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Abstract: Automatic Speech Recognition (ASR) is one of the classical multivariate statistical modelling applications 
that involves dealing with issues such as Acoustic Modelling (AM) or Language Modelling (LM). These 
tasks are generally very language-dependent and require very large resources. This work is focused on the 
selection of appropriate acoustic models for Speech Processing in a complex environment (a multilingual 
context in under-resourced and noisy conditions) oriented to general ASR tasks. The work has been carried 
out with a small trilingual speech database with very low audio quality. Thus, in order to decrease the 
negative impact that the lack of resources has in this task there have been selected two techniques: In the 
one hand, Hidden Markov Models have been enhanced using hybrid topologies and parameters as acoustic 
models of the sublexical units. In the other hand, an optimum configuration has been developed for the 
Acoustic Phonetic Decoding system, based on multivariate Gaussian numbers and the insertion penalty. 

1 INTRODUCTION 

Appropriate speech signal resources are required for 
multivariate statistical modelling applications, such 
as Hidden Markov Models for Automatic Speech 
Recognition (ASR). These applications require very 
large or optimum resources for training all the 
components of the system. Most of the ASR 
applications have to be developed for complex 
environments and in under-resourced conditions. 
Therefore, the development of a robust system for 
under-resourced languages, even if they are 
integrated in multilingual regions or coexist 
geographically with languages in best conditions 
needs high inversions (Le and Besacier, 2009; Seng 
et al., 2008; Barroso et al., 2007; Schultz. and 
Waibel, 1998) 

These languages have the required resources in a 
very limited quantity and quality, and new strategies 
must be explored to tackle the challenge of creating 
robust systems in this area. Automatic Speech 
Recognition is a broad research area that absorbs 
many efforts from the research community. Indeed, 
many applications related to ASR have progressed 
quickly in recent years, but these applications are 
generally very language-dependent. Moreover, the 

creation of a robust system is a much tougher task 
for under-resourced languages, even if they count 
with powerful languages beside it. The development 
of these systems involves issues such as Acoustic 
Modelling, Language Modelling, and the 
development of Language Resources. 

Figure 1 shows the classical scheme of an ASR 
system. During the Acoustic Phonetic Decoding 
(APD) stage, the speech signal is segmented into 
fundamental acoustic units that will be integrated 
into other system components. Classically, words 
have been considered the most natural unit for 
speech recognition, but the large number of potential 
words in a single language, including all inflected 
and derived forms, might become intractable in 
some cases for the definition of the basic 
components. In these cases, smaller phonologic 
recognition units like phonemes, triphonemes or 
syllables are used to overcome this problem. These 
recognition units, which are shorter than complete 
words are the so-called sublexical units (SLU) or 
sub-word units. 

Multivariate Hidden Markov Models are 
undoubtedly the most employed technique for ASR 
construction, but when the data is affected by a high 
noise level, ASR systems are sometimes  far from an 
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Figure 1: Scheme of the process of Speech Recognition. 

acceptable performance (Le and Besacier, 2009; 
Smith, 2000). Several hybrid proposals can be found 
in the bibliography (Smith, 2000; Cosi, 2000, 
Friedman, 1989; Martinez, 2001) dealing with this 
problem based on Machine Learning paradigms such 
as: Support Vector Machines or Neural Networks. 

Indeed, the long term goal of this project is the 
development of robust ASR systems in real and 
complex environments, but this work is focused to 
the selection of appropriate acoustic models with 
under-resourced and noisy conditions. Specifically, 
the current work is oriented to Broadcast News (BN) 
in the Basque context. Thus, in order to decrease the 
negative impact that the lack of resources has in this 
issue several hybrid methodologies are applied for 
Acoustic Modelling. 

The paper is organised as follows: next section 
describes the resources and the features of the 
languages. Section 4 presents the used methods, 
mainly oriented to the selection of appropriate 
acoustic models in complex environments. Section 5 
gives the experimentation results, and finally, some 
conclusions are explained in section 6. 

