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Abstract: Association of observations to underlying targets is a crucial task in probabilistic tracking of multiple targets.
The Rao-Blackwellized Monte Carlo Data Association (RBMCDA) framework circumvents the combinatorial
explosion by approximating the joint distribution of targets and association variables by Monte Carlo samples
in the space of association variables. We present a parametric data association prior distribution required by
RBMCDA, which models the formation of observations. To sample from this distribution an efficient algo-
rithm is developed. The Interacting Multiple Models (IMM) filter is integrated into the RBMCDA framework
to model the changing dynamics of targets aiming at tracking small particles in microscopy images. The
proposed method is evaluated in a proof of concept and evaluated using synthetic data.

1 INTRODUCTION

Probabilistic tracking techniques are beneficial to
track multiple targets with fast motion and similar ap-
pearance. Such methods employ a dynamic model to
incorporate prior information. In detail, the state dis-
tribution of targets is predicted in each time step us-
ing the dynamic model and previous estimates. Sub-
sequently this estimate is corrected using an obser-
vation of the target, if available. The major issue in
multi-target tracking is the combinatorial problem to
associate observations to underlying targets.

In (Särkkä et al., 2007) the Rao-Blackwellized
Monte Carlo Data Association (RBMCDA) frame-
work was presented for tracking targets with linear
dynamics. RBMCDA circumvents the combinato-
rial problem of data association by sampling in the
space of association variables, while distributions of
targets’ states are kept in analytical form. It also
allows to integrate the Interacting Multiple Models
(IMM) filter (Bar-Shalom and Blair, 2000) to account
for changing dynamics of targets, which is required
by the application we are aiming at, namely tracking
of small particles in fluorescence microscopy images.

We propose a parametric data association prior
required for sampling of associations, which models
the formation of observations, because of the lack of
a generic definition in (Särkkä et al., 2007).

The main contribution of this work is (i) a rigorous
definition of the parametric data association prior and
(ii) the development of an efficient algorithm to carry
out the sampling procedure. We give a proof of con-
cept of the proposed method evaluating performance
of tracking on synthetic data.

The remainder of this work is structured as fol-
lows: Sec. 2 gives an overview of related work con-
cerned with the problem of tracking multiple targets.
An introduction to probabilistic multi-target tracking
and the RBMCDA framework is given in Sec. 3. In
Sec. 4 the parametric data association prior is devel-
oped as well as an efficient algorithm for sampling.
Employed models, generation of data, methods for
evaluation, and the complexity are described in Sec. 5.
The performance is discussed in Sec. 6 and some con-
cluding remarks are given in Sec. 7.

2 RELATED WORK

Various approaches exist for tracking multiple targets.
Multi-Hypothesis Tracking (MHT) (Reid, 1979) pro-
vides an optimal solution to multi-target tracking for
linear systems with Gaussian noise in theory. It fur-
ther allows for the generation of new targets, extinc-
tion of targets as well as classifying observations as
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clutter. In detail, MHT maintains a tree of hypotheses
for all possible associations of observations, which re-
sults in an exponentially growing number of hypothe-
ses. However, for practical application this number
must be reduced rigorously by heuristic strategies like
tree pruning or gating of observations.

The Joint Probabilistic Data Association (JPDA)
filter (Bar-Shalom and Fortmann, 1987; Bar-Shalom
and Blair, 2000) updates target state distributions by
observations in a gate around the target. The up-
dated state distribution results in a Gaussian mix-
ture which is subsequently approximated by a sin-
gle Gaussian to prevent exponential growth. JPDA
was developed to provide robust estimates in environ-
ments with many clutter observations (Bar-Shalom
and Fortmann, 1987). However, JPDA is limited to
a fixed and known number of targets. JPDA was
combined with IMM filtering (Bar-Shalom and Blair,
2000) to account for changing dynamics of targets and
extended to overcome the limitation to a fixed number
of targets (Musicki and Evans, 2002).

