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Abstract: Gradient operators allow image segmentation based on edge information. Gradient operators based on 
chromatic information may avoid apparent edges detection due to illumination effects. This paper proposes 
the extension of chromatic gradients defined for RGB color images to images with n-dimensional pixels. A 
spherical coordinate representation of the pixel's content provides the required chromatic information. The 
paper provides results showing that gradient operators defined on the spherical coordinate representation 
effectively avoid illumination induced false edge detection. 

1 INTRODUCTION 

Edge detection is a key step in some image 
segmentation process. Edges are customarily 
computed by applying linear gradient operators (i.e. 
Sobel, Prewitt, Canny (Wang, 1997; Hildreth, 1987; 
Gonzalez & Woods, 1992)). In color images, 
gradients operators can be applied to each image 
dimension independently, combining the results 
afterwards. Alternatively, k-means clustering can be 
applied to obtain color regions, defining the edges as 
the boundaries of the found regions. The definition 
of gradient operators on multi-dimensional pixel 
images is an open research issue (Cheng, Jiang, Sun, 
& Wang, 2001). Some approaches try to exploit the 
properties of the color space (RGB, HSI, HSV, CIE 
L*a*b, CIE L*u*v) to obtain sensible edge 
detections. Chromatic gradient operators have been 
proposed on the basis of the spherical representation 
of the color points (Moreno, Graña, & Zulueta, 
2010). Higher dimension images, hyperspectral 
images, are becoming more common due to the 
lowering cost of hyperspectral cameras, and the 
growing number of airborne and satelite 
hyperspectral sensors deployed by a number of 
agencies. The issue of edge detection and the effect 
of shadows and highlights is also open in this kind 
of images. In many cases, shadows are hand 
annotated in the remote sensing images to prevent 
miss-segmentation. Chromaticity concepts have not 
been extended to the hyperspectral image domain so 

far, though they can be useful to improve 
segmentation results. This paper proposes the 
hyperspherical coordinate representation of the n-
dimensional Euclidean space (Moreno et al., 2010) 
in order to introduce images. Hyperspherical 
coordinate color representation allows to separate 
chromaticy and intensity, the main colorimetrical 
separation, without changing the image space. It is 
therefore possible to extend Prewitt-like gradient 
operators defined on the image pixels' chromaticity 
(Moreno et al., 2010) to the hyperspectral case. 
Those operators are independent of the image 
luminosity, avoiding false edge detection on 
highlights and shadows in the hyperspectral case.  

This paper is outlined as follows: in Sec. 2 we 
discuss about the Hyperspherical coordinates, giving 
in 2.1 the transformation from Euclidean coordinates 
to Hyperspherical coordinates. After that, in Sec. 3 
we discuss about gradients, and in Sub-sec.3.1 we 
will present a chromatic gradient operator. In Sec. 4 
we will show the experimental results, finishing this 
work in Sec. 5 with the conclusions. 

2 HYPERSPHERICAL 
COORDINATES AND 
CHROMATICITY 

An n-sphere is a generalization of the surface of an 
ordinary sphere to an n-dimensional space. n-
Spheres are named Hyperspheres when 
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dimensionality is bigger then 3. We are interested in 
the hyperspherical representation of an 
hyperdimensional point and its implications for 
image segmentation under a chromatic point of 
view. In a three-dimensional color space, like RGB, 
figure 1 shows the spherical representation of a color 
point. A color c with (r,g,b) coordinate values in 
RGB color space can be represented by spherical 
coordinates ሺߠ, ߶, ݈ሻ, where ߠ and ߶ are the angular 
parameters and ݈ the vector magnitude. 

 
Figure 1: A vectorial representation of color c in the RGB 
space. 