2 SPEECH RESOURCES 

The basic audio resources used in this work have 
been mainly provided by Broadcast News sources. 
Specifically Infozazpi radio (Infozazpi, 2011), a 
trilingual (Basque (BS), Spanish (SP), and French 
(FR)) has provided audio and text data from their 

news bulletins for each language (semi-parallel 
corpus). The texts have been processed to create 
XML files which include information of distinct 
speakers, noises, and sections of the speech files and 
transcriptions. The transcriptions for Basque also 
include morphological information such as each 
word’s lemma and Part-Of-Speech tag. The 
Resources Inventory is summarised in table 1. 

Table 1: Resources inventory. 

Languages BCN Audio hh:mm:ss 

BS 2:55:00 
FR 2:58:00 
SP 3:02:00 

Total 7:55:00 

In the audio for French and Spanish there is a 
high background noise from the signature tunes of 
the programmes. For Basque, there is no signature 
tune mixing with the speakers’ voices. In the other 
hand, they are radio study recordings, so in 
consequence there are very few instantaneous 
noises. Most of the noises are common ones. In the 
transcription process, there have been mainly 
labelled the inspirations produced by the speakers, 
the instantaneous noises from the microphone, and 
the noises of the movement of papers. 

 
Figure 2: NIST and WADA noisy level with regard to the 
signal length. 

The noise level and its effect over the signal is a 
crucial factor. In order to measure it, the standards 
NIST and WADA measures have been employed 
(Ellis, 2011). Figure 2 presents the results of these 
measures for Basque, Spanish, and French. It is 
straightforward to infer a higher level of noise for 
these last two corpora, being the French the noisiest 
corpus. For Spanish and French, the cleanest 
segments are those of 3 seconds. For Basque, the 
longest segments have the lowest level of noise. The 
two methodologies, NIST and WADA, use different 
calculation methods, so the results are different in 
level, but the general trends are kept similar in both. 

BIOSIGNALS 2012 - International Conference on Bio-inspired Systems and Signal Processing

508



Table 2: Sound Inventories for Basque, French and Spanish in the SAMPA notation. 

Sound Type Basque French Spanish 
Plosives p b t d k g c p b t d k g p b t d k g 

Affricates ts ts´ tS ts 

Fricatives gj jj f B T D s s´ S x G 
Z v h f v s z S Z gj jj F B T D s x G 

Nasals m n J m n J N m n J 
Liquids l L r rr l R l L r rr 

Vowel glides w j w H j w j 

Vowels i e a o u @ 
i e E a A O o u y 2 9 

@ 
e~ a~ o~ 9~,

i e a o u 

 

3 FEATURES OF THE 
LANGUAGES 

The analysis of the features of the languages chosen 
is a crucial issue because they have a clear influence 
on both the performance of the APD and on the 
vocabulary size of the system. In order to develop 
the APD, an inventory of the sounds of each 
language was necessary. Table 2 summarises the 
sound inventories for the three languages expressed 
in the SAMPA notation. Each sound would be taken 
into account in the phonetic transcription tools used 
in the training process. 

In order to get an insight of the phonemes system 
of these three languages, we would like to remark 
some of the features mentioned above. In the one 
hand, Basque and Spanish have very similar vowels 
if not the same. The Basque language itself has 
many odd occurrences of other vocals, but many of 
them have fallen into disuse or they are used only in 
very local environments.  

For example, only Basque speakers from the 
Northern side (bilingual Basque and French 
speakers) are used to pronouncing the Basque “@” 
(i.e. Sorrapürü). This vowel's pronunciation is 
between the Basque vocals “u” and “i”. In 
comparison to Basque or Spanish, French has a very 
much richer vocal system, but it is fair to say that 
some of their older forms have fallen into disuse too. 
Anyway, they keep on being different to those in 
Basque or Spanish, especially in the case of nasal 
vowels.  

In the other hand, some of the consonants that 
are rare in French such as “L” (i.e. Feuille) are very 
common in Basque or Spanish. Therefore, a cross-
lingual Acoustic Model could be very useful in these 
cases. Another special feature in this experiment is 
the richness of affricates and fricatives present in 
Basque.  

These sounds will be very difficult to differ and 
the cross-lingual approach won't work for them, but 
it has to be said that even some native Basque 
speakers don't make differences between some 
affricates and fricatives due to dialectal issues. 
Consequently, the Acoustic decoder would have 
difficulties in these cases and further Language 
Modelling would be needed in order to get accurate 
results. 

