
TOWARDS A NEW PaaS ARCHITECTURE GENERATION

Claudio Guidi1, Paolo Anedda2 and Tullio Vardanega1
1Department of Mathematics, University of Padova, Padua, Italy

2CRS4, Technology Park, Pula (CA), Italy

Keywords: PaaS, IaaS, SaaS, SOA, Architectures, Services.

Abstract: In this paper we present our vision for a next-generation Cloud Computing PaaS layer intended for openness
and federation. We base our vision on the principles of the Service Oriented Architecture paradigm, and
discuss some design details of the internals of the PaaS we are currently prototyping.

1 INTRODUCTION

The PaaS is a fundamental layer of the Cloud Com-
puting stack. It is the connection layer between the
IaaS, the computing, storage and networking infras-
tructure, and the SaaS, where applications become
available to the user. The PaaS provides the abstrac-
tions needed for developing applications abstracting
away from the negotiation, contention and reclama-
tion of the bare execution resources on which applica-
tions will eventually run. More specifically, the PaaS
provides all the functionalities required for the devel-
opment, the deployment and the monitoring of ser-
vices at the level of SaaS. In our view, the PaaS also
governs the resource requests that must be made to
the underlying IaaS to meet the service level agree-
ments separately defined with the SaaS and the IaaS:
one between the user and the application provider; the
other between the application provider and the infras-
tructure owner.

At present there is no clear picture of where the
future evolution of Cloud Computing PaaS layer will
lead. Current evidence shows that they will continue
to be provided by big IT suppliers (e.g.: Google,
Amazon, SalesForce). However, the scenario could
as well significantly change if open-cloud ideas such
as those proposed in (opencloudmanifesto.org, 2009)
will meet with support. In the latter case the Cloud
should be an open horizontal platform where differ-
ent players can freely interact with one another, with
obvious benefits for companies, developers and end
users alike.

We contend that the role played by PaaS will be
instrumental to determining how Cloud Computing
will evolve in the future. One extreme is the domi-

nance of closed solutions, such as those currently pro-
posed by worldwide leaders (cf. e.g. Google App
Engine (Google, 2011)), in which case Cloud Com-
puting will be a huge vertical infrastructure controlled
only by few actors. At the other extreme there is in-
stead prevalence of open and standardized architec-
tures, which enable an open Cloud scenario.

On account of these observations, it is reasonable
to anticipate Cloud Computing PaaS layers realized
as the mix of offerings from private and custom in-
frastructures and open solutions. As far as open in-
frastructures are concerned, interesting though initial
proposals have been formulated by EU projects like
IRMOS (EU, 2011a) and RESERVOIR (EU, 2011b),
which prototyped demonstrative cloud infrastructures
for the development of multimedia applications, and
the deployment of services over the boundaries of dif-
ferent domains, respectively. Those results form a
good starting point for furthering the concept of PaaS
we envision. Yet we must acknowledge that, to the
best of our knowledge, there does not currently ex-
ist any consolidated understanding of the PaaS frame-
work architecture and rationale. There also is no stan-
dard definition of the interaction protocols between
the IaaS and the PaaS, and between the PaaS and the
SaaS.

The concept we present in this paper aims at
proposing an initial model, termed PaaSSOA, for fa-
cilitating the development of next-generation PaaS
frameworks. Our model captures the main functions
which characterize the Cloud from the PaaS perspec-
tive and the interactions the PaaS has to have with the
two adjacent levels in the Cloud SPI stack. Our pro-
posal should be considered in the context of an open
Cloud Computing infrastructure where the PaaS layer

