
A CLOUD STORAGE PLATFORM IN THE DEFENSE CONTEXT
Mobile Data Management with Unreliable Network Conditions

Jan Sipke van der Veen1, Mark Bastiaans2, Marc de Jonge1 and Rudolf Strijkers2,3
1TNO, Groningen, The Netherlands

2TNO, Delft, The Netherlands
3University of Amsterdam, Amsterdam, The Netherlands

Keywords: Cloud Storage, Storage Platform, Mobile Data, Synchronization, Caching, Discovery.

Abstract: This paper discusses a cloud storage platform in the defense context. The mobile and dismounted domains
of defense organizations typically use devices that are light in storage, processing and communication capa-
bilities. This means that it is difficult to store a lot of information on these devices locally, but also that it is
infeasible to rely on a central storage system that is accessible through a network. The concept of Information
of Interest (IoI) is introduced to denote the information demand of a user and its devices and applications.
A novel storage platform is designed and tested that uses well-known techniques such as synchronization,
caching and discovery, and uses the IoI to determine the storage strategy. A sample application was created
that runs on personal computers, mobile phones and tablets. Manual and automated tests were run to show
that the platform behaves as expected.

1 INTRODUCTION

The last decades have shown the importance of infor-
mation superiority in the defense context (Thomas,
2000). The information used in this context ranges
from high level information at the top of the defense
organization all the way down to the detailed infor-
mation of the individual soldier.

The static and deployed domains of defense orga-
nizations typically use devices with high storage and
processing capacity, which are connected with a re-
liable, high bandwidth network. This means that in-
formation can be stored on the devices themselves or
in a central storage system and accessed through the
network when needed.

However, the mobile and dismounted domains of
a defense organization typically use devices that are
light, not only in weight but also in storage, process-
ing capacity and communication capabilities. This
limits the amount of information that the device can
store locally. To make matters worse, the soldier is
regularly faced with unreliable and low bandwidth
networks, making remote information access diffi-
cult as well (Burbank et al., 2006). Standard cloud
storage platforms - both public such as S3 (Amazon,
2011) and private such as Swift (OpenStack, 2011)
- depend on a reliable network connection with their

users, which is why they cannot be used as-is in mo-
bile and dismounted domains.

Another problem defense organizations face is
that of unintended interaction between applications.
Each application typically uses the storage capacity of
the device it runs on and, when needed, uses the net-
work to communicate with a server elsewhere. This
may result in applications interfering with each other.
For example, an important application may need extra
storage capacity or network bandwidth, while a less
important application is using this capacity. Without a
layer between the applications and the resources they
use, one application cannot have precedence over oth-
ers.

There are standard techniques for caching infor-
mation on a local device (Halinger and Hohlfeld,
2010) (Nguyen and Dong, 2011) and accessing in-
formation remotely when needed, but they typically
assume a reliable, high bandwidth network connec-
tion between devices (Bohossian et al., 2001) (Rhea
et al., 2001). Other techniques try to deal with slow
networks (Suel et al., 2004) (Shinkuma et al., 2011),
but do not use the domain knowledge of applications
that use this storage.

This paper proposes a novel platform that com-
bines a set of well-known techniques that does not
depend on a reliable, high bandwidth network. It can

462 Van der Veen J., Bastiaans M., De Jonge M. and Strijkers R..
A CLOUD STORAGE PLATFORM IN THE DEFENSE CONTEXT - Mobile Data Management with Unreliable Network Conditions.
DOI: 10.5220/0003898404620467
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 462-467
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

continue storing and retrieving information locally,
until the network is available again. At the same time,
it can prioritize applications that need more capacity
at the expense of less important applications. It also
makes use of the domain knowledge of the applica-
tions to decide which pieces of information may be
deleted when storage capacity runs out.

2 INFORMATION OF INTEREST

It is both impractical and unnecessary to present sol-
diers in the field with all information the army has
its disposal. The soldier’s devices simply contain too
little storage capacity to hold all information. And
even if the devices could hold so much information,
the soldier would be overwhelmed by it (Hancock and
Szalma, 2008).

A selection therefore needs to be made of the total
information space that is available. Good examples
of selection criteria for a soldier are: the author of the
information (e.g. the commanding officer), the loca-
tion that the information refers to (e.g. a town nearby)
and the time when the information was entered. The
term Information of Interest (IoI) formalizes this as a
technical representation of information demand of a
user and its devices and applications.