Finally, some sounds that are differentiated 
theoretically are very difficult to model, and many 
state-of-the-art approaches cluster these cases as the 
same sound. This is the case of the plosives in the 
three languages; there is little acoustic difference 
between “b”, “B”, “p”, and “P” depending on the 
context, and the Language Model should be able to 
manage the ambiguity derived of not separating 
those phonemes in this first stage. 

4 METHODS 

4.1 Multivariate Hidden Markov 
Models 

In ASR classical Acoustic Modelling is carried out 
by Hidden Markov Models (HMMs) (Baum and 
Eagon, 1967; Baum et al., 1970; Baker, 1975; 
Jelinek, 1976). 

The basic components of the HMMs are the 
states and the transitions between states. A Markov 
chain is, in short, a set of states and a set of 
transitions between them. Every state has a symbol 
and every transition has a probability associated to 
it. In each instant t, the system is in a certain state, 
and to regular intervals of time it goes on from one 
state to another as the transitions indicates. Finally, a 
symbol sequence is obtained from each of the states 
which have been crossed. HMMs are similar to 
Markov chains but, in this case, every state isn’t 
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associated to a fixed symbol, but the event provided 
by the state forms a part of a probabilistic function. 
Thus, all the symbols are possible in every state and 
each one has its own probability. Consequently, an 
HMM consists of a not observable "hidden" process 
(Markov chain), and an observable process, which 
connects the input with the state of the hidden 
process. In order to do this, an HMM has to be a 
process doubly stochastic since it has, on the one 
hand, a set of  transition probability coefficients that 
determine state sequence to continue and, on the 
other hand, there are defined probability functions 
associated with every state that determine the output 
that is observed in this state. 

An HMM is defined as (Rabiner, 1989): 
• qt: state as the t time. 
• N: the number of states in the model. The most 

used HMMs have 5 states. However both 1 
state and 5 states do not generate any output.  

• S: The individual states, 1 2{ , ,..., }NS s s s= . 
• M: the number of distinct observation symbols 

per state, i.e., the discrete alphabet size. 
• V: The individual symbols, { }1 2, ,..., MV v v v= . 
• { }ijA a= :The state transition probability 

distribution where,  
( )|  1 1  ,   ij t j t ia P q s q s i j N= = − = ≤ ≤ . 

• ( ){ }  jB b k= : The observation symbol 

probability distribution in where, 
( ) ( )|   1    ,  1    j k k t jb O P O q s j N k M= = ≤ ≤ ≤ ≤ , 

where kO  is a symbol of the observation set V. 
• i  { }π = π : The initial state distribution, where: 

( )0  1    i iP q s i Nπ = = ≤ ≤ . 

Thus, an HMM is described by:  

{ }  ,  ,   A Bλ = π . 
In the acoustic modelling, the likelihood of the 
observed feature vectors is computed given the 
linguistic units. Gaussian Mixture Model (GMM) 
classifiers can be used to compute for each HMM 
state q, corresponding to a SLU unit, the likelihood 
of a given feature vector given this phone p(o|q) 
where Gaussians are multivariate. A way of thinking 
about the output of this stage is as a sequence of 
probability vectors, one for each time frame, and 
each vector at each time frame contains the 
likelihoods that each unit generated the acoustic 
feature vector observation at that time. Finally, in 
the APD phase, the acoustic model (AM) is 
employed. The AM consists of the sequence of 

acoustic likelihoods integrated in an HMM 
dictionary of Lexical Unit (LU) pronunciations, and 
then it is combined with the language model (LM). 
The output of the APD system is the most likely 
sequence of LUs. An HMM dictionary, is a list of 
LUs pronunciations, each pronunciation represented 
by a string of phones. Each LU can then be thought 
of as an HMM, where the SLUs are states in the 
HMM, and the Gaussian likelihood estimators 
supply the HMM output likelihood. 