279Guidi C., Anedda P. and Vardanega T..
TOWARDS A NEW PaaS ARCHITECTURE GENERATION.
DOI: 10.5220/0003914102790282
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 279-282
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



should be distributed, open and freely composed. The
vision which inspires our effort focuses on the Ser-
vice Oriented Architecture paradigm, which facili-
tates the construction of system architectures that are
modular, scalable and standardized. The use of a
Service Oriented Architecture for designing a PaaS
reference model has two main advantages: (i) it al-
lows for a standard and well-defined separation be-
tween the PaaS and the IaaS on the one hand, and
between the PaaS and the SaaS on the other hand; (ii)
it also warrants a high degree of flexibility, adaptabil-
ity and modularity within the PaaS itself, which are
very desirable architectural qualities. Interestingly,
IRMOS (EU, 2011a) based its SPI vision on clear
principles of service orientation, even though without
providing a general rationale for realizing a SOA-like
PaaS layer.

Besides providing a general reference for our PaaS
concept, with the definition and prototyping of PaaS-
SOA we also investigate the mechanisms involved
in the management of application-level services de-
ployed on the IaaS in the form of a SOA: we refer
to them asmeta-SOA mechanisms. In Section 2 we
present PaaSSOA by illustrating its architecture and
main components. In Section 3 we discuss the issues
related to the IaaS layer as seen from the perspective
of PaaSSOA. In Section 4 finally we present some ini-
tial conclusions and plan for future work in this direc-
tion.

2 OUR VISION: PaaSSOA

Figure 1 depicts the main architecture of PaasSOA. In
it, we focus on the relationship in place between the
PaaS and the SaaS on the one hand, and between the
PaaS and the IaaS on the other hand.

Figure 1: Main PaaSSOA architecture.

We see the PaaS layer as composed of three main
blocks: Tools and Functions, which should be typ-
ical of a PaaS; and theService Container, which is
more specific of PaaSSOA. The Tools block provides
the tools for designing and developing SOA and in-
cludes a web GUI designer for developers. The Func-
tions block offers all the services which provide the
more classic PaaS functionalities such as deployment

and scheduling. The Service Container hosts the de-
ployed services so that they can be reachable by both
the end user and the developer. The end user needs to
access the deployed services for ”consuming” them;
the developer needs to monitor the deployed services
to keep their performances under control. This is the
reason why we have placed this particular block in
the middle between the PaaS and the SaaS layers.
Next we present and discuss the fundamental blocks
of PaaSSOA.

Figure 2 depicts the architecture of the Tool and
Functions blocks.

Figure 2: Tools and Functions architecture.

Blocks ID, SSD, WD, ConnD and CD represent
the design tools needed for developing a SOA-based
application or service. The function block is repre-
sented by the Service Registry (SR) block and the Ser-
vice Deployment and Monitor (SDM) blocks.

The SOA tools we envision to supply with PaaS-
SOA include the following:Interface Designer (ID),
a graphical tool for designing service interfaces such
as for example WSDL interfaces;Simple Service De-
signer (SSD), a tool for developing simple services
able to connect to data storage;Workflow Designer
(WD), a tool for designing orchestrators able to inter-
act with other services;Service Deployer and Moni-
tor (SDM), an administrative tool for deploying ser-
vices and monitoring them during execution;Chore-
ography Designer (CD): a tool for designing ser-
vice choreographies, which address SOA system de-
sign from a global perspective, like in WS-CDL (Ka-
vantzas et al., 2005).

As far as the function block is concerned, the
SDM service implements some important tasks such
as:deployment, to deploy new services or migrate the
existing ones in different service containers;sched-
uler,to schedule service deployment depending on the
available resources;negotiator, to negotiate resource
allocations with the IaaS in accord with the stipulated
the Service Level Agreement;monitor, to monitor
the SLA conformance of the deployed services. In

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

280



case of under-performance, the Monitor can activate
the scheduler and the deployer to reclaim the unused
slack and assign it to respond to the request for new
resources.