Sequential Monte Carlo (SMC) methods approx-
imate state distributions not in closed-form as the
above methods but by a finite set of samples (Doucet
et al., 2001). SMC methods are capable to deal with
nonlinear dynamics and non-Gaussian noise. SMC
method are also available for multi-target tracking,
but a large number of samples is necessary to avoid
overly sparse representation of the high dimensional
joint distribution of targets’ states. Numerous exten-
sions exist, e.g. to achieve IMM- and JPDA-like be-
havior (Blom and Bloem, 2003). Monte Carlo meth-
ods avoid the combinatorial problem of data associ-
ation by sampling of association variables. In (Hue
et al., 2002) the joint distribution of state and asso-
ciation variables is completely approximated by sam-
ples. To reduce the number of samples (Särkkä et al.,
2007) introduce Rao-Blackwellization of state vari-
ables, i.e. their distributions are kept in analytical
form while associations are still sampled.

Targets and observations often are assumed to be
statistically independent for efficiency reasons. It thus
is reasonable to model dependencies of targets only
locally. In (Khan et al., 2005) the joint distribution
of otherwise independent targets is penalized using
Markov random fields, if targets approach. In (Smal
et al., 2008) state samples are re-clustered to recon-
sider their affiliation to targets in microscopy images.

3 MULTI-TARGET TRACKING
AND THE RBMCDA
FRAMEWORK

The scenario considered for tracking of multiple tar-
gets is as follows: At each time step multiple targets
might be present and their unknown number may vary
with time because targets may (dis-)appear in the field
of view. Individual targets are identified by unique
target IDs which are preserved across time steps. The
set of target IDs of existing targets at time t is de-
noted with Nt . The state of the target with ID n is
denoted by xt

n. Let Xt := fxt
ngn2Nt describe the set

of the states of the Nt = jXt j = jNt j existing targets
at time t. Targets may “die” if they disappear and
thus their ID and state have to be removed from the
set of states and IDs. On the other hand new targets
may be “born” in which case their state and ID must
be inserted into the corresponding sets. With Xt

�, Nt
�

and Nt
� we refer to the above sets and variables be-

fore target birth and death at time t and with Xt
+, Nt

+
and Nt

+ thereafter. Further on, multiple observations
are detected at each time step, comprising observa-
tions from existing and newborn targets, but also false
alarms. False alarms are referred to as clutter obser-
vations and do not originate from targets but are due
to noise. Furthermore, a target may not be detected in
all time steps. Let Z̃t := (z̃t

1; : : : ; z̃
t
M̃t ) be the vector of

M̃t observations at time t, with an arbitrary but fixed
order. Note that Nt and M̃t are implicitly defined by
the number of elements in Xt and Z̃t respectively. Let
Ct := (ct

1; : : : ;c
t
M̃t ) denote a vector of hidden associ-

ation variables, where ct
m describes association of the

m-th observation z̃t
m to a target n (ct

m = n, n 2 Nt
+)

or clutter (ct
m = 0). Note that realizations of random

variables are marked with ˜.
This multi target tracking problem can be solved

by the iterative estimation of the joint distribution
of targets’ states analogous to the predict&update-
scheme well known from single-target tracking (see
e.g. (Doucet et al., 2001)). In fact, for the multi-target
case we seek for an estimate of the joint distribution of
targets’ states and association variables given all ob-
servations up to the current time t as stated in Eq. (1).
The factorization in Eq. (1) demonstrates the com-
binatorial problem inherent to multi-target tracking:
The first term corresponds to the estimate of targets’
state distribution for fixed association variables, i.e.
we know which observation to use for updating which
target. However, estimation of the complete distri-
bution is prohibitive for practical application because
the number of valid associations C1:t to be considered
explodes with time and increasing number of targets
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and observations.

p(Xt ;C1:t jZ̃1:t) = p(Xt jZ̃1:t ;C1:t) � p(C1:t jZ̃1:t) (1)

For this reason (Särkkä et al., 2007) propose to
approximate Eq. (1) by a finite set of samples
f(s)C1:tgs=1;:::;S in the space of association variables
whereas the distributions of targets’ states are main-
tained in analytical form, e.g. by Gaussian distribu-
tions.

p(Xt ;C1:t jZ̃1:t)�

1
S

S

å
s=1

p(Xt jZ̃1:t ;(s) C̃1:t) �d(Ct � (s)C̃t); (2)

with (s)C̃t sampled from p(Ct jZ̃1:t ; (s)C̃1:t�1) (3)

For each sample (s)C̃1:t a separate joint distribution
of its target states p(Xt jZ̃1:t ;(s) C̃1:t) is maintained.
This combination of sampled associations and corre-
sponding state distributions will be referred to as a
RBMCDA sample. Estimating the distribution of tar-
gets’ states follows the predict&update-scheme men-
tioned above with an intermediate sampling step to
yield realizations (s)C̃t before update.

