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Abstract: This paper proposes the use of a monocular video camera for traffic lights detection, in a variety of 
conditions, including adverse weather and illumination. The system incorporates a color pre-processing 
module to enhance the discrimination of red and green regions in the image and handle the “blooming 
effect” that is often observed in such scenes. The fast radial symmetry transform is utilized for the detection 
of traffic light candidates and finally false positive results are minimized using spatiotemporal persistency 
verification. The system is qualitatively assessed in various conditions, including driving in the rain, at night 
and in city roads with dense traffic, as well as their synergy. It is also quantitatively assessed on a publicly 
available manually annotated database, scoring high detection rates. 

1 INTRODUCTION 

Advanced Driver Assistance Systems (ADAS) are 
new emerging technologies, primarily developed as 
automated advisory systems to enhance driving 
safety. One of the most challenging problems for such 
systems is driving in urban environments, where the 
visual information flow is very dense and can cause 
fatigue, or distract the driver. Aside from moving 
obstacles like cars and pedestrians, road signs and 
traffic lights (TL) significantly influences the 
reactions and decisions of the driver, which have to be 
made in real time. The inability to make correct 
decisions can lead to serious, even fatal, accidents. 
Traffic light violations in particular, are one of the 
most common causes of road crashes worldwide.  

This is where ADAS can provide help that may 
prove life-saving. A very big portion of such 
systems is based on visual information processing 
using computer vision methods. Whether in the form 
of completely automated driving systems, using only 
visual information, or in the form of driver alert 
systems, technology can provide crucial assistance 
in the efforts to reduce car accidents. Both the 
aforementioned systems have to include a reliable 
and precise Traffic Light Detection (TLD) module, 
so that accidents in intersections are mitigated.  

The idea of using vision for ADAS in urban 
environments so that TLD can be achieved was first 
introduced in the late 90’s, by (Loy and Zelinsky, 
2002) who proposed a computer vision based Stop 
& Go algorithm using a color on-board camera. 
However, the use of computer vision for ADAS 
bloomed in the next decade, as computer processor 
speeds reached a point that enabled real-time 
implementation of complex algorithms. The work of 
(Lindner et al., 2004) proposes the fusion of color 
cameras, GPS and vehicle data to increase the 
robustness of their TLD algorithm, which is 
followed by a tracking and a classification module. 
The TLD part uses RGB color values, texture and 
shape features. In the HSV space, color thresholding 
followed by a Gaussian filtering process and a 
verification of TL candidates is the approach of (In-
Hak et al., 2006) to detect TLs in crossroads. A 
similar approach is followed by (Yehu Shen et al., 
2009), based on HSV images and a Gaussian 
distribution-based model acquired by training 
images. A post processing phase utilizes shape and 
temporal consistency information to enhance the 
results. A more straight-forward process is proposed 
by (M. Omachi and Omachi, 2009), who locate 
candidate regions in the normalized RGB color 
space and validate the results using edge and 
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symmetry detection. Color information has been 
ignored by (de Charette and Nashashibi, 2009a), 
who use grayscale spot detection followed by an 
Adaptive Template Matcher, achieving high 
precision and recall rates in real time. Their results 
were tested thoroughly and compared to the results 
of an AdaBoost method using manually annotated 
videos in (de Charette and Nashashibi, 2009b). The 
problem of TLD in day and night scenes has been 
addressed by (Chunhe Yu et al., 2010) using RGB 
thresholding and shape dimensions to detect and 
classify lights in both conditions. 

By reviewing related literature to date, the 
following conclusions can be drawn about vision 
based TL detection:  

 Researchers have not always used color 
information; when they do, they prefer either 
the HSV, or RGB color spaces. 

 Many groups have used empirical thresholds 
that are not optimal for all possible driving 
conditions (i.e. shadows, rain, and night). 
Generally, adverse conditions are not very 
frequently addressed.  

 Symmetry is frequently used, either with 
novel detection techniques, or with the well-
known Hough transform, but never with the 
fast radial symmetry transform (Loy and 
Zelinsky, 2003). 