Spherical coordinates in the three-dimensional RGB 
color space can be used to estimate the illumination 
source chromaticity, and to detect chromatic edges 
(Moreno, Graña, & d'Anjou, 2011; Moreno et al., 
2010). In the three-dimensional RGB color space, 
there is a direct correspondence between angular 
parameters ሺߠ, ߶ሻ and chromaticity (Moreno et al., 
2011). The angular parameters define a line which is 
the natural characterization of the pixel chromaticity.  
In other words, all points on this line have the same 
chromaticity with the pixel. The spherical expression 
of a point in Euclidean space allows to separate 
intensity and chromaticity, where l is the intensity, 
and the angular parameters provide a 
representation/codification of the pixel's 
chromaticity. 

2.1 Hyperspherical Coordinates 

Let us denote p hyperspectral pixel color in n-
dimensional Euclidean space. In Cartesian 
coordinates it is represented by p ൌ ሼvଵ, vଶ, vଷ, … , v୬ሽ 
where v୧	 is the coordinate value of the i-th 
dimension. This pixel can be represented in 
Hyperspherical coordinates ݌ ൌ ሼ݈	, ߶ଵ, ߶ଶ, ߶ଷ,… , ߶௡ሽ, 
where ݈ is the vector magnitude that gives the radial 
distance, and ሼ߶ଵ, ߶ଶ, ߶ଷ, . . ߶௡ሽ		are the angular 
parameters. This coordinate transformation is 
performed uniquely by the following expression, for 
all cases except the ones described below: 

݈ ൌ ටݒଵଶ ൅ ଶଶݒ ൅ ଷଶݒ ൅⋯൅ ௡ଶݒ  ߶ଵ ൌ ܜܗ܋ܚ܉ ଶଶݒଵଶටݒ ൅ ଷଶݒ ൅ ⋯൅ ௡ଶݒ  

߶ଶ ൌ ܜܗ܋ܚ܉ ଷଶݒଵଶටݒ ൅ ସଶݒ ൅ ⋯൅ ௡ଶݒ  

⋮ ߶௡ିଶ ൌ ܜܗ܋ܚ܉ ௡ିଵଶݒ௡ିଶଶටݒ ൅ ௡ଶݒ  

߶௡ିଵ ൌ ௡ିଵଶݒටܜܗ܋ܚ܉	2 ൅ ௡ଶݒ ൅ ௡ݒ௡ିଵݒ  

Exceptions: if ݒ௜ ് 0	for some i but all of ݒ௜ାଵ, ,௜ାଶݒ … are zero then ߶௜	௡ݒ ൌ 0. When all ݒଵ, … ,  ௡ are zero then ߶௜ is undefined, usually aݒ
zero value is assigned. 

A more compact notation for the hyperspherical 
coordinates is ݌ ൌ ሼ݈, ߶തሽ where ߶ത is the vector of 
size n-1 containing the angular parameters. Given a 
hyperspectral image ۷ሺݔሻ ൌ ሼሺݒ௜ାଵ, ,௜ାଶݒ … ;	௡ሻ௫ݒ ݔ ∈Գଶሽ, where x refers to the pixel coordinates in the 
image domain, we denote the corresponding 
hyperspherical representation as; ۾ሺݔሻ ൌ ሼሺ݈, ߶തሻ௫	; ݔ ∈Գଶሽ, from which we use ߶ത௫ as the chromaticity 
representation of the pixel's and ݈௫ as its (grayscale) 
intensity.  

To clarify the meaning of the chromaticity in the 
hyperspectral image domain, we give an illustrative 
example. We have generated a synthetic 
hyperspectral image of 5 x 5 pixels and 200 spectral 
bands. Each pixel spectral signature has the same 
Gaussian shaped profile but with different peak 
height, corresponding to different image intensity as 
can be appreciated in Fig. 2(a) showing the image 
intensity ݈௫. Fig. 2(b) shows the spectral signature of 
all pixels in the Cartesian coordinate representation, 
Fig.2(c) shows the chromatic spectral signature ሼ߶ത௫ሽ 
which is the same plot for all pixels. The 
chromaticity ߶ത thus defines a line in the n-
dimensional space of hyperspectral pixel colors of 
points that only vary their luminosity ݈. 

