
AUTOMATIC GENERATION OF FPGA HARDWARE
ACCELERATORS FOR GRAPHICS APPLICATIONS

Alexandru Amaricai and Oana Boncalo
Department of Computer Engineering, University Politehnica of Timisoara, Timisoara, Romania

Keywords: FPGA Graphics, FPGA Acceleration, OpenGL.

Abstract: In recent years, FPGAs have been increasingly utilized in implementing graphic engines in application
fields such as automotive, avionics or military. However, due to their high flexibility, designs for FPGA
devices can target a very limited range of applications. In this paper, we discuss the opportunity of
developing automatic generation tools for customized graphics hardware. These tools should generate an
almost optimized RTL code only for the series of the required graphics operations of the specific
application.

1 INTRODUCTION

Due to advancements in both display technology and
computing capabilities, 2D and 3D graphics have
been included in wide range of applications, such as
mobile computing, automotive or avionics. Due to
extensive use of graphic applications, extensions of
standardized APIs for these types of applications
have been developed in recent years. Such
extensions include the OpenGL ES, the OpenGL
API dedicated for mobile embedded systems, or
OpenGL SC, the API targeting safety critical
applications. Providing adequate hardware support is
crucial in order to implement complex 2D/3D
applications. While in mobile computing, dedicate
graphic accelerator IPs are integrated in mobile
processors, in automotive or avionics the preferred
solution is represented by the FPGAs. The main
advantages of utilizing these devices are:
1. The display technologies and their corresponding

interfacing are changing frequently; therefore,
new IPs have to be developed for these displays
(Altera, 2009) (Xilinx, 2011)

2. The market in some applications is relatively
limited; thus, providing dedicated ASIC based
solution will result in high costs (Dutton, 2010)

3. FPGA can accommodate an entire system,
including base processor core, graphic hardware
acceleration and display interface (see Fig. 1)
(Altera, 2009) (Xilinx, 2011).

Furthermore, as explained in (Majer, 2008), future

graphic cards may contain reconfigurable fabrics,
offering the prospects of mechanisms for run-time
exchangeable hardware accelerators.

The main attribute of FPGA based solutions is
their high flexibility. Therefore, solutions for such
platforms can target a very narrow range of
applications, which for ASICs does not represent a
cost effective option. As presented in (Dinechin,
2011), dedicated hardware IPs represent the
objectives of FPGA based design, and not more
general solutions which are favoured for ASIC. In
order to aid the IP developers, automatic generators
of RTL code have been developed for specific
applications. These include floating point arithmetic
units (Dinechin, 2011), fast Fourier transforms
(Nordin, 2005) or FIR filters (Daitx, 2008).

In this paper, we discuss the opportunity of
providing automatic RTL code generators of graphic
hardware accelerators for reconfigurable platforms.
In the second section, we present the current
solutions of 2D/3D graphic engines implemented in
FPGAs. The third section represents an overview of
the main developments regarding automatic
hardware generators for FPGA.

2 FPGA IMPLEMENTATIONS
OF GRAPHIC ENGINES

Several implementations for FPGA based
acceleration of graphic engines have been developed

383Amaricai A. and Boncalo O..
AUTOMATIC GENERATION OF FPGA HARDWARE ACCELERATORS FOR GRAPHICS APPLICATIONS.
DOI: 10.5220/0003906903830386
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 383-386
ISBN: 978-989-8565-00-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Graphic acceleration system on FPGA.

Figure 3: The (Dutton, 2010) graphic pipeline for avionics.

 (Chen, 2011) (Mahdavikhah, 2010) (Majer, 2008).
Regarding commercial IPs, these include the
logicBricks 2D/3D graphics engines (logicBricks,
2011) and the D/AVE 3D graphic IP (TES, 2009).
Regarding academic design, these include the
rendering engine proposed within the Erlangen Slot
Machine (Majer, 2008) or the OpenGL compliant
graphic engine for avionics (Dutton, 2010).

The logicBricks 2D/3D (logicBricks, 2011)
engine has been developed specifically for the
automotive market. It targets Xilinx devices, and is
included in the Xilinx Zynq-7000 System-on Chip.
It incorporates a scalable 3D pipeline (Fig. 2), which
include a shader, clipping and depth tests, a texture
unit, a fog unit and an alpha blender. Furthermore, it
has a separate post-filtering unit, targeting especially
anti-aliasing. The proposed engine can connect via
the AXI bus to memory, processor core or other IPs.
The geometry operations are performed in software,
usually by the ARM Cortex-A9 core with Neon
coprocessor. D/AVE 3D graphics IP (TES, 2009) are
targeting Altera devices.

Figure 2: LogicBricks 3D graphic accelerator.