The Service Container block is part of the PaaS
but it is also reachable also from the SaaS level as
an endpoint for accessing deployed services. More-
over, the Service Container must be deployed within
the virtual machine images allocated and controlled
by the IaaS. The Service Container, termed SOABoot,
starts at the boot of every individual virtual machine
deployed for PaaSSOA. The SOABoot is a meta-
service which manages a service registry for storing
all the service descriptions (e.g. endpoint locations
and interfaces) of the services executed in the corre-
sponding virtual machine. The SOABoot is able to
receive service implementations and store them as it
is able to remove them. Moreover, it offers the pos-
sibility to remotely control the activation and the de-
activation of the stored services. As shown in Figure
3, the set of all the SOABoot services represents the
Service Container. The Deployer block manages all
the SOABoots which form the Service Container.

Figure 3: SOABoot architecture.

The key aspect of PaaSSOA is the high level of
flexibility it aims to offer, as evidenced by the fact
that it provides additional means for governing the ef-
ficiency and performance of service deployment from
the SaaS, over those traditionally offered by the IaaS.
In the event of under-performance detected in the de-
ployed services, the PaaSSOA scheduler can take one
of two actions: 1) request a new virtual machine
(equipped with a SOABoot) to the IaaS so as to in-
crease the set of bare resources availed to the user; 2)
organize and manage the deployed services so as to
optimize their individual and collective performance.
for example it could move a service with low perfor-
mance to another SOABoot which can guarantee a
higher level of performance. Interestingly, this action
can be taken without involving the IaaS.

Decision 2 makes it possible to implement opti-
mization rules from within the PaaS level, without in-
curring dependence on the IaaS.

3 INTERACTING WITH THE IaaS
LAYER

In a typical Cloud infrastructure, whether public or
private, the system exploits the possibility to share
the physical resources among the different virtual ma-
chines in order to minimize the waste of the unused
resources and maximize the possibility of supporting
multiple users. The many benefits introduced by mul-
tiplexing physical resources among different virtual
machines cannot be doubted. However, without a pre-
cise policy for the governance of physical resource
sharing, the performance of the virtual machines can
be negatively affected by wrong utilization. For ex-
ample, intensive access to disk and frequent request
for exclusive access to physical resources (e.g., GPU,
Infiniband card, etc.) can cause important delays and
incur massive performance decay.

In order to build a flexible system and to support
multiple technologies and actors, we want to maintain
separation of concerns between the PaaS and the IaaS
layers. Our approach consists in providing a bidirec-
tional interface through which the two layers are able
to constantly negotiate SLAs according to the system
changes, in order to find a trade-off between the re-
quests of both the layers.

As shown in Figure 1 the main PaaSSOA actors
involved in the interactions between the PaaS and the
IaaS layers are the Functions and the Resource Man-
ager blocks. In fact, as depicted in Figure 2, the Func-
tion block is composed of a CDM block which has a
Negotiator component which is in charge of commu-
nicating with the IaaS layer. As shown in Figure 4
instead, the Resource Manager is composed of a Re-
source Manager itself (RM) and the Monitor Agents
(MAs). The RM is in charge of maintaining the status
of the utilization of the physical resources and, ac-
cording to the scheduler chosen, to allocate them to
the virtual machines. The MA is in charge of moni-
toring a single physical resource and reports its status
to the RM. Since the status of the IaaS infrastructure
can be impacted by the performances of the physical
resources as well as by the virtual ones, it is very im-
portant to monitor both using two different MAs: the
Physical Monitor Agent (PMA) and the Virtual Mon-
itor Agent (VMA).

Figure 4: The IaaS Resource Manager Architecture.

TOWARDS�A�NEW�PaaS�ARCHITECTURE�GENERATION

281



The PMA leverages the resource functionalities
in the intent of monitoringPhysical Metricssuch as
Availability, Memory Available for VMs, Memory
Used by VMs, CPU Used, CPU Idle, Number of
CPUs.