4.2 Selection of Sublexical Units and 
Acoustic Models 

The lack of resources produces unwished effects in 
SLUs with very few samples. In consequence, it is 
necessary to define new HMM topologies that could 
optimize the own internal structure of the different 
sounds of the language. Two different HMM 
structure configurations were tested: 
1. The HMMs had the same state number (SN) 

for all of the SLUs (EEK allSN) 
2. Then it was analysed the effect of assigning 

different SNs to each SLUs with regard to its 
nature. For this purpose the classification was 
based on (Puertas, 2000). 
 

a. Vowels: 5 states  
b. Semivowels: 4 states 
c. Unvoiced plosives: 5 states 
d. Voiced plosives: 3 states 
e. /B/, /D/,/G/, /l/,/z_a/,/r\/: 4 states 
f. /s_a/, /R\/: 5 states 

 

Table 3 shows the defined topologies for each 
language: Basque, Spanish, and French (1st column). 
In the second column the nomenclature is defined, in 
the third the SN and in the last one the allophones of 
each set. 

Several HMM structure proposals were tested, 
not only by different model topologies, but also by 
the Gaussians Number (GN). In a first phase, only 
one Gaussian is used. Then, a range from 1 to 50 
Gaussians was explored. Finally, the unit insertion 
penalty p was also adjusted implementing 
experiments for a range from -1 to -60. 

Usually, an expert defines the broad sub-word 
classes needed during Acoustic Modelling. This 
method becomes very complex in the case of 
multilingual ASR tasks with incomplete or small 
databases. In search of alternatives, it is interesting 
to explore the data-driven methods that generate 
SLUs broad classes based on the confusion matrices 
of the SLUs. The similarity measure is defined using 
the  number  of  confusions  between the master sub- 
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Table 3: HMM topologies for the SLUs of the three languages with different topologies and State Number (SN). 

  Description 
Language Top. SN SLU 

BS 

EEK
1 

3 /b/,/d/,/g/ 
 4 /j/,/w/,/B/,/D/,/G/,/l/,/r\/,/z_a/ 
 5 /a/,/e/,/i/,/o/,/u/,/p/,/t/,/k/,/x/,/f/,/m/,/F/,/n/,/N/,/n_d/,/J/,/L/,/j\/,/c/,/J\/,  /r/, /s_a/,/S/,/s_m/,/T/ 
 6 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
2 

4 /b/,/d/,/g/ 
 5 /j/,/w/,/B/,/D/,/G/,/l/,/r\/,/z_a/ 
 6 /a/,/e/,/i/,/o/,/u/,/p/,/t/,/k/,/x/,/f/,/m/,/F/,/n/,/N/,/n_d/,/J/,/L/,/j\/,/c/,/J\/,  /r/, /s_a/,/S/,/s_m/,/T/ 
 7 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
3 

5 /j/,/w/,/p/,/t/,/k/,/b/,/d/,/f/,/x/,/m/,/n/,/J/,/l/,/c/,/J\/,/r\/,/s_a/,/z_a/,/s_m/, /S/ 
 6 /a/,/e/,/i/,/o/,/u/,/B/,/D/,/g/,/G/,/F/,/N/,/n_d/,/L/,/j\/,/r/,/T/ 
 7 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
4 

5 /j/,/w/,/p/,/t/,/k/,/b/,/d/,/f/,/x/,/m/,/n/,/J/,/l/,/c/,/J\/,/r\/,/s_a/,/z_a/ 
 6 /a/,/e/,/i/,/o/,/u/,/B/,/D/,/g/,/G/,/F/,/N/,/n_d/,/L/,/j\/,/r/ 
 7 /s_m/,/S/,/T/,/ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
5 

5 /j/,/w/,/p/,/t/,/b/,/f/,/m/,/n/,/J/,/l/,/c/,/J\/,/r\/,/s_a/ 
 6 /a/,/e/,/i/,/o/,/u/,/d/,/F/,/N/,/L/,/r/ 
 7 /k/,/B/,/D/,/g/,/G/,/x/,/n_d/,/j\/,/z_a/,/s_m/,/S/,/T/,/ts_a/,/ts_m/,/tS/,  /INS/ 

SP 
EEK

1 

3 /b/,/d/,/g/ 
 4 /j/,/w/,/B/,/D/,/G/,/l/,/r\/,/z_a/ 
 5 /a/,/e/,/i/,/o/,/u/,/y/,/p/,/t/,/k/,/x/,/f/,/m/,/F/,/n/,/N/,/n_d/,/J/,/L/,/j\/,/c/,/J\/, /r/, /s_a/,/S/,/s_m/,/T/ 
 6 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
2 

