoded at this
point. This will also close the stream since no event
codes have to be written based on the grammar and
no other element is present anymore in the example
XML document. The decoding process is realized
in the same manner. Only the EXI stream is read.
Thereby, the event codes navigate through the gram-
mar and for each simple typed state the decoding pro-
cess is triggered.

The EXI stream for the XML instance on the right
hand in Listing 2 is encoded in a similar way. The
corresponding EXI stream has the following content:

EXI Stream2 =01 'abc'

2.2 Efficient EXI Processor

In general, there is no prescribed nor a standardized
way how an EXI Processor can be made aware of a
certain set of EXI grammars. There are two apparent
possibilities, but none of them seem to be suitable for
restricted devices. Neither sharing the XML Schema
documents itself nor pre-parsed grammar files are
suitable. The requirement for a processor to provide
all possibleEXI functionalities, datatypes and such in
each case (even if not required) is not feasible for mi-
crocontrollers. In (Käbisch et al., 2010) we present a
solution to this problem. The main idea can be broken
down into three automated processing steps:

I The analysis of XML schema information pro-
vides all possible XML elements, attributes, and
constraints in a specific schema context.

II Based on the domain specific functionalities and
datatypes the EXI grammar setG is generated.

III Those EXI grammars form the basis for creating
the source code of anEXI Processorbased on
SAX eventing.

Summing up, we produce anEXI Processor
with a SAX interface (startDocument, endDocument,
startElement, endElement, etc.) that uses a minimal
code footprint and complexity where the runnable
code implicitly contains all required grammar infor-
mation without any external dependencies. This re-
sulting processing unit is able to encode the schema
equivalent XML information to an EXI stream. Vice
versa, an EXI stream or respectively XML informa-
tion items can be decoded.

3 EFFICIENT FILTERING
APPROACHES

In the following, we present two approaches to eval-
uate a number of given XPath requested (e.g., given
by client nodes) on EXI streams. The goal is to get
feedback if the present stream provides information
that is requested and which queries have a match on
the stream. In general, for both approaches we make
the following assumptions:

• In this work, we focus on queries that are written
in a subset of XPath, similar as described in (Diao
and Franklin, 2003). That excludes, e.g., all dy-
namical operators that have to be executed at run
time.

• We have the complete knowledge of the data-
model behind the XML-based messages which
are evaluated by having the underlying XML

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

176

Schema definition. This enables a type aware
predicate evaluation (e.g.,//e[text()> 100]) and
the immediate rejecting of XPath queries which
can never be fulfilled.

• A XPath query which uses relative paths such
as the descending-or-self axis (’//’) and/or the
wildcard (’*’) operator is normalized based on
the underlying XML Schema information (e.g.,
//e[text() > 100] → /A/e[text() > 100]). This
may result in one or more XPath queries when
there are multiple paths to the addressed element.

We will start to introduce a basic approach that
works on the top of an EXI grammar to evaluate
XPath queries on binary XML streams. This approach
will be called BasicEXIFiltering. A more sophisti-
cated and optimized approach is presented in the next
subsection that affects the EXI grammar directly. This
approach is calledOptimizedEXIFiltering.

3.1 Basic Binary XML Filtering

In general, this approach is based on the XPath evalu-
ation concept with SAX events and follows the mech-
anism given by the the Knuth-Morris-Pratt algorithm
(Cormen et al., 2001). Instead of the usage of a
generic plain XML SAX parser we are using anEXI
Processorwith a SAX interface to read binary XML
streams.

The XPath evaluation process is simple: Based on
the SAX events that are released by reading the EXI
stream we keep track of the current stepi of each
given XPath query. If an encounteredstartElement
event matches the next step of one or more of the
queries, the current step index of all affected XPath
queries is incremented (i = i +1). If there is a mis-
match, the mechanism will fall back to the last step
in the corresponding query that matches the tags we
have seen before and test again if a match was found.
This process is continued for each XPath query un-
til the last element was found (XPath match) or the
endDocumentevent is reached which results to a no
XPath query match.