The VMA leverages the hypervisor functionali-
ties for the purpose of monitoringvirtualization met-
rics, which include the following parameters: a)VM
Metricssuch as Availability, Process Virtual Memory
Size, Process Resident Memory Size, Process Page
Faults, Process CPU System Time, Process CPU User
Time, Process Uptime, Process CPU Total Time, Pro-
cess CPU Usage, VM CPU Wait, VM CPU Used, VM
CPU Sys, VM Memory Shares, VM Memory Min-
imum, VM Memory Maximum, VM Memory Size,
VM Memory Ctl, VM Memory Swapped, VM Mem-
ory Shared, VM Memory Active, VM Memory Over-
head, VM Uptime; b)VM Disk Metricssuch as Avail-
ability, Reads, Writes, Bytes Read, Bytes Written; c)
VM NIC Metricssuch as Availability, Packets Trans-
mitted, Packets Received, Bytes Transmitted, Bytes
Received.

All the information coming from the MAs will al-
low the RM to implement the best scheduling policy
to achieve the optimal configuration of the system.
For example, a proportional thresholding (H. Lim and
Parekh, 2009) approach could be used to determine
the target range of the variables according to which a
reconfiguration event needs to be fired.

The prototype implementation of the system vi-
sion we presented in this paper, uses the VIDA
toolkit (Anedda, 2011), a novel software architecture
for the deployment of virtual clusters currently devel-
oped as a part of one of the research activities of one
of the authors’. The VIDA architecture is designed to
dynamically allocate resources to applications via a
general control plane orchestrating the system’s com-
putational and network components. Hence, it meets
our best expectation at the PaaS to IaaS interface.

4 CONCLUSIONS

In this paper we have illustrated the highlights of our
vision for a new approach to the development of an
open PaaS framework which captures the main func-
tions which characterize the Cloud from the PaaS per-
spective. In our discussion we have highlighted the
interactions that the PaaS layer ought to have with the
two adjacent levels in the Cloud SPI stack in order to
draw maximum benefit the mediator potential of its
role.

By virtue of the four constituent blocks sketched
in figure 1, we were able to clearly define and appor-

tion the responsibilities of each component of PaaS
architecture as well as to capture the interactions re-
quired among the different layers of the Cloud SPI
stack. Moreover, for each block in the envisioned ar-
chitecture we provided details on the inner working of
the relevant components. We also sketched the com-
munication interface to be put in place between the
PaaS and the IaaS layers, outlining the main function-
alities and parameters to flow across them.

We are currently developing a PaaSSOA prototype
using the Jolie (Guidi and Montesi, 2011) technology:
the demonstrator code may be downloaded at (Guidi,
2012).

ACKNOWLEDGEMENTS

We are grateful to Giovanni Giacobbi, member of our
team at the University of Padova, for his suggestions
and interesting discussions during the write-up of this
paper.

REFERENCES

Anedda, P. (2011).Virtual Infrastructures Deployment Ar-
chitecture. http://project-vida.sourceforge.net/.

EU (2011a). Irmos - Interactive Realtime Multimedia Ap-
plications on Service Oriented Infrastructures. http://
www.irmosproject.eu/.

EU (2011b).Reservoir - Resources and Services Virtualiza-
tion without Barriers. http://62.149.240.97/.

Google (2011). Google App Engine. http://
appengine.google.com/.

Guidi, C. (2012).PaaSSOA: Paas Service Oriented Archi-
tecture. http://sourceforge.net/projects/paassoa/.

Guidi, C. and Montesi, F. (2011). Jolie. http://
www.jolie-lang.org.

H. Lim, S. Babu, J. C. and Parekh, S. (2009). Automated
control in cloud computing: Challenges and opportu-
nities. In First Workshop on Automated Control for
Datacenters and Clouds.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., La-
fon, Y., and Barreto, C. (2005).Web Services Chore-
ography Description Language Version 1.0. W3C
Candidate Recommendation 9 November 2005.

opencloudmanifesto.org (2009).Open Cloud Manifesto.
http://www.opencloudmanifesto.org.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

282