According to (Särkkä et al., 2007) the individual
association variables in (s)C̃t are sampled sequentially
by decomposition of Eq. (3) using Bayes’ rule result-
ing in Eq. (4). The term for the m-th association vari-
able in Eq. (4) is further decomposed (Eq. (5)) into
the predicted likelihood of the corresponding obser-
vation for the given association and the data associa-
tion prior, which does not include information about
the actual observation.

p(Ct jZ̃1:t ;C1:t�1) = p(ct
1jZ̃1:t ;C1:t�1)

�
M̃t

Õ
m=2

p(ct
mjct

1:m�1; Z̃
1:t ;C1:t�1) (4)

p(ct
mjct

1:m�1; Z̃
1:t ;C1:t�1)

µp(z̃t
mjct

m; Z̃
1:t�1;C1:t�1)p(ct

mjct
1:m�1;M̃

t ;Nt
�) (5)

The formulation in Eq. (5) requires the assumption
that ct

m is independent from observations that are not
yet associated, i.e. z̃t

m+1:M̃t . This assumption is al-
lowed by the scenario considered in (Särkkä et al.,
2007) and exploited to achieve efficient sampling of
association variables in Sec. 4, but available informa-
tion clearly remains unused in our case.

In (Särkkä et al., 2007) only an informal descrip-
tion is provided of how to compute data association
prior probabilities. Therefore, we present a rigorous
formulation of a data association prior in 4.1 and
an efficient sampling algorithm using this prior in 4.2.

4 PARAMETRIC DATA
ASSOCIATION PRIOR

4.1 Model of the Data Association Prior

In the following we derive the data association prior
from the joint distribution of Ct when only the num-
ber of existing targets Nt

� and their IDs Nt
� is known.

This joint distribution models the formation of a set
of Mt observations composed of kt observations from
the Nt

� existing targets, bt observations from new-
born targets and ut = Mt � kt � bt clutter observa-
tions. Existing targets are assumed to be detected
with probability PD. The number of newborn tar-
gets, which are all presume to be detected, is assumed
to be distributed according to n(bt) and the number
of clutter observations according to the distribution
µ(ut). The probability of a valid set of association
variables Ct is composed of the probability to receive
Mt = kt + bt + ut observations and the probability
of the specific configuration of association variables,
given that the number of existing targets is known.
The joint data association prior (6) is proportional to
this distribution for a fixed number of observations
Mt . It is defined to be 0 if the cardinality of Ct is
different from Mt . Otherwise it is proportional to the
described distribution:

p(Ct jMt ;Nt
�) µ p(Ct jNt

�) =
1�Mt

kt

��Nt
�

kt

�
kt !
�Mt�kt

bt

�
�
�Nt
�

kt

�
Pkt

D (1�PD)
Nt
��kt

n(bt) µ(ut) (6)

The fraction in Eq. (6) accounts for the number of
possible configurations of Ct for Mt = kt + bt + ut

observations. kt out of Mt observations originate
from existing targets with

�Nt

kt

�
kt ! different alterna-

tives to assign target IDs. A total of bt of the re-
maining (Mt � kt) observations stem from newborn
targets with

�Mt�kt

bt

�
alternatives to choose bt observa-

tions. ut =Mt�kt�bt observations are due to clutter.
The data association prior of an association ct

m re-
quired in Eq. (5) is proportional to Eq. (6) marginal-
ized over all valid configurations ct

m+1:Mt given c̃t
1:m�1

denoted by fct
m+1:Mt jc̃t

1:m�1g:

p(ct
mjc̃t

1:m�1;M
t ;Nt

�) =
p(c̃t

1:m�1;c
t
mjMt ;Nt

�)

p(c̃t
1:m�1jMt ;Nt

�)