In the following, an example is given based on
the EXI grammar as shown in Figure 3. Thereby,
the EXI Stream1 (see section 2.1) is checked if the
XPath query/A/d matches:

EXI Stream SAX Event Current Stepi
startDocument() 0

00 startElement(’A’) 1
1 startElement(’e’) 1

’123’ character(’123’) 1
endElement() 1

startElement(’d’) 2
’abc’ character 2

Here, i is only incremented if astartElementpro-
vides the requested XPath node at the corresponding
position. There is a match at the timei = 2 since two
addressing elements are defined in the XPath query.
Consequently, the result can be provided:’abc’.

Generally, this simple mechanism takes also pre-
dictions into account which are evaluated at the cor-
responding time when they occur. If one predicate
evaluation is negative, this would result to a general
query mismatch.

Since thisBasicEXIFilteringis only seen as base-
line we are not going to discuss it any further in detail
in this paper and concentrate on the next presented
binary XML filtering approach.

3.2 Optimized Binary XML Filtering

This proposed mechanism is realized by two main
steps for determining the filter grammar and one op-
tional code generation step. The details of each step
are described separately in the following subsections.

3.2.1 Determine Accepting and Predicate States

For better clarification of the following processing
steps lets consider the following 3 simple example
queries that can successfully be applied on XML-
based instances which are created based on the EXI
grammar shown in Figure 3:

• Q1 = /C/h

• Q2 = /A[e=′ 123′]/d

• Q3 = //h

Q1 addresses the elementh that is nested inC. Q2
returns the value of elementd if e is present and the
value ofe is 123 (e=′ 123′). The last query selects all
h elements of an XML-based document. Here, only
one will be present, thus the result ofQ3 will be the
same as that ofQ1.

Based on the set of queries, an analyzing step
is performed to identify the so calledAccepting
States (AS)and Predicate States (PS)in the EXI
Grammar. An AS represents the state or element that
is requested by the query. A PS is a state where a pred-
icate evaluation has to be done that is indicated by the
query. Such kind of states can be found by follow-
ing the addressed elements in each XPath query. E.g.,
Q1 addresses at first theC element. In the EXI gram-
mar the transition is followed that leads to theC state.
As next theh element is searched within theC gram-
mar. Since this is the requested element ofQ1 theh
state is marked asAS. The general search mechanism
in this process can be done by classical search algo-
rithms such as Depth First Search (DFS) or Breadth
First Search (BFS).

EFFICIENT�FILTERING�OF�BINARY�XML�IN�RESOURCE�RESTRICTED�EMBEDDED�NETWORKS

177

B
EV(01)

EV(10)

EV(00)

EV(-)

EV(-)

EV(-)

Root Grammar
C

A

EV(0)

EV(1)

EV(-)

A Grammar

EV(-)

d

e

f

B Grammar

EV(-) EV(-)

EV(0)

EV(1)

EV(-)

EV(-)

g

h

C Grammar

{Q , Q }31
AS

{Q }2
AS

{Q }2
PS

Figure 4:ASandPSin the grammar.

QueryQ2 contains a predicate. In that case, the
correspondinge state is marked asPSwhich means
a predicate evaluation has to be done at this point.
Only if the predicate evaluation is positive then the
requestedd element is desired. Thed state itself is
also marked asAS.

The last queryQ3 uses the descending-or-self axis
to find all h elements that occur in an XML-based in-
stance. In such a case all paths that lead to anh state
have to be identified. Since only oneh state exists and
we would prune out the descending operator the same
result asQ1 is expected.

Figure 4 shows the result of the identification pro-
cess ofASandPSbased on the given queriesQ1, Q2,
andQ3.

3.2.2 Determine Filter Grammar Gf

After determining for each query the involved states
in the EXI Grammar the filter grammarGf is built.
Gf is a subset ofG and contains all necessary states
and transitions for the given queries.

To create such a grammar the following steps are
performed:

I Remove all states and transitions which are not
required to reachASandPS

II Remove all states and transitions that would skip
a PSand would lead to anASof the same query.