4 /b/,/d/,/g/ 
 5 /j/,/w/,/B/,/D/,/G/,/l/,/r\/,/z_a/ 
 6 /a/,/e/,/i/,/o/,/u/,/y,/p/,/t/,/k/,/x/,/f/,/m/,/F/,/n/,/N/,/n_d/,/J/,/L/,/j\/,/c/,/J\/,  /r/, /s_a/,/S/,/s_m/,/T/ 
 7 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
3 

4 /p/,/t/,/k/,/B/,/f/ 
 5 /a/,/e/,/i/,/o/,/u/,/y,/j/,/w/,/b/,/d/,/g/,/D/,/G/,/x/,/m/,/F/,/n/,/N/,/n_d/,/J/,/l/,/L/,/j\/,/c/,/J\/,/r\/,/r/,/z_a/,/s_a/,/S/,/s_m/,

/T/ 
 6 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
4 

5 /j/,/w/,/p/,/t/,/k/,/b/,/d/,/g/ 
 6 /a/,/e/,/i/,/o/,/u/,/y,/B/,/D/,/G/,/x/,/f/,/m/,/F/,/n/,/N/,/n_d/,/J/,/l/,/L/,/j\/,/c/,/J\/,/r\/,/r/,/z_a/,/s_a/ 
 7 /T/,/S/,/s_m/,/ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
5 

5 /p/,/t/,/k/ 
 6 /a/,/e/,/i/,/o/,/u/,/j/,/w/,/b/,/d/,/g/,/B/,/D/,/G/,/x/,/f/,,/m/,/F/,/n/,/N/,/n_d/,/J/,/l/,/L/,/j\/,/c/,/J\/,/r\/,/r/,/z_a/,/s_a/ 
 7 /T/,/S/,/s_m/,/ts_a/,/ts_m/,/tS/,/INS/ 

FR 

EEK
1 

3 /b/,/d/,/g/ 
 4 /j/,/w/,/B/,/D/,/G/,/l/,/r\/,/z_a/ 
 5 /a/,/e/,/i/,/o/,/u/,/y/,/A/,/E/,/O/,/@/,/2/,/9/,/9~/,/a~/,/e~/,/o~/,/p/,/t/,/k/,/x/,/f/,/v/,/m/,/F/,/n/,/N/,/n_d/,/J/,/L/,/j\/,/c/,/

J\/, /r/, /s_a/,/S/,/s_m/,/T/ 
 6 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
2 

3 /b/,/d/,/g/ 
 4 /j/,/w/,/B/,/D/,/G/,/l/,/r\/,/z_a/ 
 5 /a/,/e/,/i/,/o/,/u/,/y/,/A/,/E/,/O/,/@/,/2/,/9/,/9~/,/a~/,/e~/,/o~/,/p/,/t/,/k/,/x/,/f/,/v/,/m/,/F/,/n/,/N/,/n_d/,/J/,/L/,/j\/,/c/,/

J\/, /r/, /s_a/,/S/,/s_m/,/T/ 
 6 /ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
3 

6 /p/,/t/,/k/,/B/,/f/ 
 7 /a/,/e/,/i/,/o/,/u/,/y/,/A/,/E/,/O/,/@/,/2/,/9,/j/,/w/,/b/,/d/,/g/,/D/,/G/,/x/,/m/,/F/,/n/,/N/,/n_d/,/J/,/l/,/L/,/j\/,/c/,/J\/,/r\/,/r

/,/z_a/,/s_a/,/S/,/s_m/,/T/ 
 8 /9~/,/a~/,/e~/,/o~/,/ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
4 

6 /j/,/w/,/p/,/t/,/k/,/b/,/d/,/g/ 
 7 /a/,/e/,/i/,/o/,/u/,/y/,/A/,/E/,/O/,/@/,/B/,/D/,/G/,/x/,/f/,,/m/,/F/,/n/,/N/,/n_d/,/J/,/l/,/L/,/j\/,/c/,/J\/,/r\/,/r/,/z_a/,/s_a/ 
 8 /2/,/9/,/9~/,/a~/,/e~/,/o~/,/T/,/S/,/s_m/,/ts_a/,/ts_m/,/tS/,/INS/ 
 