µ å
fct

m+1:Mt jc̃t
1:m�1g

p(c̃t
1:m�1;c

t
m:Mt jNt

�) (7)

=: q(ct
mjc̃t

1:m�1;M
t ;Nt

�) (8)

PARAMETRIC DATA ASSOCIATION PRIOR FOR MULTI-TARGET TRACKING BASED ON
RAO-BLACKWELLIZED MONTE CARLO DATA ASSOCIATION

389



4.2 Sampling Algorithm

4.2.1 Computation of Data Association Prior

Three different cases have to be considered. The first
case is the association of an observation to clutter, i.e.
ct

m = 0. The second case is the association to one of
the existing targets that is ct

m = nexist. Association to a
newborn target as the third case is given by ct

m = nnew.
The marginalization Eq. (7) can be expressed via a
sum over possible numbers of associations to existing
targets k in Ct given c̃t

1:m�1 are already assigned (see
e.g. Eq (13)). Conditioned on k, an inner sum runs
over the possible number of newborn target associa-
tions b in Ct given c̃t

1:m�1. All configurations of Ct

with identical k and b have the same probability, c.f.
Eq. (6).

For brevity of notation we use additional defini-
tions in the following. M := Mt denotes the number
of current observations and N := Nt

� = Nt�1
+ is the

number of targets that already exist before time step t.

Case 1: Association to Clutter (cm = 0). We con-
sider all feasible numbers k of associations to exist-
ing targets in Ct given c̃t

1:m�1, if the m-th observa-
tion is associated to clutter. The minimum number is
km�1, which is defined as the number of associations
to existing targets present in c̃t

1:m�1. The maximum
number equals kmax

m := min(N;M�m+km�1) since a
maximum of M�m additional associations are possi-
ble in c̃t

m+1:M and we have a total of N existing target
available. Likewise we consider the number of asso-
ciations to newborn targets in Ct given c̃t

1:m�1. The
minimum number corresponds to the number of pre-
vious associations to newborn targets in c̃t

1:m�1 de-
noted by bm�1. The maximum number is bmax

m :=
M�m�k+km�1+bm�1 as a maximum of M�m�k
observations may additionally be associated to clut-
ter. The sum over valid configurations of associa-
tions ct

m+1:M given km�1, bm�1, c̃t
1:m�1 and ct

m = 0 re-
quired in Eq. (7) can be expressed by the number of
these configurations and is given in Eq. (13). There
are

� M�m
k�km�1

�
alternatives to select (k� km�1) out of

(M�m) observations for additional association with
existing targets.

�N�km�1
k�km�1

�
(k� km�1)! alternatives to

associate (k�km�1) of the (N�km�1) non-associated
existing targets exclusively and

�M�m�k+km�1
b�bm�1

�
alter-

natives to associate (b� bm�1) out of the remaining
(M�m� k+ km�1) observations to newborn targets.

To highlight relations between the different asso-
ciation cases the following definitions will be used:

d(m;km�1;M;N) :=
(M�m)! (N� km�1)!

M! N!
(9)

f (k;km�1;N) :=
k! �
�N

k

�
Pk

D(1�PD)
N�k

(k� km�1)!
(10)

g(b;bm�1) :=
b! �n(b)

(b�bm�1)!
(11)

h(m;r;rm�1;M) :=
(M� r)! �µ(M� r)
(M� r�m+ rm�1)!

(12)

Here we denote r = k + b and rm�1 = km�1 + bm�1.
Their properties are examined in detail in 4.2.2 and
are utilized for efficient computation.

Case 2: Association to Existing Target (cm = nexist).
The marginal in Eq. (7) for association to an existing
target differs from the clutter case in the sum limits
for k and is given in Eq. (14). The limits of the clutter
case have to be increased by one, because the number
of associations to existing targets in c1:m is (km�1+1)
in this case. This aspect has also to be considered in
the number of possible associations in cm+1:M .

Case 3: Association to Newborn Target (cm =
nnew). For association to a newborn target the sum
limits for b have to be adjusted with regard to the clut-
ter case (see Eq. (15)). Similar to the adjustment of
the k-limits in case 1, the limits of b have to be in-
creased by one, because the number of associations
to newborn targets in c1:m�1 and cm now equals to
(bm�1 +1).