 Traffic lights candidate detection is followed 
by a validation process, required to exclude 
false positive results. The use of TL models, 
tracking, or both is the most common solution. 

 Apart from (Robotics Centre of Mines 
ParisTech, 2010) that provides a publicly 
available annotated database of on-board 
video frames taken in Paris, to the best of our 
knowledge, there are no other annotated 
databases for traffic lights detection.  

This paper presents a TLD algorithm inspired by 
the approaches followed for road sign detection, by 
(Barnes and Zelinsky, 2004), (Siogkas and 
Dermatas, 2006)  and (Barnes et al., 2008). The Fast 
Radial Symmetry (FRS) detector of (Loy and 
Zelinsky, 2003) is employed in the referenced 
approaches, to take advantage of the symmetrical 
geometry of road signs. The symmetry and color 
properties are similar in road signs and traffic lights, 
so these approaches can be a good starting point. 
The goal of the system is to provide a timely and 
accurate detection of red and green traffic lights, 
which will be robust even under adverse 
illumination or weather conditions. 

The proposed system is based on the CIE-
L*a*b* color space (Illumination, 1978) exploiting 

the fact that the perceptually uniform a* coefficient 
is a color opponency channel between red (positive 
values) and green (negative values). Therefore, it is 
suitable for distinction between the two prominent 
classes of TLs. An image processing phase 
comprising 4-connected neighborhood image flood-
filling on the positive values of a* channel is then 
applied, to ensure that red traffic lights will appear 
as filled circles and not as black circles with a light 
background. The fast radial transform is then 
utilized to detect symmetrical areas in a*. The 
proposed system has been tested in various 
conditions and has been qualitatively and 
quantitatively assessed, producing very promising 
results. 

The rest of the paper is organised as follows: 
Section 2 presents an overview of the proposed 
system, describing in depth every module and its 
functionalities. Section 3 presents experimental 
results in both normal and adverse conditions, and 
finally, section 4 discusses the conclusions drawn 
from the experiments and suggests future work. 

2 PROPOSED SYSTEM  

The hardware setup for the proposed system is 
similar to most of the related applications. The core 
of the system is a monocular camera mounted on an 
elevated position on the windshield of the moving 
vehicle. The video frames shot by the camera are 
processed by three cascade modules. The first one is 
the pre-processing module, with a goal to produce 
images in which red TLs will appear as very bright 
circular blobs and green TLs will appear as very 
dark circular blobs. The image obtained by the pre-
processing module is used in the traffic light 
detector, which comprises a FRS transform for 
various radii, followed by a detection of multiple 
local maxima and minima in the top part of the 
frame. The last module applies a spatiotemporal 
persistency verification step to keep those candidates 
that appear in multiple frames, thus minimizing false 
positives. 

Summing up, the proposed algorithm consists of 
the following steps: 

1) Frame acquisition.  
2) Image pre-processing: 

a) Convert RGB to L*a*b*. 
b) Enhance red and green color difference. 
c) Fill holes in enhanced image    

3) TL candidate detection: 
a) Radial symmetry detection. 
b) Maxima/minima localization. 
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4) TL candidate verification: 
a) Spatiotemporal persistency check. 

 
The steps described above are shown in Figure 1. 

 

 

Figure 1: Proposed TL detection algorithm. 

2.1 Pre-processing Module 

Before processing each frame to detect TL 
candidates, the contrast between red and green lights 
and their circularity are enhanced. Ideally, red TLs 
should be very bright circular blobs and green TLs 
should be very dark circular blobs. In this direction, 
the perceptually uniform a* channel of the CIE-
L*a*b* color space, which assigns large positive 
and negative values to red and green pixels 
respectively, is utilized. To further enhance the 
discrimination between red and green, the pixel 
values of the a* channel are multiplied by the pixel 
luminosity (L channel), to produce a new channel, 
called RG hereafter, defined as 

 ( , ) ( , ) ( , )RG x y L x y a x y= × , (1) 

where x, y are the pixel coordinates. 
This transformation results in a further increase 

of the absolute value of the pixels belonging to TLs, 
as they also tend to have large luminosity values. On 
the other hand, green objects with very large 
absolute values of a* like tree leafs, do not appear so 
bright, so they are not affected on the same degree.  
The same applies for most red objects, like red roofs. 
The aforementioned process is demonstrated in 
Figure 2. While the green TLs are still dark when 
multiplying L by a* (Figure 2d), the leafs are not as 
dark as in the a* channel (Figure 2c). 