Figure 1 contains an example of users A, B and C
with their own IoI and some shared interests. These
shared interests depend on the type of information,
e.g. B and C have an overlap in terrain information
interest, but none in information about persons. This
makes it possible for information to be shared among
users, but only the information that they are all inter-
ested in.

Figure 1: Information of Interest of parties A, B and C with
overlapping interests, depending on type of information.

3 STORAGE PLATFORM

Given the defense context there are several possible
requirements on a storage solution, but the one we
focus on in this paper is the ability to store all and
retrieve the most important information when there is
no or bad network connectivity.

The CAP theorem (Brewer, 2000) states that you
can obtain at most two out of three properties in a
shared data system: consistency (C), availability (A)

and tolerance to network partitions (P). As we can see
from our requirement, tolerance to network partition-
ing is important, as well as availability. This means
that consistency is no longer attainable and we should
deal with this by resolving conflicts that might arise.

Figure 2 shows how our platform resides in be-
tween the local storage and the applications. Synchro-
nization with other devices takes place through the
network. Queries for information (e.g. get items with
a certain author and within a specified time range)
and commands to store information (e.g. create a new
item or update the contents of an existing one) all pass
through this layer. Also, an interface to applications is
provided to set the IoI and resolve conflicts that can-
not be handled automatically.

Network

Local

Storage

App 1

Platform

App n

Device A Device B

Device C

IoI

Registry

Figure 2: Platform on each device.

Because of the potentially bad network connectiv-
ity between the devices, there is no central entity the
platform can depend on. Instead, devices find one an-
other by means of a distributed discovery mechanism
(see section 3.1).

In a distributed system with unreliable network
connections, data needs to be stored locally when an
application creates or updates an information item. If
the network is available at that time or becomes avail-
able again later, this item can be synchronized with
partners (see section 3.2).

Conflicts may arise when two or more partners
update the same piece of data without synchroniz-
ing between updates. When these pieces of data are
synchronized, conflict resolution is needed (see sec-
tion 3.3).

When the platform has been running for a while,
it may become necessary to delete information items
from the local storage. A cleanup process takes the
IoI into account and then decides which items should
be deleted (see section 3.4).

3.1 Discovery

Before synchronization between devices can occur,
each device needs to be able to identify potential part-
ners. DNS is typically used for translating host names
into IP addresses (using A records) and vice versa
(using PTR records), but it can also be used for ser-
vice discovery with SRV records (Gulbrandsen et al.,
2000). It provides a way for clients to query which

A�CLOUD�STORAGE�PLATFORM�IN�THE�DEFENSE�CONTEXT�-�Mobile�Data�Management�with�Unreliable�Network
Conditions

463

servers provide a certain service, e.g. SIP, XMPP or -
in this case - a synchronization service.

However, this discovery mechanism cannot be a
centralized DNS system, because that would work
badly when there is no network connectivity between
a device and the DNS servers. Other systems exist
that supply the same kind of functionality as DNS,
but without the need for a centralized server, such as
multicast DNS (Steinberg and Cheshire, 2005).

Using multicast DNS, the devices in the platform
can query which other devices containing the plat-
form are present in the network. Each device pub-
lishes that it provides a synchronization service that
the other devices can use.

3.2 Synchronization

The information that is stored in the platform consists
of the actual data the application wants to store and
some pieces of meta data that are needed for synchro-
nization. Figure 3 shows that there are four pieces of
meta data:

• Universally unique identifier (UUID). This iden-
tifies the information in a unique way.

• Revision number. This identifies the revision of
the information. If the information is changed, the
revision number is incremented.

• Modification timestamps. This is an array of
timestamps of all modifications of the application
information. Its length is equal to the revision
number.

• Saved timestamp. This contains the timestamp of
the last change to this meta data, either due to a
local change to the application data (and therefore
an increase of the revision number) or because of
synchronization with a partner.

The technique we present here is a slightly mod-
ified version of Multi-version Concurrency Control
(Bernstein and Goodman, 1983). It adds the saved
timestamp, which is used to speed up synchroniza-
tion. A synchronization client knows when the
last synchronization with a certain partner has taken
place. It asks this partner for revision information
since this timestamp. With the saved timestamp at
its disposal, the server is able to respond with revi-
sion information that has actually changed since the
last synchronization.