III ASwill be an end state if there is no successorAS
at this point

Since we are only interested in states that are required
to evaluate each given query we remove all states and
transitions which do not lead to at least anASand a
PS. If there are one or more predicates given in an
XPath query the paths are removed which would skip
the evaluation of such predicates. If we consider the

EV(10)

EV(00)

Root Grammar
C

A

EV(1)

A Grammar

EV(-)

d

e

EV(1)

EV(-)
g

h

C Grammar

{Q , Q }31
AS

{Q }2
AS

{Q }2
PS

Figure 5: Filter grammarG f .

query Q2 and theA grammar (see Figure 4) it will
explain this aspect: The start state of theA gram-
mar allows two sucessor transitions, namely to thed
(EV(0)) state and to thee(EV(1)) state.Q2, however,
calls only forevalues where the predicatee=′ 123′ is
true. EXI stream instances which do not address this
condition by not containing thee value and using the
EV(0) transition at this point will not fulfil the query
Q2.

Figure 5 shows the result of the elimination pro-
cess which leads to the filter grammarGf . It can be
seen that the number of states and transitions has been
reduced. E.g., all grammar components which are in-
volved by and withinB are removed. Thus, the com-
pleteB grammar is removed as well as the automaton
fragments which lead to and from theB state in the
root grammar.

In general, this grammar will only read an EXI
stream that is really requested by one or more XPath
queries. Applying the streams which was shown
in section 2.1Stream1 would successfully traverse
through the grammar and would matchQ2. However,
Stream2 would be discarded since theEV(01) is not
present in theroot grammar ofGf . This shows the
benefit that we are able to evaluate EXI streams at the
very beginning stage of the decoding process if there
is at least one query that matches this stream.

Corresponding to the number of states and transi-
tions are used forGf it can be said that the following
relation will be always valid:

|Gf | ≤ |G|

Thereby, the absolute value (|..|) gives the total
number of used states and transition of the corre-
sponding grammar. This equation is justified by the
fact thatGf is a subset ofG (Gf ⊆ G) and may con-
tain as maximum all states and transitions when there
is a demand of one or more XPath queries.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

178

3.2.3 Generate Filter Code

Based on the filter GrammarGf that contains the
predicate evaluation functionality and the accepting
state we are already able to use a generic EXI inter-
preter for the evaluation of an EXI message. How-
ever, as mentioned in section 2.2, such a solution is
not suitable for small embedded devices because of
the highly restricted memory and processing capac-
ity.

Based on this motivation we extended our code
generation tool as presented in section 2.2 for the fil-
tering propose:

I The analysis of XML schema information pro-
vides all possible XML elements, attributes, and
constraints in a specific schema context.

II(a) Based on the domain specific functionalities
and datatypes the EXI grammar setG is gen-
erated.

(b) For each query determine AS and PS ofG (s.
section 3.2.1)

(c) Build Gf by removing all states and transitions
which do not lead to a AS or PS (s. section
3.2.2)

III Based onGf the source code is generated for the
EXI Processorthat involves only the decoding
mechanism and the requested evaluation imple-
mentations.

Mainly, step II and III are modified. The step
II only integrates the mechanism as described in the
former two subsections. The novelty is the step III
where only the code is generated for only decoding
EXI stream messages as well as the evaluation meth-
ods for the predictions. The motivation for not gen-
erating the code for encoding EXI stream is based on
the simple fact, that we want to filter EXI streams to
identify, if the requested information is present or not.

4 EXPERIMENTAL EVALUATION

In this section, we are going to evaluate the applicabil-
ity of the presented binary XML filtering approaches.
The evaluation section considers two aspects. First,
the performance of the approaches is tested in general.
To get an estimation how these approaches perform
compared to an existing XML-based filtering mech-
anism, YFilter (Diao and Franklin, 2003) is involved
in this test. The second aspect provides some num-
bers of code footprint and RAM usage size of a demo
embedded network scenario that uses the binary XML
filtering approaches.