4.2.2 Iterative Properties of Association Prior

The functions d, f , g and h introduced in equations
(9) to (12) can be computed iteratively and help to
understand the iterative computation of terms used to
sequentially sample the data association prior.

If m is incremented d(m;km�1;M;N) can be easily
updated regardless whether km = km�1+1 (Case 2) or
km = km�1 (Case 1 and Case 3):

d(0;0;M;N) =1 (16)

d(m+1;km�1;M;N) =
1

M�m
d(m;km�1;M;N)

d(m;km�1 +1;M;N) =
1

N� km�1
d(m;km�1;M;N)

The values of f (k;km�1;N) only change if an associ-
ation to an existing target is sampled (Case 2):

f (k;0;N) =
�N

k

�
Pk

D (1�PD)
N�k (17)

f (k;km�1 +1;N) =(k� km�1) f (k;km�1;N)

Likewise the function g(b;bm�1) changes if associa-
tion to a newborn target occurs (Case 3).

g(b;0) =n(b) (18)
g(b;bm�1 +1) =(b�bm�1) g(b;bm�1)
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q(ct
m = 0jc̃t

1:m�1;M;N�) =

=
kmax

m

å
k=km�1

bmax
m

å
b=bm�1

� M�m
k�km�1

��N�km�1
k�km�1

�
(k� km�1)!

�M�m�k+km�1
b�bm�1

�
p(Ct jN)

=
kmax

m

å
k=km�1

bmax
m

å
b=bm�1

� M�m
k�km�1

��N�km�1
k�km�1

�
(k� km�1)!

�M�m�k+km�1
b�bm�1

��M
k
��N

k
�
k!
�M�k

b
� �N

k
�
Pk

D(1�PD)
N�k

n(b)µ(M� k�b)

=
(M�m)! (N� km�1)!

M! N!

"
kmax

m

å
k=km�1

k!
(k� km�1)!

�N
k
�
Pk

D(1�PD)
N�k

�
� bmax

m

å
b=bm�1

b!
(b�bm�1)!

n(b)
(M� k�b)!

(M� k�b�m+ km�1 +bm�1)!
µ(M� k�b)

�#

= d(m;km�1;M;N)
kmax

m

å
k=km�1

f (k;km�1;N)
bmax

m

å
b=bm�1

g(b;bm�1) h(m;k+b;km�1 +bm�1;M) (13)

q(ct
m = nexistjc̃t

1:m�1;M;N�) =

=
kmax

m +1

å
k=km�1+1

bmax
m

å
b=bm�1

� M�m
k�km�1�1

��N�km�1�1
k�km�1�1

�
(k� km�1�1)!

�M�m�k+km�1+1
b�bm�1

��M
k
��N

k
�
k!
�M�k

b
� �N

k
�
Pk

D(1�PD)
N�k

n(b)µ(M� k�b)

= d(m;km�1 +1;M;N)
kmax

m +1

å
k=km�1+1

f (k;km�1 +1;N)
bmax

m

å
b=bm�1

g(b;bm�1)h(m;k+b;km�1 +1+bm�1;M) (14)

q(ct
m = nnewjc̃t

1:m�1;M;N�) =

=
kmax

m

å
k=km�1

bmax
m +1

å
b=bm�1+1

� M�m
k�km�1

��N�km�1
k�km�1

�
(k� km�1)!

�M�m�k+km�1
b�bm�1�1

��M
k
��N

k
�
k!
�M�k

b
� �N

k
�
Pk

D(1�PD)
N�k

n(b) �µ(M� k�b)

=d(m;km�1;M;N)
kmax

m

å
k=km�1

f (k;km�1;N)
bmax

m +1

å
b=bm�1+1

g(b;bm�1 +1)h(m;k+b;km�1 +bm�1 +1;M) (15)

If both m and rm�1 are incremented simultaneously
(Cases 2 and 3) h remains unchanged. If m is incre-
mented but the total number target associations rm�1
remains unchanged (Case 1) the last recursion is used:

h(1;r;0;M) =(M� r) µ(M� r) (19)
h(1;r;1;M) =µ(M� r)

h(m+1;r;rm�1 +1;M) =h(m;r;rm�1;M)

h(m+1;r;rm�1;M) =(M� r�m+ rm�1)