EEK
5 

6 /p/,/t/,/k/,/m/,/n/ 
 7 /a/,/e/,/i/,/o/,/u/,/y/,/j/,/w/,/b/,/d/,/g/,/x/,/f/,/F/,/N/,/n_d/,/J/,/l/,/L/,/j\/,/c/,/J\/,/r\/,/r/,/z_a/,/s_a/ 
 8 /A/,/E/,/O/,/@/,/2/,/9/,/9~/,/a~/,/e~/,/o~/,/B/,/D/,/G/,/T/,/S/,/s_m/,/ts_a/,/ts_m/,/tS/,/INS/ 

 
word unit and all other units included in the set, in 
this case the global Phone Error Rate (PER). In our 

approach the confusion matrices were calculated by 
several methods oriented to data optimization with 
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small databases (Barroso, 2011a). The grouping for 
the three languages is summarized in the table 4. 

Finally, the training and testing methodology 
was K-fold Cross Validation. This is one way to 
improve the results of classical train/test methods 
when the data set is small. The data set is divided 
into k subsets, and the training and test method is 
repeated k times. Each time, one of the k subsets is 
used as the test set and the other k-1 subsets are put 
together to form a training set. Then the average 
error across all k trials is computed. Every data point 
gets to be in a test set exactly once, and gets to be in 
a training set k-1 times. Leave-One-Out (LOO), 
cross validation is K-fold cross validation taken to 
its logical extreme, with K equal to N, the number of 
data points in the set. In this work more than one 
value of K has been used, but the results show the 
case of K=10.  

5 EXPERIMENTATION 

The input signal is transformed and characterized 
with a set of 13 Mel Frequency Cepstral (MFCC), 
energy and their dynamic components, taken into 
account the high level of noise in the signal (42 
features). The frame period was 10 milliseconds, the 
FFT uses a Hamming window and the signal had 
first order pre-emphasis applied using a coefficient 
of 0.97. The filter-bank had 26 channels. Then, 
automatic segmentation of the SLU units 
(phonemes) is generated by Semi Continuous HMM 
(SC-HMM). In a first stage, the Gaussian Number is 
1 and no SLU data-driven or unit fusion is used. The 
set of units is the described in the Table 2. 

When the SN of the HMM (with regard to the 
SLUs nature) are changed (configurations EEK1-
EEK5), it can be observed an ascending progression 
in the value of Accuracy (Acc). EEK1 is the 
configuration based on the proposal of (Puertas, 
2000).  EEK2  is  similar  to  EEK1 adding one more 

Table 4: Description of the different groups of Sublexical Unit for the three languages. 

Language Group Type Description 

BS 

A 
/i/=/i/+/j/ 
/u/=/u/+/w/ 

/b/=/b/+/B/ 
/d/=/d/+/D/ 
/g/=/g/+/G/ 

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

 

B 
/i/=/i/+/j/ 
/u/=/u/+/w/ 

/b/=/b/+/B/ 
/d/=/d/+/D/ 
/g/=/g/+/G/ 

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

/s_a/=/s_a/+/z_a/ 
/j\/=/j\/+/J\/+/c/ 
/l/=/l/+/L/ 

C 
/i/=/i/+/j/ 
/u/=/u/+/w/ 

/b/=/b/+/B/ 
/d/=/d/+/D/ 
/g/=/g/+/G/ 

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

/s_a/=/s_a/+/z_a/ 
/j\/=/j\/+/J\/+/c/+/L/ 
 

SP 

A 
/i/=/i/+/j/ 
/u/=/u/+/w/ 

/b/=/b/+/B/ 
/d/=/d/+/D/ 
/g/=/g/+/G/ 

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

 

B 
/i/=/i/+/j/ 
/u/=/u/+/w/ 

/b/=/b/+/B/ 
/d/=/d/+/D/ 
/g/=/g/+/G/ 

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

/s_a/=/s_a/+/z_a/ 
/j\/=/j\/+/J\/+/c/+/L/ 

FR 

A 
/e/=/e/+/E/       /i/=/i/+/j/ 
/u/=/u/+/w/       /o/=/o/+/O/ 
/y/=/y/+/H/      /@/=/@/+/2/+/9/ 

   