Ideally, the image transformation from the RGB 
to the CIE-L*a*b* color space would be enough to 
achieve the aforementioned goal. However, real 
world video sequences containing TLs often produce 
a “blooming effect”, especially in the case of red 
TLs, as shown in Figure 3a. The cause of this 
blooming effect can be twofold: i) red lights often 
include some orange in  their hue,  while  green  TLs  

(a) (b) 

(c) (d) 

Figure 2: Red-green discrimination enhancement. (a) RGB 
image, (b) L channel, (c) a* channel, (d) L, a* 
multiplication result (RG channel).  

include some blue. ii) The dynamic range of cameras 
may be sensitive to very bright lights; consequently 
saturated regions appear in their inner area.  

To tackle this problem, we propose to combine 
the red and green areas with the yellow and blue 
ones, respectively. This is accomplished by 
calculating the product of L and b* (YB channel): 

 ( , ) ( , ) ( , )YB x y L x y b x y= ×  (2) 

where x, y are the pixel coordinates and then adding 
the result to the RG channel to produce the RGYB 
image: 

 ( )
( , ) ( , ) ( , )

( , ) ( , ) ( , ) .
RGYB x y RG x y YB x y

L x y a x y b x y
= +
= × +

 (3) 

The results of this process are demonstrated in 
Figure 3. The “blooming effect” is shown in the red 
TL on the right of the picture in Figure 3b. While it 
would be expected that the value of a* to be 
positive, it appears to be negative (green). The 
redness is observed only in the perimeter of the TL 
and could lead the FRS algorithm to detect two 
symmetrical shapes with the same centre (a large 
bright one and a smaller dark one). However, by 
adding the YB channel (Figure 3c) to the RG result, 
this problem is handled, as shown in Figure 3d.  

The blooming effect, however, still remains a 
problem in the case of night driving, so an additional 
step is necessary. This step is a grayscale 4-
connected neighbourhood image filling (Soille, 
1999) of the holes in both the bright and the dark 
areas of the image. More specifically, the RGYB 
image is thresholded to produce two images: one 
with red and yellow pixels (RGYB > 0)  and  one 
  

VISAPP 2012 - International Conference on Computer Vision Theory and Applications

622



 

 
(a) (b) 

 
(c) (d) 

Figure 3: Handling the “blooming effect” in the morning. 
(a) RGB image, (b) RG channel, (c) YB channel, (d) 
RGYB channel.  

with green and blue pixels (RGYB < 0). The holes in 
both images are then filled, using the method 
mentioned above, and then they are added to 
produce the final result. This process and its results 
(denoted by the red ellipses) are demonstrated in 
Figure 4. The green TLs in the scene are shown as 
big black circles with a concentric smaller, lighter 
circle inside them (Figure 4b). This effect has been 
eliminated after the aforementioned filling process, 
as shown in Figure 4c.   

 
(a) (b) 

 

 

(c)  

Figure 4: Handling the “blooming effect” at night. (a) 
RGB image, (b) RGYB channel, (c) RGYB channel after 
filling process.  

2.2 Radial Symmetry Detection 

The algorithm for FRS detection was first introduced 
by (Loy and Zelinsky, 2002) and improved in (Loy 
and Zelinsky, 2003). Its main feature is detecting 
symmetrical blobs in an image, producing local 
maxima in the centres of bright blobs and local 
minima in the centres of dark blobs. The only 
parameters that have to be defined for this process 
are a radial strictness factor, a, and the radii that will 
be detected.  