�h(m;r;rm�1;M)

4.2.3 Sampling Algorithm

To sample a complete vector of associations (s)C̃t

for time step t given (s)C̃1:t�1, the individual real-
ization (s)c̃t

m are sampled sequentially for m = 1 to
m = M. An iteration consists of two parts. First the
probabilities for sampling (see Eq. (5)) are computed.
Subsequently these probabilities are used to sample

the m-th association (s)c̃t
m. In the second part vari-

ables and arrays representing functions d, f , g and h
are updated if necessary using the recursions derived
in the last subsection. This sampling is performed
independently for each RBMCDA sample (s)C̃t in
turn. For clarity the RBMCDA sample index (s) is
omitted in the following description of the algorithm.

INITIALIZE
d(1;0;M;N), f (k;0;M;N), f (k;1;M;N)
g(b;0), g(b;1), h(1;r;0;M), h(1;r;1;M)
km�1 0 , bm�1 0
pC̃ 1 // p(Ct jZ1:t ; C̃1:t�1)

C̃ fg // C̃t

// SEQUENTIAL SAMPLING of Ct

for m = 1!M do
// Part I: Compute probabilities and sample c̃t

m

// compute data association prior probabilities
qclutter q(ct

m = 0jc̃1:m�1;M;N) // Eq. (13)
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(a) Ninit = 50. (b) Ninit = 100. (c) Ninit = 200.

Figure 1: Images of the generated sequences at t = 10: Observations are drawn as spots together with their current trajectories.

qexist q(ct
m = nexistjc̃1:m�1;M;N) // Eq. (14)

qnewborn q(ct
m = nnewjc̃1:m�1;M;N) // Eq. (15)

// compute probabilities for association to clutter
p̂(ct

m = 0) qclutter � pclutter(zt
m)

// ... to each target not associated in c̃1:m�1
for all n 2Nt

�nc̃1:m�1 do
p̂(ct

m = n) qexist
�p(zt

mjct
m = n;ct

1:m�1;Z
1:tnzt

m;C1:t�1)
end for
// ... to newborn target
p̂(ct

m = nnew) qnewborn � pnewborn(zt
m)

normalize p̂(ct
m)! p(ct

m)

// sample association c̃t
m

c̃t
m � p(ct

m)

C̃ (C̃; c̃t
m)

pC̃ pC̃ � p(c̃
t
m)

// Part II: Update variables and arrays

// update d for m m+1
d(m+1;km�1;M;N) Eq. (16)
if c̃t

m = 0 then
// update h for m m+1
h(m+1;r;km�1 +bm�1;M) Eq. (19)
h(m+1;r;km�1 +bm�1 +1;M) Eq. (19)

else if c̃t
m 2Nt

� then
// update f and d for km�1 km�1 +1
// f (k;km�1 +1;M;N) remains unaffected
f (k;km�1 +2;M;N) according to (17)
d(m+1;km�1 +1;M;N) according to (16)
km�1 km�1 +1

else
// update g for bm�1 bm�1 +1
// g(b;bm�1 +1) remains unaffected
g(b;bm�1 +2) according to (18)
bm�1 bm�1 +1

end if
end for
return (C̃; pC̃)

5 RESULTS

Model Specification. The state of a target com-
prises its current position (xt ;yt) and size, defined
as the squareroot of the occupied area, as well as

its position in the previous time step, i.e. xt :=
(xt ;yt ;xt�1;yt�1;