B 

/a/=/a/+/a~/      /i/=/i/+/j/ 
/e/=/e/+/E/+/e~/+/9~/ 
/o/=/o/+/O/+/o~/  /@/=/@/+/2/+/9/ 
/u/=/u/+/w/+/y/+/H/ 

/b/=/b/+/B/ 
/d/=/d/+/D/ 
/g/=/g/+/G/ 

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

/s_anFR/=/s_anFR/+/z_anFR/ 
/R\/=/R\/+/r/+/r\/ 

C 

/a/=/a/+/a~/ 
e/=/e/+/E/+/e~/+/9~//i/=/i/+/j/ 
o=o+O+o~ 
u=u+w+y+H+@+2+9 

/b/=/b/+/B/+/v/ 
/d/=/d/+/D/ 
/g/=/g/+/G/ 

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

/s_a/=/s_a/+/z_a/ 
/s_anFR/=/s_anFR/+/z_anFR/ 
/R\/=/R\/+/r/+/r\/ 

D 

/a/=/a/+/a~/ 
/e/=/e/+/E/+/e~/+/9~/ 
/i/=/i/+/j/ 
/o/=/o/+/O/+/o~/ 
/u/=/u/+/w/+/y/+/H/+/@/+/2/+/9/ 

/b/=/b/+/B/+/v/ 
/d/=/d/+/D/ 
/g/=/g/+/G  

/m/=/m/+/F/ 
/n/=/n/+/N/+/n_d/ 

/s_a/=/s_a/+/z_a/ 
/s_anFR/=/s_anFR/+/z_anFR/ 
/R\/=/R\/+/r/+/r\/ 
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Figure 3: Results with different HMM topologies for Basque. 

 
Figure 4: Results with different HMM topologies and the group type C for Basque. 

stage to each SLU. Then, following stage 
distributions of the SLUs were adjusting taken into 
account the recognition rates and the insertion value 
for every unit obtained in the previous analysis 
(EEKall1 to EEKall9, EEK1 and EEK2). EEK5 
configuration proposal provides the best results 
(figure 3). In this case, the weakest units have been 
modelled with many states. Moreover, the unit 
definition tries to support cohesion among the 
articulatory characteristics of the units. EEK5 does 
not overcome the recognition rate of EEKall7, but it 
approaches to it very much while using less global 
state numbers: Corr = 75 % and Acc = 72.85 %. The 
same effect appears for all allophone groups in the 
case of Basque. The best results are obtained with 

the type C. In figure 4 the results obtained for this 
unit grouping can be seen.  

The best rates are obtained for the EEKall7 
configuration: Corr =80.60 % and Acc = 75.62 %, 
the next best result is obtained by EEK5 with these 
rates: Corr = 79.16 % and Acc = 75.05 %. Though 
the values of Corr and Acc change, the evolution of 
the results with regard to the different configurations 
is kept for types A and B. In the figure 5 it can see 
the results for Spanish without using SLU groups. 
The  analysis  carried  out  for Spanish and French is 
the same. Nevertheless, because both languages are 
different with regard to phonetic characteristics and 
the audio signal, they have evolved towards different 
topologies (figure 5). 
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Figure 5: Results with different HMM topologies for Spanish. 

 
Figure 6: Results with different HMM topologies for French. 

As with Basque, with regard to the evolution of 
topologies in which all the SLUs have the same SN 
the maximum value of Acc is obtained by 7 state: 
Corr = 51.04 % and Acc =48.39 %. With (Puertas, 
2000) configuration the results are very poor but 
after several tests the following results are obtained 
for EEK5: Corr = 50.63 % and Acc = 46.63 %. In 
this case, it does not manage to overcome the rate of 
EEKall7, but the configuration EEK5 has less 
computational cost since fewer states are used. The 
same effect appears in for the SLU groups proposed 
for Spanish (table 3). Here the best result is provided 
for the Type B and EEKall7: Corr = 53.33 % and 
Acc = 50.58 %. For the EEK5 the following results 
are obtained: Corr = 51.08 % and Acc = 49.41 %. 
The French database presents the highest level of 
noise among the three languages. Figure 6 shows 
these results. For French, the best result with regard 
to  Accuracy  is obtained with the EEKall8 topology: 

Corr = 52.65 % and Acc =36.97 %. 