As mentioned in section 2.1, the image 
transformed by the FRS algorithm includes red and 
green color opponency. This property makes it 
appropriate for the FRS transform. Some examples 
of the implementation of the FRS transform (for 
radii from 2 to 10 pixels with a step of 2 and a=3) to 
pre-processed frames of various videos are reported 
in Figure 5.  

Figure 5: Fast radial symmetry transforms (right column), 
at day and night time (left column). Dark spots denote 
green TLs, light spots denote red TLs. Local 
maxima/minima detection is performed above the yellow 
line (which depends on the camera placement).  

The results of the FRS transform that are 
demonstrated in Figure 5 show that the centres of 
TLs are always within the most voted pixels of the 
frame, as long as their radii are included in the 
search. This means that once the FRS algorithm has 
been applied, the following process is a non-maxima 
suppression to detect red TLs and a non-minima 
suppression to detect green TLs. However, since the 
nature of the TL detection problem allows it, only 
the conspicuous region of the image, i.e. the upper 
part, will be used for the suppression. Since the on-
board camera was not placed identically in all the 
videos used, the selection of the part of the image 
that will be used for the suppression must be defined 
during the system calibration. This could be 
achieved automatically using horizon detection 
techniques, but this is not necessary because the 
areas where a TL could appear can be predicted 
during the camera setup.  In the examples of Figure 
5, the suppression took place above the yellow line. 

Up to 5 local maxima and 5 local minima are 
selected, given that they lie within the range of 
numbers greater than half the value of the global 
maximum. Once the TL candidates are produced, the 
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TL areas are denoted by a rectangle with coordinates 
that are determined by the detected centre 
coordinates, the radius and the color of the TL. More 
specifically, the annotation rectangle for a green TL 
starts at 6 radii up and 1.5 radii to the left of the TL 
centre and has a width of 3 radii and a height of 7.5 
radii. Similarly, the annotation rectangle for a red 
TL starts at 1.5 radii up and 1.5 radii to the left of 
the TL centre and has the same height and width as 
above. 

2.3 Candidate Verification 

The last module of the proposed system is a TL 
candidate verification process. This step is vital for 
the minimization of false positives that could be 
caused by numerous artefacts that resemble a TL. 
Road signs, advertisements etc. can be 
misinterpreted as TLs, because their shape and color 
properties might look alike. However, such artefacts 
usually don’t appear radially symmetrical for more 
than a few frames, while the symmetry and color of 
TLs are more robust to temporal scale variations. 
Hence, most of them can be easily removed if the 
condition of multiple appearance of a TL in 
successive frames is met.  

In order to satisfy spatiotemporal persistency, the 
proposed method assumes that a TL will appear in 
the top voted candidates for symmetrical regions in a 
sequence of frames (temporal persistency), so its 
centre is expected to leave a track of pixels not far 
from each other (spatial persistency). Such a result is 
shown in Figure 6, where the trails left by the 
centres of two green TLs over a period of 30 frames 
are denoted by green dots. The sparse dots on the 
left belong to the other detected symmetrical objects 
and do not fulfil the persistency criterion. 

 

 
Figure 6: Trails left by the centres of two green TLs.  

A persistent high FRS value in a small area for at 
least 3 out of 4 consecutive frames is the post-
processing criterion for characterizing a pixel as 
being the centre of a TL. An example of the 
aforementioned process is demonstrated in Figure 7, 
where the first column shows frames 1, and 2 and 
the second column contains frames 3, and 4. The red 
rectangles denote a red TL candidate and the yellow 
ones denote a green TL candidate. 

Figure 7: Four consecutive frames, TL candidates 
annotated by rectangles. Non persistent candidates are 
dismissed. Candidates persistent for 3 out of 4 consecutive 
frames get verified. 

3 EXPERIMENTAL RESULTS 

The assessment of the effectiveness of the proposed 
system is twofold.  