p
areat)T . Observations comprise

position and size only, i.e. zt := (xt ;yt ;
p

areat)T . The
observation of a target is modeled to obtain the current
location and size of the target perturbed with additive
Gaussian noise. The measurement noise covariance
matrix R is defined as a diagonal matrix with vari-
ances for coordinates and size. The dynamic behavior
of targets is modeled by switching linear models with
Gaussian noise. The corresponding noise covariance
matrices Q again are defined as diagonal matrix with
the variances for current and previous coordinates as
well as for size. Two dynamic models are employed:
A random walk model (rw) accounts for stopping and
change of direction by no deterministic change in po-
sition and size of a target, but Gaussian noise only. A
second model for directional motion (fle) extrapolates
the next position from the current and last position
with additional Gaussian noise. See (Genovesio and
Olivo-Marin, 2008) for more details. Switching of
dynamic models between time steps is described by
the probabilities Prw!rw to stay in the rw-model and
Prw! f le, Pf le!rw and Pf le! f le defined analogously.
We integrate the IMM filter (Bar-Shalom and Blair,
2000) into the RBMCDA framework, which estimates
the state distribution of a target with changing dynam-
ics by a Gaussian mixture.

Poisson distributions n(b;lB) and µ(u;lc) ac-
count for the number of observations from newborn
targets and clutter observations respectively, con-
trolled by parameters lB and lc. The death of targets
follows an exponential distribution of the time to last
association with parameter ld. The proposed model is
generative and thus may be used to generate synthetic
data.

Synthetic Data Generation. Three time sequences
of 50 time steps were generated for evaluation. Each
sequence was generated for a different number of ini-
tial targets in an image of fixed size to investigate the
behavior of the algorithm regarding different numbers
of targets and different spatial density of observations.
The sequences are referred to by the number of initial
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Table 1: Parameters used for data generation and tracking.

Ninit = 50 Ninit = 100 Ninit = 200
lB 0.6 1.4 2.25

Q

0@5 0 0 0 0
0 5 0 0 0
0 0 1:67 0 0
0 0 0 1:67 0
0 0 0 0 1:1

1A
lc ld PD R

5 0.5 0.97
�5 0 0

0 5 0
0 0 1:1

�
Prw!rw Prw! f le Pf le!rw Pf le! f le

0.7 0.3 0.5 0.5

targets Ninit 2 f50;100;200g. Fig. 1 shows images of
the different sequences at t = 10 to give an impres-
sion of how densely observations are situated. All pa-
rameters are fixed for generation of the three differ-
ent sequences except for lB, which was adjusted for
each sequence to achieve a nearly balanced number of
deaths and births of targets. The parameters for data
generation are presented in Tab. 1. True associations
of all observations in this synthetic data are known
and used for evaluation of tracking results. Tracking
was performed with a number of RBMCDA samples
S 2 f10;100;1000g for each sequence using the cor-
responding parameters from data generation.

Performance Evaluation. Evaluation of
RBMCDA tracking performance is not straight-
forward as target IDs of different RBMCDA samples
do not relate to each other nor to IDs of ground-truth
data. Thus trajectories cannot directly be related
to each other using target IDs or compared to
ground-truth. For the same reason state distributions
estimated within the RBMCDA samples cannot eas-
ily be combined. We therefore consider track graphs
to evaluate tracking results. The nodes of a track
graph are constituted by all observations of a time
sequence. Edges are defined as follows. For each
target we consider all observations associated to this
target. These observations are ordered with respect to
time and neighboring observations in this sequence
are connected by an edge. As a consequence all ob-
servations associated to clutter are not incident to any
edge. In the same way the ground-truth track graph
is constructed using true associations available from
synthetic data. The graph of each RBMCDA sample
is compared to this ground-truth graph as follows.
Edges that are common to both graphs are considered
as true positives (TP), edges that appear only in the
ground-truth graph are counted as false negatives
(FN) and edges only in the graph from the current
sample are regarded as false positives (FP). An
example is given in Fig. 2, where in the ground-truth
track graph observations are horizontally connected,

FN

TP

TPFNFN

FN FN

FP
FP

FP

t=1 t=2 t=3 t=4 t=5 t=6 t=7

FN

FP

1|1 2|1 3|1 4|1 6|1 7|1

2|2 4|2 5|2 7|2

Figure 2: Evaluation of track graphs: nodes represent obser-
vations, solid edges ground-truth trajectories, dashed edges
tracking results. TP are edges present in both graphs, FN
only in ground-truth and FP only in tracking results.Precision for tracking with S samples
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Figure 3: Tracking performance for synthetic data Ninit
tracked with different number of RBMCDA samples S.

but observations 2j1 and 2j2 are interchanged in the
track graph of the RBMCDA sample. Furthermore
observations 4j2 and 6j1 are wrongly associated to
clutter. To evaluate the performance of tracking we
use precision P := TP

TP+FP and recall R := TP
TP+FN .