Both approaches are implemented in the Java pro-
gramming language and use the open source W3C
EXI reference implementation3. For the described
code generation mechanism we modified our exist-
ing implementation (see section 2.2) to realize the de-
scribed filtering functionality in a code generated way.
So far, the generator produces source code in the C
and Java programming languages which can be used
with platforms such as ContikiOS4 and Java Micro
Edition CLDC 1.1, respectively. The functionality to
normalize XPathes if relative paths are used is given
by the implementation of XPathOverSchema5 library.

4.1 Performance

To evaluate the performance of both approaches we
also involved the performance results of an imple-
mentation of YFilter6 for the same data set. YFilter is
one of the well known fast approaches for XML filter-
ing that is based on non-deterministic finite automata
(NFA). The XML-based documents which are used
for the evaluation are based on an embedded device
profile. That includes information such as address-
ing, status of device, time of data, temperature (with
different scales), humidity, voltage, and status of the
LEDs. The example document has a size of 875 bytes.
Based on the underlying XML Schema of this device
profile we serialized the document in binary XML by
means of EXI that produces a size of 13 bytes. Since
we are not able to process plain XML on small em-
bedded devices such as microcontrollers, especially
not the YFilter algorithm, these performance experi-
ments were conducted on an Intel Core 2 Duo with
2.10GHz and 3GB RAM.

To avoid the overhead of the result collection pro-
cess in our measurement we disabled that in our ap-
proaches and in the YFilter (this was done by the
commands:–result=NONEand–nfa opt=0). How-
ever, to have a fair comparison the parsing time of
the XML-based documents is always included in the
measurement results. This is based on the fact that -
regarding our presented approaches - there is no pre-
processing of the present binary XML stream and the
XPath query evaluation is done at the same time as
the binary XML stream is parsed.

In general, to have a very good shape the average
time of 1000 rounds is determined. The XPath sets
are based on queries with different kinds of requests
of device status, values, times, and addressing. In the

3http://http://exificient.sourceforge.net/
4Contiki is an operating system for memory-efficient

networked embedded systems and wireless sensor net-
works. http://www.sics.se/contiki/

5http://xpath-on-schema.sourceforge.net/
6http://yfilter.cs.umass.edu/

EFFICIENT�FILTERING�OF�BINARY�XML�IN�RESOURCE�RESTRICTED�EMBEDDED�NETWORKS

179

 0.0078125

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

5 10 20 40 80 160 320 640

m
s

Number of Queries

YFilter
BasicEXIFilter

OptimizedEXIFilter

Figure 6: Filtering performance test based on an 875 bytes
plain XML document (YFilter) and the equivalent 13 bytes
binary XML representation (EXI filter approaches).

context of this paper the number of executed XPath
query sets is small and more oriented at the usage in
the embedded domain.

Figure 6 shows the result of our performance ex-
periments with 8 different XPath query sets in mil-
liseconds (with logarithmic scaling). Considering the
first query sets both binary XML filtering approaches
always performs much better as the YFilter imple-
mentation. In the case of 5 queries theBasicEXI-
Filtering approach is 40 times faster and theOpti-
mizedEXIFilteringapproach is 70 times faster. This
shows the benefit of the opportunity to operate di-
rectly on the binary XML document without the need
to transform it to a plain text representation. Further-
more, we are able to evaluate the XPath queries at
the same time of this decoding process. YFilter sepa-
rates this process (XML document parsing and XPath
evaluation by the constructed NFA) which results to
slower performances.

The BasicEXIFiltering, however, losses in per-
formance exponentially when the number of XPath
queries increases. This is due to the fact, that for each
start element or attribute SAX event that occurs dur-
ing the decoding process all queries are checked if the
current step index can be incremented or not. This
processing overhead is getting dominant and results
in lower performance when the query set is getting
larger. Here, at the time of around> 320 queries the
BasicEXIFilteringstarts to perform slower compared
to YFilter.

Comparing theOptimizedEXIFilteringwith the
YFilter one sees that both perform almost constantly
in their time level, even the number of queries in-
creases. This is explained by the fact that all XPath
queries are represented as automata, and duplicated
queries (these occurrences arise if the number of
query sets increases) do not affect the automata size
and thus the automata processing. Only the query reg-
istration for the predicate evaluation and the accepting

Figure 7: Demo embedded network.

state is required.