First, a quantitative assessment is made, using 
the publicly available, manually annotated video 
sequence of (Robotics Centre of Mines ParisTech, 
2010). The video sequence comprises 11179 frames 
(8min 49sec) of 8-bit RGB color video, with a size 
of 640x480 pixels. The video is filmed in a C3 
vehicle, travelling at speeds less than 50km/h, and 
the camera sensor is a Marling F-046C, with a frame 
rate of 25fps and a 12mm lens, mounted behind the 
rear-view mirror of the car.  

Secondly, extensive qualitative testing is carried 
out, using video sequences of different resolutions 
shot with different cameras, under adverse 
conditions in day and night time,  in various 
countries, downloaded off the internet (mainly from 
the YouTube site), or 720x576 pixels videos at 25fps 
filmed in Greek roads, using a Panasonic NV-GS180 
video camera. The purpose of this experimental 
procedure is to examine the system’s robustness in 
changing not only the driving, weather and 
illumination conditions, but also the quality of the 
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videos and the camera setup.  
The proposed system was implemented in 

Matlab and was tested on a computer with a Core 2 
Quad CPU at 2.83GHz, and 4GB of memory. The 
code did not use any parallelization. The processing 
times achieved were directly affected by the 
resolution of the videos and they fluctuated from 
0.1ms to 0.5ms per frame. 

As far as the parameters used for the proposed 
algorithm are concerned, the radii for the FRS in the 
experiments were 2,4,6,8, and 10 pixels. The radial 
strictness was 3, and for the spatiotemporal 
persistency to hold, a candidate must appear in at 
least three out of four consecutive frames, in an area 
of a radius of 20 pixels. 

3.1 Quantitative Results 

The quantitative results of the TL detector are 
estimated following the instructions given in 
(Robotics Centre of Mines ParisTech, 2010), for 
their publicly available, manually annotated video 
sequence. These instructions stated that from the 
11179 frames included in the video sequence, only 
9168 contain at least one TL. However, not all the 
TLs appearing in these frames are used: yellow 
lights (58 instances) are excluded, as well as many 
lights which are ambiguous due to heavy motion 
(449 instances). Apart from these, 745 TLs that are 
not entirely visible, i.e. are partially outside the 
frame, are also excluded. Eliminating all these TL 
instances, a total of 7916 visible and unambiguous 
red or green TLs remain. The total distinct TLs that 
comprise these 7916 instances are 32. 

The results scored by the proposed system are 
shown calculated following the same rule as (de 
Charette and Nashashibi, 2009a), which states that if 
a TL is detected and recognized once in the series of 
frames where it appears, then it is classified as a true 
positive. Hence, a false negative result is a TL never 
detected in its timeline. Using these definitions, the 
proposed algorithm scores a detection rate (recall) of 
93.75%, detecting 30 of the total 32 TLs. The 2 
missed traffic lights were green and appeared for 49 
and 167 frames in the scene. In both cases, our 
system detected the other green lights appearing in 
the same scene, so the goal of informing the driver 
can be achieved. Some detection examples from the 
aforementioned database are given in Figure 8. The 
total number of false positive detections is 1481, of 
which 1167 are false red TL positives and 314 false 
green TL detections. The red false positive instances 
concern 12 different objects mistaken as red TLs, 
while the number of different objects mistaken as 

green TLs is 7. This means that the precision of our 
system is 61.22%. This false positive rate could be 
significantly reduced by using morphological cues, 
like the templates utilized by (de Charette and 
Nashashibi, 2009a) and (de Charette and Nashashibi, 
2009b), who report precision and recall rates of up 
to 98% and 97% using temporal matching. A more 
direct comparison between our system and the two 
aforementioned approaches is not feasible though, 
due to the lack of details in the evaluation process. 

 

Figure 8: TL detection results in daytime driving. A false 
positive red TL example is show in in the bottom left 
image and a false negative is shown in the bottom right.  

3.2 Qualitative Results 

The experimental results reported in section 3.1 
show that the system appears effective and robust in 
the case of urban driving in good weather and 
illumination conditions. The problem of false 
positives is not so persistent and could be further 
improved if, as already mentioned, a TL model is 
used for a final verification, or if a color constancy 
module is introduced. However, the great challenge 
of such systems resides in more demanding driving 
conditions, including driving under rainy conditions 
and driving at night time. 