Note that the track graph is only assessed locally
with respect to time, which may underestimate the
performance. E.g., in Fig. 2 observation 6j1 is
associated to clutter by the tracker resulting in two
FN and one FP, while the association of 4j1 to 7j1 is
obviously correct. Still we prefer this measure for its
clear definition.

The precision P of tracking results in the different
experiments is presented in Fig. 3(a) and recall R
in Fig. 3(b). Both measures increase for any of the
sequences, when the number of RBMCDA samples is
increased. On the other hand P and R decrease, when
more targets are presents in the domain.

Computation Times. Tracking was conducted on
AMD Opteron 848 processors with clock speed 2.2
GHz using a Java implementation on Sun’s 64-Bit vir-
tual machine. Probabilities are represented by their
logarithms to avoid numerical problems. Their sum-
mation thus is expensive and required extensively by
Eqs. (13), (14) and (15). Computation times are mea-
sured in UNIX’ user CPU time and presented in Tab.
2 for the different sequences and sample sizes.
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Table 2: Computation time (seconds) of tracking sequences
Ninit with different number of RBMCDA samples S.

S = 10 S = 100 S = 1000
Ninit = 50 21.1 167.3 2,083.1
Ninit = 100 89.8 886.3 11,021.9
Ninit = 200 384.8 3,714.1 38,478.0

6 DISCUSSION

The proposed method is evaluated for tracking per-
formance in order to prove its concept. Sequence
Ninit = 50 was generated to pose a tracking problem
of relatively low complexity (see Fig. 1(a)). Targets
are not located densely and noise in position and size
is reasonable. The performance is given in Fig. 2
for varying sample size S. With regard to the pes-
simistic characteristics of the employed measures, the
resulting performance indicates expectedly good per-
formance for tracking with S = 10 RBMCDA sam-
ples. In general R is smaller than P because, e.g.,
wrong associations to clutter have no impact on P ,
however on R . If the number of RBMCDA samples is
increased performance improves with maximum pre-
cision of 0:961 and recall of 0:886 for S = 1000.

The tracking problem gets more difficult as the
number of targets increases in sequence Ninit = 100
(see Fig. 1(b)). Wrong associations become more
likely when targets and their observations approach
and thus both P and R decrease in general, but are
still very satisfactory (see Figs. 3(a) and 3(b)). Again,
the performance improves with sample size S. Maxi-
mum precision is 0:93 with a recall of 0:899.

Even more targets are generated in sequence
Ninit = 200, posing a very challenging tracking prob-
lem (see Fig. 1(c)). Here, a maximum precision
of 0:841 is achieved where the maximum recall
is 0:807. This is well acceptable taking the complex-
ity of the data into account. It could be speculated
that the performance may be further increased using a
larger set of RBMCDA samples.

In summary, tracking performance shows that the
proposed method is able to successfully track large
numbers of targets in demanding data.

For practical application we recommend to repre-
sent probabilities by their logarithms to track larger
numbers of targets, because sampling would fail as
the small probabilities in Eq. (5) cannot be repre-
sented by double precision any more. Calculation
of the data association prior becomes more expensive
due to the summation of probabilities, but the numer-
ical stability allows to successfully track at least 3600
targets. This is in contrast to about 70 targets for a
conventional representation of probabilities.

7 CONCLUSIONS

In this work we propose a parametric data associa-
tion prior for use with RBMCDA presented in (Särkkä
et al., 2007) to track a varying number of targets. This
prior models the formation of observations from ex-
isting and newborn targets as well as clutter observa-
tions. We developed an efficient algorithm to sample
associations using this prior. In a proof of concept we
show that this sampling procedure allows to success-
fully sample associations in the presence of hundreds
of targets. Computation times are moderate using a
sample size of 1000 and as much as 200 targets on
average. For synthetic data of demanding complex-
ity the performance of sampled associations is well
acceptable. We integrated the IMM filter to enable
tracking of targets with changing dynamics for an ap-
plication to microscopy image analysis in mind.
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