4.2 Demo Network

To evaluate the applicability of the binary XML filter-
ing approaches for the embedded domain we set up
a small embedded network with four wireless battery
powered evaluation boards from STmicroelectronics
that embeds the ARM Cortex-M3 microcontroller (24
MHz CPU, 8 kilobytes of RAM, and 128 kilobytes of
flash) as presented in the introduction section. Our
demo network and its topology can be seen in Fig-
ure 7.

Each node running the ContikiOS and the com-
munication is based on IPv6 over Low power Wire-
less Personal Area Networks (6LoWPAN) (Montene-
gro et al., 2007). Node 1 provides (in 1 seconds tact)
its device profile information represented as binary
XML format (compare previous subsection 4.1). For
this test, some values of the device profile are ran-
domized. Node 3 and 4 are the subscriber of node 1.
However, node 3 wants only this information if the
following query is fulfilled:

//Temperature[@Scale= ′C′]/Value[text()> 27.2]

The precondition of node 4 is given by:

//StatusO f Mote[text() = ′ErrorOccured′]

Based on the XML Schema definition of the de-
vice profile and the provided XPath queries we cre-
ated our binary XML filter mechanisms (BasicEXI-
Filtering and OptimizedEXIFiltering) with the code
generation variants. In our network node 2 runs the
generated filter. There, the implementation is realized
in such a way that it receives the device profile doc-
uments from node 1, evaluates the content by using
the filter, and only forwards the message to the corre-
sponding node (3 and/or 4) if there is a match.

The demo could be successfully executed. At run-
time we used a laptop that is connected to node 1 to
monitor the device profile values which are sent to

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

180

node 2. If there is a match a LED is showing that
event. Also a LED is switching on on the nodes 3 and
4 if they received a message that was requested.

Table 1 gives an overview of the automata size
and memory usage of the filtering set-up on node 2
for the cases theBasicEXIFilteringor OptimizedEX-
IFiltering implementation was used. It can be seen
that the grammar size (transitions and states) of the
OptimizedEXIFilteringis much smaller compared to
the BasicEXIFilteringapproach. This is due to the
fact that theBasicEXIFilteringoperates on the top of
the full EXI decoder grammar (compare section 3.1).
Meanwhile, theOptimizedEXIFilteringoperates di-
rectly within the grammar and states and the transi-
tions are removed which are not required to evaluate
the XPath queries. Consequently, the ROM exhibits a
smaller size since the generated code does not contain
this grammar information. The numbers for this use
case are not impressive since the generic EXI decoder
mechanism dominates the grammar implementation
part.

For the BasicEXIFiltering variant, besides the
predicate data structure, an extra data structure is re-
quired that represents all XPath queries with a track-
ing position. Such a kind of data structure is not
required for theOptimizedEXIFilteringsince the fil-
ter grammar is already a representation of all XPath
queries. Thus, the RAM usage shows better results
compared to theBasicEXIFiltering. Since only two
XPath queries are used the difference is relatively
small. It will increase, however, when more XPath
queries are taken into account.

Table 1: Grammar size (number of states / transitions) and
memory usage (in bytes).

BasicEXIFilt. OptEXIFilt.
Grammar Size 31 / 45 21 / 22

ROM 6280 6104
RAM 580 412

5 RELATED WORK

Binary XML has been a research topic for a long
time and related projects started shortly after XML
had been introduced. These efforts were primarily
driven by the desire to employ well-established and
interoperable XML technologies on devices with lim-
ited resources such as, e.g., cell phones and cam-
eras. More sophisticated schema-based techniques
followed shortly after, examples of which include
BiM (Heuer et al., 2002), FastInfoset (Sandoz et al.,
2004) and ASN.1 (ITU, 2002). However, these tech-
nologies never achieved broad acceptance in the XML
community. This was mainly due to the fact that many

solutions were proprietary and/or tailored to a partic-
ular application domain. These approaches were thus
not generic and lacked the necessary flexibility. In
addition, some had the potential issue of license fees
compared to a royalty free W3C standard. The W3C
Efficient XML Interchange (EXI) format (Schneider
and Kamiya, 2011) resolves these issues by defining
a generic, flexible, efficient, royalty free W3C Binary
XML standard that fits seamlessly into the portfolio
of existing W3C XML standards.