According to the aforegoing coordinate 
transformation, we can perform the following 
hyperspectral separation. Given a hyperspectral 
image		۷ሺݔሻ ൌ ሼሺݒ௜ାଵ, ,௜ାଶݒ … ;	௡ሻ௫ݒ ݔ ∈ Գଶሽ	in the 
traditional Cartesian coordinate representation we 
can compute the equivalent hyperspherical 
representation  ሺݔሻ ൌ ሼሺ݈, ߶തሻ௫	; ݔ ∈ Գଶሽ.  Then, we can  
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Figure 2: Synthetic image (a) the image intensity ݈௫ , (b) 
shows the Gaussian shaped signature profile of all the 
pixels, and (c) shows the angle components of the 
Hyperspherical coodinates shared by the spectral 
signatures of all pixels in the image, corresponding to the 
common chromaticity of the pixels. 

construct the separate intensity image ۺሺݔሻ	in Fig 
(a). This separation allows us the independent 
processing of hyperspectral color and intensity 
information, so that segmentation algorithms 
showing color constancy can be defined in the 
hypespectral domain. This decomposition can be 
also embedded in models of reflectance like the 
Dichromatic Reflection Model (Shafer, 1984) of the 
Bidirectional Reflection Distribution Function where 
they can be decomposed as diffuse and specular 
components. 

3 GRADIENT OPERATORS 

Mathematically, the gradient of elements of a 
bidimensional space domain function (like images) 
is given at each image domain point by the function 
derivative given by its horizontal and vertical 
Cartesian coordinates, which are the partial 
derivatives in these directions. Partial derivatives are 
often computed by linear convolution operators. The 
gradient function measures the rate of change of the 
function in a point. Gradients are easily computed on 
the intensity image, but their extension to high 
dimensional images is an open research issue.  

Let us denote x ൌ ሺi, jሻ the pixel coordinates in 
the image domain. We recall the definition of the 
image spatial gradient:	

સ۷ሺܑ, ሻܒ ൌ ൤۵ܑሺܑ, ,ሺܑܒሻ۵ܒ ሻ൨ܒ ൌ ێێۏ
ۍ ૒૒ܑ ۷ሺܑ, ܒሻ૒૒ܒ ۷ሺܑ, ۑۑےሻܒ

	ې
where I(i,j) is the image intensity function at 

pixel (i,j). For edge detection, the usual convention 
is to examine the gradient magnitude: ܩሺ݅, ݆ሻ ൌ ,௜ሺ݅ܩ| ݆ሻ| ൅ หܩ௝ሺ݅, ݆ሻห 

For color images, a simplistic approach to 
perform edge detection is to drop all color 
information, and convolve the intensity image with a 
pair of high-pass convolution kernels to obtain the 
gradient components and gradient magnitude. The 
simplest edge detectors are the Prewitt detectors, is 
illustrated in Fig.3 because we will build our own 
spatial chromatic gradient operators following their 
pattern. To take into account spectral information, 
the straightforward approach is to apply the gradient 
operators to each spectral band as an independent 
intensity image and to combine the results 
afterwards 	׏I ൌ ∑ I୧/n୬ଵ׏ 	 where I୧denotes the i-th 
image spectral band.  ൥െ1 0 1െ1 0 1െ1 0 1൩ ൥െ1 െ1 െ10 0 01 1 1 ൩	

Figure 3: Prewitt mask. 

Fig. 4 shows the results of this approach using 
Prewitt gradient operators on two hyperspectral 
images (The first one is a plastic blue ball in front of 
a green background, the second one is a plastic 
orange ball in front of the same green background. 
Both images captured under natural sun 
illumination). The first row shows one band of the 
images. Second row shows the gradient magnitude. 
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The third row shows some edges detected applying a 
threshold to the gradient magnitude image. The 
intensity image component has a strong influence on 
this gradient computation, therefore some highlights 
and shadows are identified as image regions and 
their boundaries detected as image edges. 

  

  

Figure 4: Results on two hyperspectral images of image 
gradient computed applying the Prewitt gradient operators 
to each band independently. 