3.2.1 Platform Pseudocode

The following pseudocode contains the high level
synchronization code of the platform. The platform

Meta data User data

UUID

Revision number

Modification timestamps

Saved timestamp

Encoded data

n bytes

16 bytes

2 bytes

m * 8 bytes

8 bytes

Figure 3: Information needed for synchronization (left side)
and information stored by an application (right side).

switches between two states here, that of a client and
that of a server.

1. Start up a synchronization server and publish its
service through the discovery mechanism

2. Startup threads

3. Thread 0 (manage partner connections):

(a) Detect new partners through the discovery
mechanism

(b) If a connection with a partner has been lost, try
to reconnect

(c) If reconnection fails too often, remove from
partner list

(d) When connected to a partner, start new syn-
chronization thread

4. Thread 1 to n (synchronizing with partner):

(a) Loop while connected:
i. If in server state, start server code (see sec-

tion 3.2.2)
ii. If in client state, start client code (see sec-

tion 3.2.3)

3.2.2 Synchronization Server Pseudocode

The following pseudocode contains the synchroniza-
tion code for the server role.

1. Wait for a synchronization client to send com-
mands and respond appropriately:

(a) If GetRevisionInfocommand is received, return
a list of all revision info for the information
items in the IoI of the client and that has been
updated since the last synchronization

(b) If GetItem command is received, return the
whole information block for the information
item as indicated by the UUID

(c) If SwitchRolecommand is received, change the
role to client and exit this server code

3.2.3 Synchronization Client Pseudocode

The following pseudocode contains the synchroniza-
tion code for the client role.

1. Determine last timestamp of synchronization and
local information of interest

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

464

2. Send theGetRevisionInfocommand to receive
the remote revision information of all items from
partner since last synchronization and within local
information of interest

3. For all remote revision information:

(a) Determine local revision information based on
remote UUID

(b) Compare local with remote revision informa-
tion and determine which case should be ap-
plied:

i. If local and remote revision information are
the same: do nothing

ii. If remote revision information is a subset of
local revision info: do nothing

iii. If local revision information is empty: get re-
mote application information with theGetItem
command

iv. If local revision information is a subset of re-
mote revision info: get remote application in-
formation with theGetItemcommand

v. If local and remote revision information are
on different branches: conflict resolution is
needed; use theGetItemcommand to get the
remote application information and lookup the
locally stored application information

(c) Update saved timestamp in cases iii, iv and v

4. Determine information items with low rating that
can be cleaned up (see section 3.4)

5. Change the role to server by issuing theSwitch-
Rolecommand and exit this client code

(iii)

(iv)

local,

remote

(i)

local

(ii)

remote

(v)

remote

remote

(no local)

remote

local

first

version

legend

latest

revision
local

Figure 4: Revisions: do nothing (i and ii), get remote appli-
cation information (iii and iv) and conflict resolution needed
(v). Time flows from bottom to top.

Figure 4 shows the five options that exist for local and
remote revision information. In options (i) and (ii)
nothing needs to be done, because the local device al-
ready contains the newest information. In options (iii)
and (iv) the remote information needs to be sent from

the partner to the local device, because the remote in-
formation is newer or the local device does not have
the information at all. Option (v) requires conflict res-
olution, because both the remote and the local device
have changed the information since the last synchro-
nization.

3.3 Conflict Resolution

Systems such as CVS (Vesperman, 2006) and SVN
(Pilato et al., 2008) show that it is possible to auto-
mate some kind of conflict resolution (merging), but
also that manual intervention is sometimes necessary.
In this paper we propose a system in which the ap-
plication may choose to implement its own conflict
resolution scheme, or default to the latest revision of
the information.

It is crucial that the synchronization of informa-
tion does not lead to a livelock, i.e. it should not lead
to an endless synchronization loop when the informa-
tion stays the same. The merged information when
device A starts synchronizing with B must therefore
be the same as the merged information when B starts
synchronizing with A. This must also be true for more
complex situations with three or more partners syn-
chronizing with each other.

The left side of figure 5 shows how conflict res-
olution can lead to two different outcomes. The first
outcome is the simple solution where the latest infor-
mation is treated as the ”winner” of the merge (r3a
is the latest timestamp). The second outcome is the
more complex solution where the application decides
to create a new version that is based on information of
the older revisions (r4 is the latest timestamp).

r2b

r1

r3b

r2a

r3a

r2b

r1

r3b

r2a

r3a

r2b

r1

r3b

r2a

r3a

or

r4

Figure 5: Conflict resolution leading to two possible out-
comes: the latest revision wins (middle graph) or a new re-
vision is created (right graph). Time flows from bottom to
top.