Table 5: Summary of the best results obtained with regard 
to the topologies and the languages. 

LG Rate (%) SLU Type 
  EEKall7 EEK5 

BS 
Corr (%) 80.60 79.16 
Acc (%) 75.62 75.05 

  EEKall7 EEK5 

SP 
Corr (%) 53.33 51.08 
Acc (%) 50.58 49.41 

  EEKall8 EEK5 

FR 
Corr (%) 58.54 50.41 
Acc (%) 49.46 46.08 

Under noisy conditions, the increment of SN 
improves the results but anyway for French the 
results are very poor due to the under-resourced 
conditions. EEK5 configuration does not overcome 
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the EEKall8 and obtains similar results: Corr = 
44.75 % and Acc = 36.67 %. The SLU groups in 
general provide better results. The maximum value 
for French with regard to Acc is obtained for the 
type C and the configuration EEKall8: Corr = 
58.54 % and Acc = 49.46 %. For EEK5: Corr = 
50.41 % and Acc = 46.08 %. 

Then we can conclude that: 
1. The best results are obtained for Basque. 
2. Noise effects are better absorbed for 

topologies with more states. 
3. Each language has its own configuration 

guided for both the phonetic features and the 
noise level of the data. 

4. The SLU groups provide better results for the 
three languages. 

5. The configurations EEK5 of each language 
provides very interesting results, since the Acc 
values are close to the maximum values with 
fewer SN. 

The most outstanding results are summarized in 
table 5 with regard to the topologies and the 
languages.  

Finally, a new analysis has been carried out with 
regard to the insertion penalty, p, the Gaussian 
Number (GN), the topologies and the languages. 
Table 6 presents the obtained results. The worst 
results are obtained for French. In general it can be 
observed that the models with high SN need a lower 
GN and lower value for p because of the definition 
of appropriately configurations fitted to the needs of 
the system. In some cases Acc rates for APD 
experiments are very small, but this weakness can be 
absorbed in a later phase by a powerful LM as the 
ontologies (Barroso, 2011b). 

6 CONCLUDING REMARKS 

The present work is focused on the selection of 
appropriate Acoustic Models for Speech Processing 
in a complex environment (multilingual context and 
under-resourced and noisy conditions) oriented to 
general ASR tasks. The work has been carried out 
with a small trilingual speech database with very 
low audio quality. In order to decrease the negative 
impact that the lack of resources has in this task 
there were selected as acoustic models of the 
sublexical units several options such as hybrid 
HMM topologies and parameters, and optimum 
configuration for the APD system (Multivariate 
Gaussian Number or the insertion penalty). With the 
new Acoustic Modelling noise effects are better 
absorbed  for topologies with more states. Moreover, 

Table 6: Summary of the best results obtained with regard 
to the topologies, languages an APD configuration. 

LG  SLU GN p Corr PER 

BS EEK5 Allophone 24 -20 81.50 21.10 

 EEK5 Type A 24 -20 78.84 24.10 

 EEKall7 Type B 8 -10 78.90 25.50 

 EEKall7 Type B 4 -25 82.10 20.20 

 EEKall7 Type B 4 -10 79.70 24.00 

 EEK5 Type B 22 -20 80.50 23.95 

SP EEK5 Type A 24 -20 53.25 52.5 

 EEKall7 Type B 8 -10 54.33 52.80 

 EEKall7 Type B 4 -25 58.80 46.04 

 EEKall7 Type B 4 -10 62.18 42.80 

 EEK5 Type B 22 -20 59.90 45.94 

FR EEK5 Allophone 24 -20 46.33 58.28 

 EEK5 Type A 24 -20 46.50 56.28 

 EEKall7 Type B 8 -10 50.80 50.58 

 EEKall7 Type B 4 -25 58.59 48.80 

 EEKall7 Type B 4 -10 52.86 45.94 

 EEK5 Type B 22 -20 81.50 21.10 

each language has its own configuration guided for 
both the phonetic features and the noise level of the 
data. In some cases rates for APD experiments are 
very poor, but this weakness can be absorbed in a 
later phase by a powerful LM.  

In future lines of work, non-linear approaches, 
low-level ontologies and new methodologies for 
automatic features selection will be developed. 
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