3.1 Chromatic Gradient Operator 

Linear convolution gradient operators, such as the 
Prewitt operators shown in Fig. 4, the underlying 
topology is the one induced by the Euclidean 
distance defined on the Cartesian coordinate 
representation. In order to define a chromatic 
gradient operator, we may assume a kind of non-
linear convolution where the convolution mask has 
the same structure as the Prewitt operators, but the 
underlying chromatic distance is based only on the 
chromaticity as follows: For two pixels ݌ and ݍ we 
compute the Manhattan or Taxicab distance on the 
chromatic representation of the pixels:  

∠ሺp, qሻ ൌ෍หϕഥ୮,୧െϕഥ୯,୧ห୬ିଵ
୧ୀଵ 	

Note that the ∠൫۱୮, ۱୯൯	distance is always 
positive. Note also that the process is non linear, so 
we can not express it by linear convolution kernels. 
The row pseudo-convolution operator is defined as 

CRୖ൫۱ሺi, jሻ൯ ൌ ෍ ∠ሺ۱୧ି୰,୨ାଵ, ۱୧ି୰,୨ିଵሻଵ
୰ୀିଵ  

and the column pseudo-convolution is defined as  

CRେ൫۱ሺi, jሻ൯ ൌ ෍ ∠ሺ۱୧ାଵ,୨ିୡ, ۱୧ିଵ,୨ିୡሻଵ
ୡୀିଵ 	

so that the color distance between pixels substitutes 
the intensity subtraction of the Prewitt linear 
operator. The hyperspectral chromatic gradient 
magnitude image is computed as: ܩܥሺݔሻ ൌ ሻݔோሺܴܥ ൅  ሻ (1)ݔ஼ሺܴܥ

4 EXPERIMENTAL RESULTS 

Experiments are performed on images taken by SOC 
710 hyperspectral camera. Spectral resolution is 128 
bands in the range 300mn to 1000nm. These images 
have been presented in the first row of Fig. 4. On 
these images we can analyze the illumination effects 
over the objects. On these images there are only two 
chromatically different surfaces, a uniform green 
background and a monochromatic object, in one 
case a dark blue ball with a sweet surface; in the 
other one is plastic model of an orange. In the 
second case, the object has a wrinkled surface.  

We have applied the chromatic gradient of eq. 1 
on the images. The results are shown in Fig. 5 First 
row shows the original intensity images. The second 
row shows the chromatic gradient magnitude image. 
As we can appreciate, true surface edges are better 
detected than in Fig.4 even on shadowy regions of 
the image. The highlights have lower response than 
in Fig.4, so that no spurious edges are detected 
around them. The chromatic gradient has a high 
response on the shadows, but this response is 
uniformly distributed on the whole shadow and it is 
not bigger than the true borders. This effect is 
consequence of the noise distribution on the image. 
The chromatic distance is more sensitive on region 
with poor illumination or on regions poor reflectance 
like the blue ball. Comparing these results with the 
traditional gradients like the shown on Fig.4, the 
chromatic gradient is focused on the chomaticity and 
has a bigger response on chromatic edges. Finally, 
last row shows the edge detection after applying a 
threshold on the gradient magnitude image. The 
threshold is computed by the Otsu minimal variance 
approach. In these results, we have found the correct 
object edges avoiding the false detection of borders 
of shines and shadows despite the high dimensional 
nature of these hyperspectral images. 
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Figure 5: Pseudo Prewitt gradient on the chromatic image. 

5 CONCLUSIONS 

The computation of gradients on hypespectral 
images implies the combination of high dimensional 
information and is prone to spurious detections due 
to noise and illumination effects, such as highlights 
and shadows. We have followed the approach 
proposed in (Moreno et al., 2010) for color images, 
proposing an extension to high-dimensional images, 
which allows the robust detection of object 
boundaries despite strong illumination effects. We 
have tested the approach on indoors captured 
hyperspectral images. Object boundaries are 
effectively found and spurious edges are avoided in 
these images. Further work on the extensive 
validation of the approach on hyperspectral images 
with known ground truth is on the way. Long term 
research goal is its application to remote sensing 
images. 
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