When conflict resolution is needed, it is up to the
application to decide which action to take. The plat-
form provides an API that allows the application to
merge conflicted revisions. It receives the revision
information and historical application information of
both the partner and itself, and is asked to provide ei-
ther a new revision or agree to use the latest informa-
tion, i.e. the information with the highest timestamp.

A�CLOUD�STORAGE�PLATFORM�IN�THE�DEFENSE�CONTEXT�-�Mobile�Data�Management�with�Unreliable�Network
Conditions

465

In the first case, it must ensure that a merge carried out
by the same application on another device would lead
to the exact same answer, otherwise livelocks might
occur. In the second case, the platform handles the
merge itself, of course without knowledge of the ac-
tual information involved, but with the guarantee that
livelocks are avoided.

3.4 Cleanup

If an application decides to change the IoI or the stor-
age capacity of a device is almost depleted, it may be
necessary to perform some sort of cleanup.

If the IoI is decreased, the simple solution would
be to just delete the information. However, this may
result in information being deleted from the platform
altogether. If the device still has storage capacity left,
it retains this information until it actually runs out of
storage capacity.

If the IoI is increased and the resulting informa-
tion is too big for the local storage, the platform first
checks if information was retained that is outside the
IoI and deletes this. If this is not enough, the platform
proceeds to delete information which is marked less
important, such as older information or information
located further away.

4 VERIFICATION

To verify that the storage platform is behaving as ex-
pected, a sample application was built that makes use
of the platform for all its storage needs. Running this
application shows that it is feasible to create applica-
tions using the storage platform and provides a means
to test the platform manually.

Also, automated test cases were written which
simulate that applications store new information, up-
date it and synchronize it. The actual behavior was
then checked with the expected behavior.

4.1 Sample Application

The application consists of a map where information
items, e.g. text and pictures, have been pinned to a
location. When a user clicks on a pin, the applica-
tion shows all the items at that location. A selected
item can then be edited by the user. If the user clicks
on a new location on the map, a new item is created.
All storage related tasks are handled by the storage
platform. See figure 6 for a screenshot of the appli-
cation. There are two versions of the application, the
first running on regular personal computers and the
second running on mobile phones and tablets.

Figure 6: Screenshot of an application using the storage
platform.

4.2 Tests

Several manual and automated tests were performed
to check that the storage platform is behaving as ex-
pected. The figures presented in this section show
how information items progress in time when devices
create, update and synchronize these items. In man-
ual tests, the theoretical results were checked with the
experimental results in the log files of the platform. In
automated tests, these were checked automatically.

Figure 7 shows two devices updating a piece of
information one after the other and synchronizing in
between the updates. Figure 8 shows three devices
where two devices update a piece of information with-
out synchronizing in between. This conflict is re-
solved when all devices have synchronized with each
other.

Device 1 Device 2

A t11 t1

sync

A t11 t1 A t11 t1

A t1 t22 t2

change

sync

A t1 t22 t2 A t1 t22 t3

A t11 t1

change

A t1 t2 t43 t4

sync
A t1 t22 t2

A t1 t2 t43 t4A t1 t2 t43 t5

Figure 7: Synchronization test with two devices and no con-
flicts. Time flows from top to bottom.

5 FUTURE RESEARCH

The current storage platform has been implemented
and tested on a small set of workstations, tablets and
mobile phones. In future research we would like to
test with many more devices and a much more di-
verse network setup, e.g. with real radio networks.
Also more quantitative measurements will be made to

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

466

Device 1 Device 2

A t11 t1

A t11 t1 A t11 t1

A t1 t22 t2 A 2

Device �

A t11 t1

t1 t� t� A t11 t1

A 2 t1 t� t� A 2 t1 t� t�A t1 t22 t2

A t1 t2 t� t�� t� A t1 t2 t� t�� t�A 2 t1 t� t�

A t1 t2 t� t�� t� A t1 t2 t� t�� t� A t1 t2 t� t�� t�

Figure 8: Synchronization test with three devices and a con-
flict, which is handled during the two synchronization steps
at the bottom. Time flows from top to bottom.

assess the platform more thoroughly and compare it
to existing distributed storage solutions.