Efficient filtering, processing, and dissemination
of data has been an area of active research for many
years. This includes work on data management in
embedded networks, such as TinyDB (Madden et al.,
2005). Sinced TinyDB is based on SQL, it is fo-
cused on structured data. With the advent of semi-
structured data models, especially XML, efforts in the
direction of XML filtering, XML transformation, and
Internet-scale XML-based publish/subscribe systems
emerged. These include, among others, XFilter (Al-
tinel and Franklin, 2000), YFilter (Diao and Franklin,
2003), and ONYX (Diao et al., 2004). Since these so-
lutions aim at processing textual XML, they require
systems with adequate amounts of memory and pro-
cessing power. Embedded devices with extremely
limited resources such as the one introduced in Chap-
ter 1 are unable to use such approaches.

Another field of related work are data stream man-
agement systems (DSMSs) such as Aurora (Abadi
et al., 2003), Borealis (Abadi et al., 2005), Tele-
graphCQ (Chandrasekaran et al., 2003), and Stream-
Globe (Kuntschke et al., 2005). The main focus
of such systems is on efficient processing of poten-
tially infinite data streams against a set of continu-
ous queries. In contrast to publish/subscribe systems,
continuous queries in DSMSs can be far more com-
plex than simple filter subscriptions. Also, in dis-
tributed DSMSs such as StreamGlobe and Borealis,
network-aware stream processing and operator place-
ment are important issues. These are also relevant
issues in distributed embedded networks such as the
one illustrated in Figure 2. However, these questions
are not in the focus of this paper which deals with
solutions for efficient filtering of binary XML at a
single node. Most DSMSs, such as TelegraphCQ for
example, are based on relational data. StreamGlobe,
however, focuses on XML data streams. Today, there
are no DSMSs that are based on binary XML. Con-
sequently, the nodes used for distributed data stream
processing in systems such as StreamGlobe and Bo-
realis generally need to be far more powerful than the
microcontrollers for embedded devices we aim at in
this paper. Solutions for direct processing of binary
XML as proposed in this paper help to bring XML-
based publish/subscribe and data stream management

EFFICIENT�FILTERING�OF�BINARY�XML�IN�RESOURCE�RESTRICTED�EMBEDDED�NETWORKS

181

systems to the embedded domain.

6 CONCLUSIONS AND
OUTLOOK

In this paper, we proposed mechanisms to enable
XML-based filtering for resource restricted embed-
ded networks. Both approaches use the W3C EXI
format to evaluate XPath queries. TheBasicEXIFil-
ter approach works on the top of the EXI grammar,
meanwhile, the more sophisticatedOptimizedEXIFil-
ter approach maps all XPath queries directly in the
EXI grammar and removes all states and transitions
which are not required for the evaluation. This results
in a high performance filtering processor with very
low resource usage that makes it also applicable on
small embedded devices such as microcontrollers.

Topics for future work include the further op-
timization of the presented approaches as well as
the development of publish-subscribe and optimized
data dissemination systems for service communica-
tion within embedded networks. Especially, the chal-
lenge of updating XPath query sets at runtime is an
important issue for further work.

ACKNOWLEDGEMENTS

We would like to thank Daniel Peintner for all the ad-
vices corresponding to EXI. Furthermore, we would
like to thank Li Chen for the inspiring discussions and
great support of this topic in general.

REFERENCES

Abadi, D. J., Ahmad, Y., Balazinska, M., Çetintemel, U.,
Cherniack, M., Hwang, J.-H., Lindner, W., Maskey,
A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., and
Zdonik, S. B. (2005). The design of the borealis
stream processing engine. InCIDR, pages 277–289.