It includes a stream controller, a vertex processor, a
geometry setup processor and a pixel pipeline. Cache
strategies are used for textures (2 cache memories),
frame buffer and ZSA. It can interface to the rest of
the system either via an Altera Avalon bus, either via
AMBA AHB or APB bus. It provides support for
OpenGL ES 1.1, OpenGL VG 1.01 and EGL 1.3.

The rendering pipeline used in the Erlangen
Slot Machine (ESM) is compatible to both OpenGL
and Direct3D (Majer, 2008). It targets Xilinx FPGAs
and its architecture and communication policy
follows the structure of the ESM. The latter consists
of a high performance FPGA on which the graphic
pipeline is implemented and a lower performance
crossbar FPGA which connects the first with the
PowerPC processor and the rest of the system. As in
the case of the logicBricks IP, a hardware/software
partitioning is performed in order to cover the entire
OpenGL or Direct3D operations.

The graphics engine presented in (Dutton,
2010) matches the full OpenGL pipeline. It includes
a vertex processor, a rasterization pipeline, a
fragment processor and a frame buffer operator.
FIFO buffers are used between these stages.
External memories are used for texture and frame
buffer. It targets Altera devices and uses a Nios II
core as host processor. It connects to other modules
of the system via a PCIe bus. As this engine targets
avionics applications, all the IPs used have been
certified according to avionics standards.

The above engines make use of a relatively

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

384

“fixed” IP, similar to the one implemented in GPUs.
In many cases, using a hardware/software
partitioning, the presented graphic IPs can cover the
entire OpenGL API which has been destined.
However, FPGAs can be used for very specific
applications, a very specialized hardware accelerator
being suitable and desired (due to both cost and
performance advantages) for reconfigurable devices.

3 AUTOMATIC GENERATORS
FOR FPGA ACCELERATORS

A recent research direction that benefited from a lot
of attention is that of automatic generation of soft
cores for device specific applications. The wide
application area and versatility of FPGA devices
makes them attractive for a wide range of hardware
accelerators (Daitx, 2008). These software tools aim
at demolishing the myth of “one size fits all”, and to
offer the best trade-off within application
requirements (e.g. performance, area, power). The
generation process provides support for automatized
design space exploration by tuning micro-operation
concurrency degree (Milder, 2012) (Nordin, 2005),
operator size (Dinechin, 2011)(Daitx, 2008)(Liang,
2003), fused paths (Dinechin, 2011), sub-block
hardware reuse (Milder, 2012). These processes are
mainly fully automated (Daitx, 2008) (Liang, 2003)
(Milder, 2012), or as in the case of FloPoCo for
some aspects of the design the user is guided
throughout the process (i.e. pipeline construction).

FloPoCo (Dinechin, 2011) can be used to
generate complex floating point (FP) datapaths. It
provides a library of fixed and FP operators (e.g.
sqrt, exponential, multiply, divide, add/substract).

Furthermore, it can be used to generate
polynomial evaluators. Furthermore, it is intended as

a back-end for high-level synthesis tools. The
featured optimizations refer to redundant micro-
operation reduction and pipelining (requires user
intervention). A different FP generator with a
slightly more reduced scope is (Liang, 2003) for
operations such as multiply, add/subtract, and
divide. A particular optimization for this approach is
the selection of the FP algorithm in order to meet the
desired design parameters tradeoffs.

Firgen (Ruckdeschel, 2005) and (Daitx, 2008)
generate FIR hardware modules. The first uses
compiler techniques such as: hierarchical
partitioning, partial localization in order to generate
the design in a systematic manner. The main
ingredients are: automatic selection of pipeline
stages, selection of memory elements, and
concurrency through use of a processing elements
array. (Daitx, 2008) targets tradeoffs between HW
resources and performance for FIR. The required
tuning is done by means of the filter parameters
(coefficients, filter traps, type, input size). It starts
with off-line coefficient computation, and takes
advantage of the application particularities in order
to reduce design exploration to a problem of
multiple constant multiplications. Both approaches
require some sort of offline processing. Firegen
(Ruckdeschel, 2005) does offline characterization
through a number of runs for design building-blocks,
while (Daitx, 2008) performs offline coefficient
computation.

ft_gen (Milder, 2012) focuses on DFT soft core
generation. The work in (Nordin, 2005), also
exploits concurrency through micro-operation (i.e.
represented by a hardware algorithm basic block)
parallelization. However, its backbone is the Pease d
algorithm. Furthermore, the methodology may be
used for other linear DSP transforms. The steps of
the methodology may be used for other linear DSP
transforms.

Table 1: An overview of hardware generators for FPGA.