At the moment, the application information blocks
are quite small, upto a few kilobytes. If these infor-
mation blocks are increased to several megabytes, it
becomes necessary to synchronize only the parts that
have actually changed, e.g. by using something simi-
lar to the rsync algorithm (Tridgell, 1999).

Some kinds of applications store hierarchical in-
formation, e.g. news postings with comments. At the
moment, the application is responsible for storing the
relationship between these information blocks. If the
storage platform is aware of these relationships, it can
make better decisions on their storage and possible
deletion.

Finally, the current storage platform uses only
time and location (i.e. a circle with a given center
and radius on a map) to denote the IoI. Other forms of
IoI are also interesting, such as author, clearance level
and labels.

6 CONCLUSIONS

The mobile and dismounted domains of defense orga-
nizations cannot use standard cloud storage platforms
because of unreliable network connections. This pa-
per shows that it is possible to design a storage plat-
form that does not depend on any centralized entity.
Instead, it relies on a distributed discovery mechanism
to find partners to synchronize information with.

The term information of interest was introduced,
which is a way for applications to tell the storage plat-
form which information is important. The platform
uses this to decide what information to store and what
to delete when storage capacity is depleted.

A sample application was built to verify that the
proposed storage platform is a viable solution for the
problems we described earlier. It has been shown to
work on several devices, such as personal computers,
mobile phones and tablets. With some manual and

automated tests we also showed that the platform be-
haves as expected with regards to synchronization.

REFERENCES

Amazon (2011). Amazon simple storage service (s3).
http://aws.amazon.com/s3.

Bernstein, P. A. and Goodman, N. (1983). Multiversion
concurrency control - theory and algorithms.ACM
Transactions on Database Systems.

Bohossian, V., Fan, C. C., LeMahieu, P. S., Riedel, M. D.,
Xu, L., and Bruck, J. (2001). Computing in the rain:
A reliable array of independent nodes.IEEE Transac-
tions On Parallel And Distributed Systems.

Brewer, E. A. (2000). Towards robust distributed systems.
Symposium on Principles of Distributed Computing.

Burbank, J. L., Chimento, P. F., Haberman, B. K., and
Kasch, W. T. (2006). Key challenges of military tacti-
cal networking and the elusive promise of manet tech-
nology. IEEE Communications Magazine.

Gulbrandsen, A., Vixie, P., and Esibov, L. (2000). A dns
rr for specifying the location of services (dns srv).
http://www.rfc-editor.org/rfc/rfc2782.txt.

Halinger, G. and Hohlfeld, O. (2010). Efficiency of caches
for content distribution on the internet.Teletraffic
Congress.

Hancock, P. A. and Szalma, J. L. (2008).Performance Un-
der Stress (Human Factors in Defence). Ashgate.

Nguyen, T. T. M. and Dong, T. T. B. (2011). An adaptive
cache consistency strategy in a disconnected mobile
wireless network.IEEE International Conference On
Computer Science and Automation Engineering.

OpenStack (2011). Openstack object storage.
http://openstack.org/projects/storage.

Pilato, C. M., Collins-Sussman, B., and Fitzpatrick, B. W.
(2008). Version Control With Subversion. O’Reilly
Media.

Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weather-
spoon, H., and Kubiatowicz, J. (2001). Maintenance-
free global data storage.IEEE Internet Computing.

Shinkuma, R., Jain, S., and Yates, R. (2011). In-network
caching mechanisms for intermittently connected mo-
bile users.Sarnoff Symposium.

Steinberg, D. and Cheshire, S. (2005).Zero Configuration
Networking: The Definitive Guide. O’Reilly Media.

Suel, T., Noel, P., and Trenafilov, D. (2004). Improved
file synchronization techniques for maintaining large
replicated collections over slow networks.Interna-
tional Conference on Data Engineering.

Thomas, T. L. (2000). Kosovo and the current myth of in-
formation superiority.Parameters.

Tridgell, A. (1999). Efficient algorithms for sorting and syn-
chronization. PhD thesis, Australian National Univer-
sity.

Vesperman, J. (2006).Essential CVS. O’Reilly Media.

A�CLOUD�STORAGE�PLATFORM�IN�THE�DEFENSE�CONTEXT�-�Mobile�Data�Management�with�Unreliable�Network
Conditions

467