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M.,
Convey, C., Lee, S., Stonebraker, M., Tatbul, N., and
Zdonik, S. B. (2003). Aurora: a new model and ar-
chitecture for data stream management.VLDB J.,
12(2):120–139.

Altinel, M. and Franklin, M. J. (2000). Efficient fil-
tering of xml documents for selective dissemination
of information. In Abbadi, A. E., Brodie, M. L.,
Chakravarthy, S., Dayal, U., Kamel, N., Schlageter,
G., and Whang, K.-Y., editors,VLDB 2000, Proceed-
ings of 26th International Conference on Very Large
Data Bases, September 10-14, 2000, Cairo, Egypt,
pages 53–64. Morgan Kaufmann.

Bournez, C. (2009). Efficient XML Interchange Evaluation.
http://www.w3.org/TR/exi-evaluation/. W3C Work-
ing Draft 7 April 2009.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J. M., Hong, W., Krishnamurthy,
S., Madden, S., Raman, V., Reiss, F., and Shah, M. A.
(2003). Telegraphcq: Continuous dataflow processing
for an uncertain world. InCIDR.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E.
(2001). Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd edition.

Cowan, J. and Tobin, R. (2004). XML Information Set (Sec-
ond Edition). http://www.w3.org/TR/xml-infoset/.
W3C Recommendation 4 February 2004.

Diao, Y. and Franklin, M. J. (2003). High-performance
xml filtering: An overview of yfilter.IEEE Data Eng.
Bull., 26(1):41–48.

Diao, Y., Rizvi, S., and Franklin, M. J. (2004). Towards
an internet-scale xml dissemination service. In Nasci-
mento, M. A., Özsu, M. T., Kossmann, D., Miller,
R. J., Blakeley, J. A., and Schiefer, K. B., editors,
VLDB, pages 612–623. Morgan Kaufmann.

Heuer, J., Thienot, C., and Wollborn, M. (2002).MPEG-7
Binary Format, chapter 2.3. MPEG-7. Introduction to
MPEG-7: Multimedia Content Description Interface.

ITU, T. S. S. (2002). Abstract Syntax Notation One
(ASN.1) Specification of Basic Notation. ITU-T Rec.
X.680.

Käbisch, S., Peintner, D., Heuer, J., and Kosch, H. (2010).
Efficient and Flexible XML-based Data-Exchange in
Microcontroller-based Sensor Actor Networks. In5th
International IEEE SOCNE Workshop on Service Ori-
ented Architectures in Converging Networked Envi-
ronments.

Käbisch, S., Peintner, D., Heuer, J., and Kosch, H. (2011).
Optimized XML-based Web Service Generation for
Service Communication in Restricted Embedded En-
vironments. In16th IEEE International Conference
on Emerging Technologies and Factory Automation.

Kuntschke, R., Stegmaier, B., Kemper, A., and Reiser, A.
(2005). Streamglobe: Processing and sharing data
streams in grid-based p2p infrastructures. In Böhm,
K., Jensen, C. S., Haas, L. M., Kersten, M. L., Lar-
son, P.-̊A., and Ooi, B. C., editors,VLDB, pages 1259–
1262. ACM.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong,
W. (2005). Tinydb: an acquisitional query processing
system for sensor networks.ACM Trans. Database
Syst., 30(1):122–173.

Montenegro, G., Kushalnagar, N., Hui, J., and Culler, D.
(2007). Transmission of IPv6 Packets over IEEE
802.15.4 Networks. RFC 4944 (Proposed Standard).

Peintner, D., Kosch, H., and Heuer, J. (2009). Efficient
XML interchange for rich internet applications. In
Multimedia and Expo, 2009. ICME 2009, pages 149–
152.

Sandoz, P., Triglia, A., and Pericas-Geertsen, S. (2004).
Fast Infoset. On Sun Developer Network.

Schneider, J. and Kamiya, T. (2011). Efficient XML Inter-
change (EXI) Format 1.0. http://www.w3.org/TR/exi.
W3C Recommendation 10 March 2011.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

182