For this reason the proposed system is also tested 
in such conditions, so that its robustness and 
resilience can be examined. Various video sequences 
shot from on-board cameras all around the world 
have been gathered from the Internet. The ultimate 
goal is to construct a database of challenging 
conditions driving videos, which will be annotated 
and freely distributed in the future.  

3.2.1 Driving Under Rainy Conditions 

The first challenging case in ADAS is driving in 
rainy conditions. The difficulty present is that 
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raindrops on the windshield often distort the driving 
scene and could cause the various objects to appear 
disfigured. Another problem in rainy conditions is 
the partial obstruction by the windshield wiper in 
various frames. For these reasons, every vision 
based system should be tested under rainy 
conditions, as the results produced may vary a lot 
from the ones achieved in normal weather. Some 
examples of successful TL detections in rainy 
conditions are shown in Figure 9.  
 

Figure 9: Successful TL detection results in rainy 
conditions. 

The presence of a TL for the predefined number 
of frames is annotated by the inclusion of a manually 
drawn TL template next to the detected TL. Some 
false positive examples are annotated, but have not 
appeared in previous frames, i.e. the green rectangle 
in the last image on the left column of Figure 9. The 
false negatives in the same picture (green TL on the 
top) and in the first picture of the right column of 
Figure 9 (green TL on the right) have not reached 5 
consecutive detections yet and are recognised in a 
later frame.  

3.2.2 Driving at Night 

The second important category of adverse driving 
conditions is night driving. The difficulty of the 
situation relies largely on the environment and the 
mean luminosity of the scene. If the environment 
does not include excessive noise like for example 
dense advertisements or other lighting sources, the 
proposed system performs well, even in urban 
driving situations. Successful detections in night 

driving scenarios are presented in Figure 10. Most 
TLs are successfully detected, even when their glow 
makes it very difficult to distinguish shape and 
morphology cues.   

 

 
Figure 10: TL detection results in urban night driving. 

3.2.3 Known Limitations of the TLD 

A very common question when dealing with 
computer vision applications is whether there are 
problems that they cannot solve. The proposed 
method is by no means flawless and can produce 
persistent errors in some situations. The main 
problems that can be pinpointed are the following: 
i) The system produces some false positive results 
that cannot be easily excluded, unless it is used in 
correlation to other computer vision modules like a 
vehicle detector or a road detector. An example of 
such false positives is illuminated vehicle tail lights, 
or turn lights, as in Figure 11a. This image also 
includes a false positive result that is excluded in 
next frames. ii) The proposed system fails 
completely in cities like New York (Figure 11b), 
where the visual information is extremely dense and 
the TLs are lost in the background.  

(a) (b) 

Figure 11: Examples of temporary or permanent failures 
of the proposed system.  

4 CONCLUSIONS 

In this paper, we have proposed a novel automatic 
algorithm for traffic lights detection using a 
monocular on-board camera. The algorithm uses 
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color, symmetry and spatiotemporal information to 
detect red and green traffic lights in a fashion 
resilient to weather, illumination, camera setup and 
time of day. It utilizes a CIE-L*a*b* based color 
space with a holes filling process to enhance the 
seperability of red and green traffic lights. A fast 
radial symmetry transform is then used to detect the 
most symmetrical red and green regions of the upper 
part of the image, producing the TL candidates. 
Finally, a spatiotemporal persistency criterion is 
applied, to exclude many false positive results. The 
algorithm has been experimentally assessed in many 
different scenarios and conditions, producing very 
high detection rates, even in very adverse conditions. 

Future work will be directed towards embedding 
a tracking module to the algorithm to minimize the 
false negative results and a color consistency module 
to further reduce false positives. Furthermore, the 
combination of the TL detector with other ADAS 
modules like vehicle, sign and road detection will be 
explored, so that a complete solution for driver 
assistance is proposed. 
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