 Tuning param Optimizations

FloPoCo
- frequency
- operand size

- micro-operation optimizations (redundant microoperations are removed – fuses
datapaths of different FP ops)

(Daitx, 2008) -filter parameters
-offline coefficient computation
- sub-block reuse for multiple constant multiplication

Firgen
-operand size
-latency &-throughput
-filter taps

- compiler techniques (hierarchical partitioning, partial localization)
-automatic selection of pipeline stages
-selection between shift-regs and FIFOs

(Liang, 2003)
- operand size
-throughput &-latency
-rounding mode

- automatic FP algorithm selection
-pipelining

(Milder, 2012)
- degree of concurrency
- storage structures

-mico-operation (basic block) parallelization

AUTOMATIC GENERATION OF FPGA HARDWARE ACCELERATORS FOR GRAPHICS APPLICATIONS

385

4 CONCLUSIONS

FPGAs have become one of the most important
platforms to implement dedicate 2D/3D graphic
accelerators. Due to their flexibility and their good
low-volume price, FPGA based solutions are
preferred in applications fields where the display
technology is changing frequently or the end market
does not support high volume sales. A wide range of
graphic IPs have been developed for reconfigurable
devices, both industrial and academic. These
approaches implement a more general rendering
pipeline, on which graphic operations are
“programmed”. Many of the graphic IPs can be used
for implementing the entire OpenGL set of
operations.

Automatic generation tools for hardware IPs for
FPGA have been developed for floating point units,
discrete Fourier transform or FIR filters. The goal of
these approaches is to optimize a specific set of
operations which can be used for a very narrow
range of applications. One project which exemplifies
this type of approach is represented by the FloPoCo
project, which aims at delivering hardware for any
given set of arithmetic operations. The optimizations
of such system result from the elimination of
redundant micro-operations, such as normalizations
or roundings.

This type of approach can also be used for
dedicated graphic pipelines. The generated hardware
will implement only the required sub-operations of
the graphic pipeline, with a lower hardware cost and
a possible performance improvement. This way, a
restricted set of OpenGL functions, which are
specific to a narrow range of applications, can be
used on the generated graphic engine. The approach
relies on the high flexibility offered by FPGAs, a
different type of graphic application requiring a
different accelerator IP.

ACKNOWLEDGEMENTS

This work was partially supported Romanian
National Authority for Research CNCS –
UEFISCDI project PN-II-RU-TE-2011-3-0186.

REFERENCES

Chen S. H., Lin. H. M., Wei H. W., Chen Y. H., Huang C.
T. Chung Y.C., 2011 Hardware/software co-designed
accelerator for vector graphics applications. In

Proceedings of 9th IEEE Symposium on Application
Specific Processors

Daitx, F. F.; osa, V. S.; Costa, E.; Flores, P.; Bampi, S.,
2008. VHDL generation of optimized FIR filters, In
Proceeding of 2nd International Conference on
Signals, Circuits and Systems

Dinechin F., Pasca B. 2011, Designing Custom Arithmetic
Data Paths with FloPoCo, In IEEE Design & Test

Dutton, M. , Keezer, D., 2010 The Challenges of Graphics
Processing in the Avionics Industry. In Proceedings
of 29th Digital Avionics Systems Conference

Liang J., Tessier R., Mencer O., 2003, Floating Point Unit
Generation and Evaluation for FPGAs, In Proceedings
of 11th Annual IEEE Symposium on Field Custom
Computing Machines

Mahdavikhah B., Mafi R., Sirouspour S., Nicolici N.,
2010, Haptic Rendering of Deformable Objects using
a Multiple FPGA Parallel Computing Architecture, In
Proceedings of 18th ACM Symposium on Field
Programmable Gate Arrays

Majer M., Wildermann S., Angermeier J., Hanke S., Teich
J. , 2008 Co-Design Architecture and Implementation
for Point-Based Rendering on FPGAs. In Proceedings
19th IEEE/IFIP Symposium on Rapid System
Prototyping

Milder P., Franchetti F., Hoe J., Püschel M. 2012,
Computer Generation of Hardware for Linear Digital
Signal Processing Transforms, In ACM Trans. On
Design Automation of Embedded Systems

Nordin G., Milder P., Hoe J., Puschel M. 2005, Automatic
Generation of Customized Discrete Fourier Transform
IPs In Proceedings of 2005 Design Automation
Conference

Ruckdeschel H., Dutta H., Hannig F., Teich J., 2005,
Automatic FIR Filter Generation for FPGAs. In
Proceedings of 5th International Symposium of
Embedded Computer Systems: Architectures,
Modeling and Simulation

Altera, 2009, Using FPGAs to Render Graphics and Drive
LCD Interfaces, White Paper

logicBricks, 2011, logi3D Scalable 3D Graphic
Accelerator, Data Sheet

TES Electronic Solutions, 2009, D/AVE 3D Graphic
Accelerator, Data Sheet

Xilinx, 2011, Addressing the Graphics Revolution for
Automotive Instrumentation Design Using FPGAs,
White Paper

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

386

